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Leland suggested an approach to price contingent claims under proportional transaction costs. Its main idea is to use the classical Black-Scholes formula with a suitably adjusted volatility for a periodical revision of the portfolio whose terminal value approximates the pay-off. Unfortunately, if the transaction costs rate does not depend on the number of revisions, the approximation error does not converge to zero as the frequency of revisions tends to infinity. In the present paper, we suggest a modification of Leland's strategy ensuring that the approximation error vanishes in the limit.

of σ, the true one. The intuition behind is to compensate for transaction costs by increasing volatility. A theoretical justification for this approach is based on the replication principle. The terminal value of a self-financing portfolio, revised at a sufficiently large number of dates {t k : k = 1, • • • , n}, should approximate the terminal pay-off. Leland gave an explicit formula for the adjusted volatility σ which may depend on n, the number of revisions. His pricing methodology is of practical importance: it is easy to implement.

However, a mathematical justification of this "approximate replication principle" turns out to be quite difficult to obtain.

The first rigorous result conjectured by Leland was obtained by Lott [START_REF] Lott | Ein Verfahren zur Replikation von Optionen unter Transaktionkosten in stetiger Zeit[END_REF]: for the call option the approximation error tends to zero in probability if the transaction costs coefficients k = kn decrease to zero with the rate proportional to n -1/2 (in this case σ does not depend on n). On the other hand, the replication principle fails to be true if k = k 0 is a constant and the Leland strategy leads to a systematic limiting error. This was observed by Kabanov and Safarian [START_REF] Kabanov | On Leland's Strategy of Option Pricing with Transaction Costs[END_REF] who proved also that the replication error tends to zero when k = kn decreases to zero with the rate n -α , α ∈ (0, 1/2).

There are a number of studies treating the case α ∈ (0, 1/2) and, especially, α = 1/2: for more general pay-off functions, non-uniform revision intervals, on the asymptotics of the L 2 -norm of the approximation error, see papers [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF], [START_REF] Denis | Mean Square Error for the Leland-Lott Hedging Strategy: Convex Payoffs[END_REF], [START_REF] Gamys | Mean Square Error for the Leland-Lott Hedging Strategy[END_REF], and the monograph [START_REF] Kabanov | On Leland's Strategy of Option Pricing with Transaction Costs[END_REF].

The practically interesting case α = 0 (i.e., k 0 is constant), where there is a systematic error also attracted a lot of attention. Limit theorems were obtained by Granditz and Schachinger [START_REF] Granditz | Leland's Approach to Option Pricing: The Evolution of Discontinuity[END_REF] and Pergamenshchikov [START_REF] Pergamenshchikov | Limit Theorem for Leland's Strategy[END_REF]. Zhao and Ziemba [START_REF] Zhao | Hedging Errors with Leland's Option Model in the Presence of Transaction Costs[END_REF], [START_REF] Zhao | Comments on and Corrigendum to "Hedging Errors with Leland's Option Model in the Presence of Transaction Costs[END_REF] provides a numerical study of the limiting error for practical values of parameters. Sekine and Yano, [START_REF] Sekine | Hedging Errors of Leland's Strategies with Time-inhomogeneous Rebalancing[END_REF] suggested some scheme to reduce it. In the paper [START_REF] Pergamenshchikov | Limit Theorem for Leland's Strategy[END_REF] it was suggested a modification of the Leland strategy for the call option eliminating the limiting error. Unfortunately, the approach is based on the explicit formulae and, seemingly, cannot be generalized for more general pay-off functions.

Our modification of the Leland strategy has the following features: 1) we use the same enlarged volatility; 2) the initial value of the portfolio V n 0 is exactly the same; 3) the only difference is at the revision dates t i ; We apply not the modified "delta" of the Black-Scholes formula with enlarged volatility, but correct it on the basis of previous revisions, see the formula (2.3).

We show that the terminal values of portfolios for the proposed strategy converge to the terminal pay-off. We believe that practitioners will benefit from the suggested modification. Our strategy outperforms the conventional one even for a small number of revision dates. The simulations presented in our paper show this quite clearly.

Main Result

We consider the standard two asset model with time horizon T = 1 assuming that it is specified under the martingale measure. The non risky asset is the numéraire and the price of the risky asset is given by the formula

S t = S 0 exp - 1 2 t 0 σ 2 s ds + t 0 σsdWs ,
that is dS t = σ t S t dW t where W is a Wiener process. We assume that σ(t) is a strictly positive and continuous function on [0, 1] verifying

|σ(t) -σ(u)| ≤ µ|t -u|
where µ > 0 is a constant. In particular, we have

σ(t) ∈ [σ 1 , σ 2 ] where σ 1 > 0. Note that S t ∼ S 0 exp{α t ξ -α 2 t /2}
where α 2 t = t 0 σ 2 s ds and ξ ∼ N (0, 1). By virtue of Black and Scholes, the price of the contingent claim G(S 1 ) is the initial value of the replicating portfolio

V t = V 0 + t 0 HrdSr = E(G(S 1 )|F t ) = C(t, S t ),
where

C(t, x) = E G(x exp{ρ t ξ -ρ 2 t /2}), ρ t = 1 t σ 2 s ds
and the replication strategy is Hr = Cx(r, Sr).

In the model with proportional transaction costs and a finite number of revisions the current value of the portfolio process at time t is described as

V n t = V n 0 + t 0 D n u dSu - ti≤t k 0 S ti |D n ti+1 -D n ti | (2.1)
where D n is a piecewise constant process with D n = D n ti on the interval ]t i-1 , t i ]. Here t i = t n i , i ≤ n, are the revision dates and D n ti are F ti-1 -measurable random variables. We assume that the transaction costs coefficient is a constant k 0 > 0 and the dates t i are defined by a strictly increasing function

g ∈ C 2 [0, 1] with g(0) = 0, g(1) = 1, so that t i = g( i n ), i = 0, • • • , n.
Let us denote by f the inverse of g. The adjusted volatility depending on n is given by the formula

σ 2 t = σ 2 t + σ t k 0 n 1 2 8/π f (t) = σ 2 t + σ t γn(t). (2.2) 
We modify the usual Leland strategy (see [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF], [START_REF] Denis | Mean Square Error for the Leland-Lott Hedging Strategy: Convex Payoffs[END_REF]) by considering the process

D n with D n t = D n ti on t ∈]t i-1 , t i ] and D n ti = Cx(t i-1 , S ti-1 ) - ti-1 0 C xt (tu, Su)du (2.3)
where the function C(t, x) is the solution of the Cauchy problem:

C t (t, x) + 1 2 σ 2 t x 2 Cxx(t, x) = 0, C(1, x) = G(x).
(2.4)

Its solution can be written as

C(t, x) = ∞ -∞ G(xe ρy-ρ 2 /2 )ϕ(y)dy (2.5)
where

ρ 2 = (ρ n t ) 2 = 1 t σ 2
s ds and ϕ is the standard Gaussian density. Note that σ 2 s ≥ σ 2 1 + cn 1 2 for a constant c > 0 and, therefore

ρ 2 ≥ (σ 2 1 + cn 1 2 )(1 -t).
We shall use the following hypothesis on the cadence of revisions:

Assumption (R): g > 0, g ∈ C 2 [0, 1].
The basic example is g(t) = t but it could be interesting to concentrate revision dates near the horizon date (see for example [START_REF] Denis | Mean Square Error for the Leland-Lott Hedging Strategy: Convex Payoffs[END_REF]) in order to increase the convergence rate.

Note that there exists a constant c > 0 such that ∆t i = t i -t i-1 ≤ c n -1 . We shall repeatedly make use of results from [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF] , [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] since Assumption (R) is stronger than the similar one (G1) of these papers.

We use the abbreviations H t = Cx(t, S t ) , h t = Cxx(t, S t ) and

K n t = t n i <t ∆K n t n i
where ∆K n t n 0 = 0 and for i ≥ 1,

∆K n t n i = - ti ti-1 C xt (tu, Su)du.
Our hypothesis on the payoff function is as follows (see [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF]): The main result of this paper is the following:

Assumption (G): G is
Theorem 2.1 Let k 0 > 0. Suppose that assumption (R) and (G) hold. Then P -lim n V n 1 = G(S 1 ). (2.6) Remark 2.1
The proof is given in Appendix. If G is not convex, an approximation error appears which is explicitly formulated in [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF] and [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF].

Remark 2.2 From a practical viewpoint, it is more convenient to consider the modified hedging strategy defined by:

D n ti := Cx(t i-1 , S ti-1 ) - i-2 j=0
C xt (t j , S tj )(t j+1 -t j ).

Theorem 2.1 still holds with this latter. Indeed, using Taylor approximations and using estimations from [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] and [START_REF] Denis | Mean Square Error for the Leland-Lott Hedging Strategy: Convex Payoffs[END_REF], we can replace ∆K n t n i by

∆K n t n i = -C xt (t i , S ti )∆t i , i ≥ 1.
To prove this, it suffices to study the additional residual terms appearing by such a modification in the decomposition of the deviation V n 1 -G(S 1 ) we use in the proof above. They involve the analysis of the differences ti ti-1

C xt (tu, Su)du -C xt (t i-1 , S ti-1 )∆t i .
We conclude by using a Taylor approximation and the bounds of the successive derivatives we get from [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] and [START_REF] Denis | Mean Square Error for the Leland-Lott Hedging Strategy: Convex Payoffs[END_REF].

Monte Carlo Simulations

This section presents an empirical study of the performance of Leland's method and the modified one. We consider the price process (S t ) t≥0 with σ = 0.2 and S 0 = 100. The transaction costs coefficient is k 0 = 0.01, the strike price is K = 100. The simulation of the price (S t ) t≥0 is obtained from N uniform subdivisions of the interval [0, 1]. For convenience, we choose uniform revision dates. The sample size is 5000. For different values of N = n and different convex payoff functions, we compare the simulation of the gain V n 1 -G(S 1 ) with n = N , using the initial Leland's method and the modified one, by computing the empirical mean gain n and the empirical standard deviation Sdn of V n 1 -G(S 1 ) . Moreover, we provide the corresponding 95% confidence intervals In. We use the abbreviations gain M od n or gain Lel n to denote whether we use the modified Leland strategy or not. Recall that the goal of Leland's method is to replicate approximatively G(S 1 ) by the terminal wealth V n 1 . Hence our goal is to obtain, if possible, a gain gain n ≥ 0.

The European Call

The payoff function is G(x) = (x -K) + . The solution of the Cauchy problem (2.4) is given by

C(t, x) = xφ (d(t, x)) -Kφ d(t, x) -σ √ 1 -t , d(t, x) = ln(x/K) σ √ 1 -t + σ √ 1 -t 2 where φ(x) := x -∞ ϕ(y)dy.
Leland's strategy is defined by

Cx(t, x) = φ (d(t, x)) .
The modified Leland strategy is

D n ti := Cx(t i-1 , S ti-1 ) - i-2 j=0 C xt (t j , S tj )(t j+1 -t j )
where

C xt (t, x) = 1 σ √ 1 -t 1 2 1 1 -t ln(x/K) - 1 4 σ 2 ϕ (d(t, x)) .
We obtain the following results: As we can notice, a trader using the suggested modified strategy can increase in average his gain by 57% versus Leland's strategy when n = 10.

n

The European Put

The payoff function is G(x) = (K -x) + . The solution of the Cauchy problem (2.4) is given by

P (t, x) = xφ (d(t, x)) -Kφ d(t, x) -σ √ 1 -t -x + K, d(t, x) = ln(x/K) σ √ 1 -t + σ √ 1 -t 2 .
Leland's strategy is defined by

Px(t, x) = φ (d(t, x)) -1.
The modified Leland strategy is

D n ti := Px(t i-1 , S ti-1 ) - i-2 j=0 P xt (t j , S tj )(t j+1 -t j )
where

P xt (t, x) = 1 σ √ 1 -t 1 2 1 1 -t ln(x/K) - 1 4 σ 2 ϕ (d(t, x)) .
We obtain the following results: These simulations show that the adjusted Leland portfolio not only approximately super-replicates the payoff but greatly outperforms the initial Leland one. This is particularly significant for a small number of a revision dates. By the Ito formula we get

Cx(t, S t ) = Cx(0, S 0 ) + M n t + A n t (4.1)
where

M n t := t 0 σuSu Cxx(u, Su)dWu, A n t := t 0 C xt (u, Su) + 1 2 σ 2 u S 2 u Cxxx(u, Su) du.
The process M n is a square integrable martingale on [0, 1] by virtue of [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF] (see also [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF]).

We note

∆ H n ti = H n ti+ -H n ti-, ∆ K n ti = K n ti+ -K n
ti-and we set the difference

V n 1 -G(S 1 ) in a convenient way. Lemma 4.1 We have V n 1 -G(S 1 ) = F n 1 + F n 2 + F n 3 where F n 1 := 1 0 (H n t -H t )dS t -k 0 |∆ H n tn + ∆ K n tn |S tn , (4.2) 
F n 2 := 1 2 1 0 σ t γn(t)S 2 t | Cxx(t, S t )|dt -k 0 n-1 i=1 |∆ H n ti + ∆ K n ti |S ti , (4.3) 
F n 3 := 1 0 K n t dS t . (4.4) 
We recall the next result deduced from Lemma 4.8 [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] (see also [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF]):

Lemma 4.2 We have the following equality

t s C xt (u, Su)du = ρ 2 s ρ 2 t C xt (u, Su) σ -2 u dx,
where u = u(x, n) is defined by x = ρ 2 u and verifies limn→∞ u(x, n) = 1. Moreover,

C xt (u, Su) σ -2 u = 1 2x ∞ -∞ G (Sue √ xy+x/2 )(-y 2 - √ xy + 1)ϕ(y)dy
satisfies the following inequality

| C xt (u, Su) σ -2 u |du ≤ c E 1 (x, Su)
where

E 1 (x, y) = 1 x e -x/8   p j=1 | ln(y/K j )| √ x exp - ln 2 (y/K j ) 2x + √ x + x   .
Corollary 4.3 Assume that we have two sequences {t

k n : k = 0, • • • , n} n∈N and {s k n : k = 0, • • • , n} n∈N in [0, 1] such that ρ t k n and ρs k n respectively converge to a ∈ [0, ∞] and b ∈ [0, ∞]. Then, lim n→∞ t k n s k n C xt (u, Su)du = b a E ∞ 1 (x, S 1 )dx < ∞, a.s.
where

E ∞ 1 (x, S) := 1 2x ∞ -∞ G (Se √ xy+x/2 )(-y 2 - √
xy + 1)ϕ(y)dy.

Proof. We apply Lemma 4.2 with the change of variable x = ρ 2 u . Recall that 0 ≤ 1 -u ≤ c x n -1/2 so that u → 1 as n → ∞ for a given x ≥ 0. We can apply the Lebesgue theorem by dominating the function E 1 (x, Su) whether x ≤ 1 or not because x ≤ 1 implies that u is sufficiently near from 1 independently of x for n ≥ n 0 . Indeed, outside of the null-set ∪ i {S 1 = K i }, we have 0 < a ≤ | ln(Su/K j )| ≤ b for some constants a, b (depending on ω) provided that u is sufficiently near one.2 Proof. The first term in (4.2) converges to 0; the proof is given in [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF]. We split the second term into two terms:

k 0 |∆ H n tn + ∆ K n tn |S tn ≤ k 0 |∆ H n tn |S tn + k 0 |∆ K n tn |S tn
where k 0 |∆ H n tn |S tn converges to 0 by virtue of [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] whereas the second term converges to 0 because of Corollary 4.3.2 Using Lemma 4.13 and the change of variable x = ρ 2 u , we deduce:

1 0 σ 2 u S 2 u | Cxxx(u, Su)|du ≤ cn -1/2 ρ 2 0 0 E 2 (x)dx
where

E 2 (x) = 1 x 3/2 p j=1
expln 2 (Su/K j ) 2x + 1

x 2 e -x/8 .

Thus,

k 0 1 0 σ 2 u S 2 u | Cxxx(u, Su)|du → 0.
Indeed, the reasoning is similar to that of Corollary 4.3. We have 0 ≤ 1 -u ≤ c x n -1/2 so that u → 1 as n → ∞. One can apply the Lebesgue theorem by dominating the function E 2 independently of n whether x ≤ 1 or not since x ≤ 1 implies that u is sufficiently near from 1 independently of x for n ≥ n 0 .2 Inspecting the formulations of above lemmas, we observe that all terms L n j → 0 in probability and, hence, F n 2 converges to 0 in probability. Proof. We rewrite F n 3 as

F n 3 = n i=1 K n ti ∆S ti , = - n-1 i=1 S ti K n ti+1 -K n ti -K n t1 S 0 + K n 1 S 1 . (4.7) 
Recall that K n t1 = 0 and

K n 1 = - tn-1 0 C xt (tu, Su)du which converges a.s. to - ∞ 0 E 1 (x, S 1
)dx by virtue of Corollary 4.3. The first term on the right hand side of (4.7) can be seen as Since sup u Su < ∞ a.s., P n ≤ c(ω)P n a.s.(ω) where Recall that E (S ti /Su -1) 2 ≤ c∆t i and S ti /Su -1 is independent of Su because of the increments of the Wiener process. Using Lemma 4.13, it follows the inequality

P n = n-1 i=1 ti ti-1 C xt (tu, Su)S ti du = tn-1 0 C xt (tu, Su)Sudu + P n where lim n→∞ tn-1 0 C xt (tu, Su)Sudu = S 1 ∞ 0 E ∞ 1 (x,
P n 1 ≤ c √ n tn-1 0 du 1 -u ≤ c ln n √ n
proving that P n → 0 a.s.2 From above, we can conclude about Theorem 2.1.

Auxiliary Results

In the following, we only recall some properties satisfied by the solution of the Cauchy problem (2.4) we need in the proof of Theorem 2.1. For more details, see [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF].

Lemma 4.11 Let C(t, x) is given by (2.5). Then

∂ k+1 C(t, x) ∂x k+1 = 1 ρ k x k ∞ -∞
G (xe ρy+ρ 2 /2 )P k (y)ϕ(y)dy, k ≥ 0,

where P k (y) = y k + a k (ρ)y k + • • • + a 0 (ρ) is a polynomial of degree k whose coefficients a i (ρ) are polynomials in ρ of degree k -1.

In particular, we deduce that | Cx(t, x)| ≤ ||G ||∞ and we have the following expression: Lemma 4.12 Let C(t, x) is given by (2.5). Then .

  a continuous convex function on [0, ∞), two-times differentiable except at the points K 1 < • • • < Kp where G and G admit right and left limits; |G (x)| ≤ M x -β for all x ≥ Kp where β ≥ 3/2. Let K 0 = 0 and K p+1 = ∞. Then G , G exist on each interval [K i , K i+1 ) and are bounded while G verifies the inequality |G(x)| ≤ M (1 + x) for some constant M . The function C(t, x) is continuous on [0, 1] × R. Standard examples of such functions G satisfying Assumption (G) are the continuous convex functions which are piecewise affine.
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 49 We have P -limn L n 5 = 0. Proof. Since max i |∆S ti | → 0 as n → ∞, it suffices to verify that the sequence k 0 n i=1 |∆ H ti | is bounded in probability. But this follows from the preceding lemmas.2
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 410 We have P -limn F n 3 = 0.

1 C

 1 S 1 )dx by virtue of the same reasoning used in Corollary 4.3. Moreover, P n is defined as follows P n := xt (tu, Su) (S ti -Su) du.

1 |

 1 C xt (tu, Su)| |S ti /Su -1| du.

CG 8 x 1 /2 ρ 2 L 2 where|

 8122 tx (t, x) = (xe ρy+ρ 2 /2 )(-y 2 -ρy + 1)ϕ(y)dy (4.1) Lemma 4.13 There exists a constant c such that| C tx (t, x)| ≤ c σ 2 e -ρ 2 (x, ρ) + ρ + ρ ln(x/K j )| ρ expln 2 (x/K j ) 2ρ2
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We write F n 2 = 5 i=1 L n i with the summands

where we use the abbreviations ∆W ti = W ti -W ti-1 , etc. We recall from [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF], [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] the following lemmas. Set

)yϕ(y)dy.

Lemma 4.5 Both terms whose difference defines L n 1 converge almost surely, as n → ∞, to J 0 defined by the formula

Therefore, L n 1 → 0 a.s. The only main difference between the analyze of F n 2 in this paper and [START_REF] Denis | Approximate Hedging of Contingent Claims under Transaction Costs for a more General Payoff[END_REF] (or [START_REF] Denis | Marchés avec Coûts de Transactions: Approximation de Leland et Arbitrage[END_REF]) is due to the sequence L n 4 .