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Abstract

The INARCH(1) model for overdispersed time series of counts has

a simple structure, a parsimonious parametrization, and a great po-

tential for applications in practice. We analyze two approaches to

approximate the marginal process distribution: a Markov chain ap-

proach and the Poisson-Charlier expansion. Then approaches for es-

timating the two model parameters are discussed. We derive explicit

expressions for the asymptotic distribution of the maximum likelihood
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and conditional least squares estimators. They are used for construct-

ing simultaneous confidence regions, the finite-sample performance of

which is analyzed in a simulation study. A real-data example from

economics illustrates the application of the INARCH(1) model.

Key words: ACP model; c control chart; INGARCH model; overdis-

persion; Poisson-Charlier expansion; simultaneous confidence regions.

1 Introduction

Count data processes (Xt)Z, where the Xt have state space N0 = {0, 1, . . .}

and where the time indices t are from Z = {. . . ,−1, 0, 1, . . .}, are commonly

observed in real-world applications, e. g., in insurance (e. g., time series of

claim counts), economics (e. g., counts of price changes), statistical process

control (e. g., counts of defects), traffic (e. g., counts of accidents), network

monitoring (e. g., as a part of an intrusion detection system), epidemiology

(e. g., counts of cases of a certain disease) and others; for references, see

(Heinen, 2003; Weiß, 2008). In line with this practical relevance, diverse

models for count data time series have been proposed in literature, designed

for different types of marginal distribution and autocorrelation structure,

see, e. g., the recent reviews by (Kedem & Fokianos, 2002; Jung et al., 2006;

Weiß, 2008). Particularly popular are ARMA-type models based on an ap-

2
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propriate type of thinning operation, which are referred to as integer-valued

ARMA (INARMA) models. While models based on binomial thinning are

commonly used for processes with Poisson marginals, alternative approaches

like random coefficient thinning, iterated thinning or quasi-binomial thinning

allow to consider marginal distributions with different types of overdispersion

(Weiß, 2008). Overdispersion (i. e., a variance greater than the expectation)

is commonly observed in practice. Typical reasons for overdispersion are the

presence of positive correlation between the monitored events (Friedman,

1993; Poortema, 1999; Paroli et al., 2000) or a variation in the probability

of the monitored events (Heimann, 1996; Poortema, 1999; Christensen et al.,

2003); further potential causes of overdispersion are discussed by (Jackson,

1972).

An alternative approach for modeling time series of overdispersed counts

are the rather novel INGARCH models, the integer-valued counterpart to

the usual generalized autoregressive conditional heteroskedasticity models

(for the latter, see (Bera & Higgins, 1993)). The INGARCH models were

introduced by (Heinen, 2003)1 and further investigated by (Ferland et al.,

2006; Fokianos et al., 2009; Weiß, 2009; Zhu & Wang, 2009, 2010). The

1(Heinen, 2003) referred to these models as the autoregressive conditional Poisson

(ACP) models. But since these models are closely related to the cardinal GARCH models,

(Ferland et al., 2006) suggested to refer to these models as the INGARCH models.

3
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INGARCHmodels are defined by an ARMA-like recursion, and if the range of

the model parameters is restricted in an appropriate manner, then a strictly

stationary solution of this recursion exists, which also has finite first and

second order moments (Ferland et al., 2006). In fact, these models even have

an ARMA-like autocorrelation structure, which can be determined from a

system of equations being similar to the usual Yule-Walker equations (Weiß,

2009).

In the following, we refer to the INGARCH(p, 0) models as the INARCH(p)

models, in analogy to the relation of the usual ARCH and GARCH models,

also see (Zhu & Wang, 2009, 2010). These models can also be understood

as special generalized linear models (GLM): Using the terminology of Sec-

tion 1 in (Kedem & Fokianos, 2002), the INARCH(p) model is a GLM with

Poisson distribution as random component and the identity link as system-

atic component. These purely autoregressive INARCH(p) models appear to

be attractive especially from a practical point of view, since they allow to

perform tasks like model identification, model estimation and forecasting rel-

atively easily, also see (Zhu & Wang, 2009, 2010). Also compared to different

model families, the INARCH models exhibit several advantages. In contrast

to the overdispersed pth order autoregressive models based on a thinning op-

eration, for instance, they only require p + 1 instead of p + 2 parameters,

4
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and they have simple transition probabilities as well as a less complex model

structure if p > 1. An application of the INARCH models was reported by

(Weiß, 2009), who analyzed a time series of monthly claims counts of work-

ers in the heavy manufacturing industry (burn related injuries); this time

series was originally presented by (Freeland, 1998). In fact, (Weiß, 2009)

showed that already the simple two-parametric INARCH(1) model is able to

describe both the observed serial dependence and overdispersion satisfacto-

rily. Also (Zhu & Wang, 2010) proposed to use an INARCH(1) model for

a time series of download counts. A further real-data example, where again

an INARCH(1) model proves to be appropriate, is presented in Section 5

below: monthly strike data published by the U.S. Bureau of Labor Statis-

tics. So in spite of its simple structure and its parsimonious parametrization,

the INARCH(1) model seems to be of great practical relevance. It can be

considered as a counterpart to the very popular Poisson INAR(1) model, but

being able to describe overdispersion. For these reasons, we shall analyze the

INARCH(1) model in more details in this article.

In Section 2, we review the definition and basic properties of the INARCH(1)

model. Section 3 shows how to approximate the marginal process distribu-

tion with the help of the Poisson-Charlier expansion. The goodness of this

approximation is investigated, also in view of approximating the average run

5
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lengths (ARLs) of a c control chart. Section 4 discusses approaches for the

estimation of the two model parameters. In particular, an explicit expression

for the asymptotic distribution of the conditional least squares (CLS) esti-

mators is derived. It can be used for constructing simultaneous confidence

regions, the finite-sample performance of which is investigated in a simula-

tion study. After having illustrated the application of these methods with

the real-data example of Section 5, we conclude in Section 6.

2 The INARCH(1) Model: Definition and

Basic Properties

In this section, we shall briefly review the definition and known basic prop-

erties of the INARCH(1) model.

2.1 Definition (INARCH(1) Model) Let (Xt)Z be a process with state

space N0, let β > 0 and 0 < α < 1. The process (Xt)Z is said to fol-

low an INARCH(1) model if Xt, conditioned on Xt−1, Xt−2, . . ., is Poisson

distributed according to Po(β + α ·Xt−1).

The INARCH(1) model of Definition 2.1 is a stationary Markov chain (Fer-

land et al., 2006). Since the transition probabilities

pi|j := P (Xt = i | Xt−1 = j) = exp (−β − α · j) · (β + α · j)i

i!
> 0, (1)

6
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it is also irreducible and aperiodic and hence ergodic (Zhu & Wang, 2009),

also see (Fokianos et al., 2009), who showed ergodicity for the more general

INGARCH(1,1) model. All moments exist (Ferland et al., 2006), and its

autocorrelation function ρX(n) := Corr[Xt, Xt−n] simply equals αn, like in

the standard AR(1) case (Weiß, 2009). It has to be mentioned, however, that

the value of α and therefore also of ρX(n) is restricted to positive values,

like in the case of the popular INAR(1) models. The marginal distribution

of the INARCH(1) model can be expressed in terms of its cumulants: If

µX(z) := E[exp (z ·Xt)] denotes the moment generating function (mgf), the

cumulant generating function (cgf) is defined as κX(z) := ln (µX(z)). The

coefficients κr of the series expansion κX(z) =
∑∞

r=1
κr

r!
· zr are referred to

as the cumulants of X, with κr = κX
(r)(0). The following Proposition 2.2,

which was proven by (Weiß, 2009), summarizes essential results about the

marginal cumulants of an INARCH(1) process.

2.2 Proposition (Marginal Cumulants) Let (Xt)Z be an INARCH(1)

process according to Definition 2.1. Then the cumulants are determined

recursively from

κ1 = β
1−α

, κn = −(1− αn)−1 ·
∑n−1

j=1 sn,j · κj for n ≥ 2,

where the coefficients sn,j are the Stirling numbers of the first kind (Douglas,

7
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1980; Appendix 9.1), given by

sn,0 = 0 and sn,n = 1 for n ≥ 1,

sn+1,j = sn,j−1 − n · sn,j for j = 1, . . . , n and n ≥ 1.

In particular,

κ1 = β
1−α

, κ2 = β
(1−α)(1−α2)

, κ3 = 1+2α2

1−α3 ·κ2, κ4 = 1+6α2+5α3+6α5

(1−α3)(1−α4)
·κ2.

As a consequence of Proposition 2.2, mean µX , variance σ2
X , skewness and

excess of Xt are given by β
1−α

, β
(1−α)(1−α2)

, 1+2α2

1+α+α2 ·
√

1+α
β

and 1+6α2+5α3+6α5

β(1+α+α2)(1+α2)
,

respectively. Since σ2
X > µX , the INARCH(1) model allows to describe

overdispersion.

3 The Marginal Distribution of INARCH(1)

Processes

An explicit expression for the marginal distribution of an INARCH(1) process

(Xt)Z is not known. But since (Xt)Z is an ergodic Markov chain, it follows

for the marginal probabilities pi := P (Xt = i) that

pi = limn→∞ pi|j(n) for all i, j ∈ N0, (2)

where the n-step transition probabilities pi|j(n) := P (Xt = i | Xt−n = j)

with n ∈ N are determined recursively via

pi|j(n) =
∑∞

r=0 pi|r · pr|j(n− 1). (3)

8
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Relations (2) and (3) allow to determine the marginal probabilities numeri-

cally up to an arbitrary precision: Choosing M,N ∈ N sufficiently large, we

approximate

pi ≈ pi|j(N), where pi|j(n) ≈
∑M

r=0 pi|r · pr|j(n− 1) (4)

for arbitrary i, j ∈ N0. As an example, one may choose j := ⌈µX⌉ (smallest

integer not less than µX).

This Markov chain approach has the disadvantage that it is computation-

ally difficult and that it requires an appropriate choice of M,N , also see

Section 3.1 below. Therefore, it would be desirable to find a more simple

approximation of the marginal distribution. Since the marginal distribution

is defined through assuming a conditional Poisson distribution, it appears to

be a quite natural approach to try to approximate the marginal distribution

with the help of the Poisson-Charlier expansion of (Barbour, 1987). Details

and notations of this approach are outlined in Appendix A. The Poisson-

Charlier approximations of the true marginal distribution of Xt incorporate

the information about this distribution provided by the factorial cumulants

κ(n), see formula (A.1).

3.1 Proposition (Marginal Factorial Cumulants) Let (Xt)Z be an IN-

ARCH(1) process according to Definition 2.1. Then the factorial cumulants

are determined from the usual cumulants, for the latter see Proposition 2.2,

9
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according to

κ(1) = κ1, κ(n) = αn · κn for n ≥ 2.

The proof of Proposition 3.1 is provided by Appendix B.1. In Sections 3.1

and 3.2, we shall investigate the performance of the Poisson-Charlier ap-

proximations by comparing the marginal distributions overally and by only

considering the effect on the ARL of a c control chart, respectively. We

consider approximations up to order 4, see Table A.1, since higher order ap-

proximations become too complex for practice and one may apply the Markov

chain approach instead.

3.1 Study: Approximate Marginal Distribution

To analyze the performance of the first four Poisson-Charlier approximations

to the marginal distribution of the INARCH(1) process as given by Table A.1,

we compared them to the true marginal distribution in terms of relative

errors for a large variety of model parametrizations (β, α). For this purpose,

we computed the true marginal distribution according to the Markov chain

approach described by formula (4). We choseM such that a Poisson variate Y

with mean β + α · ⌈µX⌉ would satisfy P (Y = y) < 10−60 for y > M . Then

we computed the corresponding transition matrix P = (pi|j)i,j=0,...,M as well

as the initial approximation p(0) = (p0|⌈µX⌉, . . . , pM |⌈µX⌉)
⊤. We repeated the

10
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iteration p(k+1) = Pp(k) as long as the Chebycheff distance between p(k+1)

and p(k) was larger than 10−15, which determines N . In the following, the

main results are reported and illustrated by selected graphs.

Independent of the concrete parametrization, it turned out that the approx-

imations can only be used in the central region of the marginal distribution;

for k → ∞, the relative error of the approximations to the probability pk

tends to −100%, since the approximations decrease faster to 0 than the

true probabilities. Otherwise, the performance of the approximations is only

moderately influenced by the choice of β, but depends heavily on the choice

of α. This is exemplified by the graphs of Figure 1, which express the per-

formance for several values of α, and where β is always chosen such that

the marginal mean equals 5 (a choice being motivated by the real-data ex-

ample discussed later in Section 5). It becomes clear, see (a), that a pure

Poisson approximation already leads to visible deviations for small values

of α such as 0.1. The second order Poisson-Charlier approximation can be

used at least for α ≤ 0.25, the third order one for α ≤ 0.4, see (b) and (c).

The fourth order approximation still works well for α = 0.5, see (d), but for

α = 0.6, we observe deviations between −11% and +6% even in the central

region of the marginal distribution, see (e). In this situation, higher-order

Poisson-Charlier approximations would be necessary to reach a satisfactory

11
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performance, see Figure 2. But then also this type of approximation requires

complex computations, so the Markov chain approximation appears to be

preferable. The problems for large α seem to be due to the fact that the

marginal (factorial) cumulants (and therefore the whole marginal distribu-

tion), see Propositions 2.2 and 3.1, of the INARCH(1) model are seriously

influenced by α.

So in a nutshell, satisfactory (and sufficiently simple at the same time)

Poisson-Charlier approximations for the marginal probabilities can only be

found for moderate values of α such as α ≤ 0.5, otherwise the Markov chain

approximation is preferable. For such moderate values of α, the higher-order

Poisson-Charlier approximations clearly outperform the simple Poisson ap-

proximation (and, by the way, also a negative binomial or generalized Poisson

approximation). The Poisson-Charlier approximation might show a better

performance also for large degrees of autocorrelation if applied to models,

where the marginal distribution is separated more clearly from the serial de-

pendence structure. This would be an interesting issue for future research,

also see Section 6.
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Figure 1: Marginal distribution (P) and relative errors of Poisson-Charlier
approximations (PCn) for (a) (β, α) = (4.5, 0.1), (b) (β, α) = (3.75, 0.25),
(c) (β, α) = (3, 0.4), (d) (β, α) = (2.5, 0.5), (e) (β, α) = (2, 0.6).
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Figure 2: Marginal distribution (P) and relative errors of Poisson-Charlier
approximations (PCn) for (β, α) = (2, 0.6), also see Figure 1 (e).

3.2 Study: Approximate ARLs of c Chart

A possible application, where knowledge about the central marginal probabil-

ities of an INARCH(1) process is required, is the computation of average run

lengths (ARLs) of control charts. Since such ARLs are computed by averag-

ing about marginal probabilities, it seems possible that the Poisson-Charlier

approximations lead to satisfactory results also for larger values of α.

For this purpose, c control charts for different in-control parametrizations and

different types of shift in α and β were investigated. A c chart with lower and

upper control limits LCL and UCL monitors the observed counts Xt directly.

Since an INARCH(1) process is a Markov chain, ARLs can be computed with

the well-known Markov chain approach of (Brook & Evans, 1972), which was

done using either the exact marginal distribution or a Poisson-Charlier ap-

proximation. Some illustrative graphs are shown in Figure 3, where shifts

in β compared to the respective in-control value β0 are considered, while
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Figure 3: ARL(β) of c chart and relative errors of Poisson-Charlier ap-
proximations (PCn) for (a) (β0, α0) = (2.5, 0.5), (b) (β0, α0) = (2, 0.6), (c)
(β0, α0) = (1.25, 0.75).

15

Page 17 of 59

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
α = α0. It becomes clear that for α0 ≤ 0.5, any Poisson-Charlier approx-

imation of order ≥ 2 leads to a satisfactory approximation of the ARLs,

also see (a). This result appears to be reasonable in view of the results of

Section 3.1. For α0 = 0.6, at least the approximations of order ≥ 3 can be

used, while these approximations lead to errors between −5% and +5% for

α0 = 0.75.

4 Estimation of Parameters

Let x1, . . . , xT be a time series from an INARCH(1) process with parame-

ters α, β according to Definition 2.1. In the following, we discuss and com-

pare approaches for estimating these two model parameters, also see (Zhu &

Wang, 2009). A related study for the case of an INGARCH(1,1) model was

done by (Ferland et al., 2006; Fokianos et al., 2009).

4.1 Maximum Likelihood Approach

As already proposed by (Ferland et al., 2006), α and β can be estimated with

a conditional maximum likelihood (ML) approach. This type of likelihood

function is easy to compute, since the process has a conditional Poisson
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distribution:

L(β, α) := P (XT = xT , . . . , X2 = x2 | X1 = x1)

=
∏T

t=2 e−β−αxt−1 · (β + αxt−1)
xt/xt!

= e−(T−1)β · e−α
∑T

t=2 xt−1 ·
∏T

t=2 (β + αxt−1)
xt

/ (∏T
t=2 xt!

)
.

(5)

The ML estimates are either obtained by numerically maximizing the loga-

rithmic likelihood function ℓ(β, α) := ln
(
L(β, α)

)
directly, or by solving the

following system of equations:

∑T
t=2 xt/(β̂ML + α̂MLxt−1) = T − 1,

β̂ML = 1
T−1

·
(∑T

t=2 xt − α̂ML ·
∑T

t=2 xt−1

)
.

(6)

(Zhu & Wang, 2009) analyzed the mean square error of the ML estimator in

a simulation study.

The observed Fisher information J(β, α), i. e., the negative Hessian of ℓ(β, α),

is given by J(β, α) =
∑T

t=2 Jt(β, α) with

Jt(β, α) =

 xt

(β+αxt−1)2
xtxt−1

(β+αxt−1)2

xtxt−1

(β+αxt−1)2
xtx2

t−1

(β+αxt−1)2

 . (7)

The proof of formulae (6) and (7) is provided by Appendix B.2. An explicit

expression for the expectation of Jt(β, α), the expected Fisher information

I(β, α) per observation, is not yet available. (Zhu & Wang, 2009; Theorem 3)
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showed that the ML estimators are asymptotically normally distributed:

√
T − 1 · (β̂ML − β, α̂ML − α)⊤ ∼

a
N
(
0, I−1(β, α)

)
, (8)

where ∼
a
is an abbreviation for asymptotic distribution. In practice, the ob-

served Fisher information J(β, α) can be used to approximate (T−1)·I(β, α),

and plugging in the obtained estimates allows, for instance, to approximate

the asymptotic standard errors of the ML estimators, also see (Ferland et

al., 2006). Related investigations (together with finite-sample results from

a simulation study), but concerning the INGARCH(1,1) model, were done

by (Fokianos et al., 2009).

4.2 Conditional Least Squares Approach

The conditional least squares (CLS) estimators are obtained by minimizing

CSS(β, α) :=
∑T

t=2

(
xt−E[Xt | Xt−1 = xt−1]

)2
=
∑T

t=2 (xt−β−αxt−1)
2.

(9)

Evaluating the derivatives of (9), one obtains the explicit expression

α̂CLS =

∑T
t=2 XtXt−1 − 1

T−1
·
∑T

t=2 Xt ·
∑T

s=2 Xs−1∑T
t=2 X

2
t−1 − 1

T−1
·
(∑T

t=2 Xt−1

)2 ,

β̂CLS = 1
T−1

(∑T
t=2 Xt − α̂CLS ·

∑T
t=2 Xt−1

)
(10)
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for the CLS estimators, also see (Klimko & Nelson, 1978). The asymptotic

distribution of the CLS estimators (10) is given by

√
T − 1 (β̂CLS − β, α̂CLS − α)⊤

D→ N(0,Σβ,α) with

Σβ,α =


β

1−α

(
β(1 + α) + 1+2α4

1+α+α2

)
−β(1 + α)− (1+2α)α3

1+α+α2

−β(1 + α)− (1+2α)α3

1+α+α2 (1− α2)
(
1 + α(1+2α2)

β(1+α+α2)

)
 ,

(11)

where
D→ abbreviates convergence in distribution. The proof of formula

(11) is provided by Appendix B.3. Among others, formula (11) allows to ap-

proximate the asymptotic standard errors of the CLS estimators by plugging

in the obtained estimates. Compared to the ML estimators of the previous

Section 4.1, the CLS estimators have the advantage of being computed more

easily (explicit formula instead of numerical maximization) and of having an

explicit, data-independent expression for the asymptotic distribution, while

the ML estimators usually have smaller standard errors within a class of es-

timating functions, see (Godambe & Heyde, 1987), as also indicated by the

results of (Fokianos et al., 2009) concerning the INGARCH(1,1) model and

by Table 5 below. A type of weighted CLS estimators, with the same asymp-

totic properties as the ML estimators of Section 4.1, was proposed by (Zhu

& Wang, 2009), who also investigated its mean square error in a simulation

study.
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4.3 Method of Moments

Since the INARCH(1) process (Xt)Z satisfies E[Xt] = β/(1−α) and ρX(1) =

α, the method of moments implies to estimate α and β as

α̂MM =

∑T
t=2(Xt − X̄T )(Xt−1 − X̄T )∑T

t=1(Xt − X̄T )2
, β̂MM = X̄T · (1− α̂MM), (12)

where X̄T = 1
T

∑T
t=1 Xt denotes the empirical mean of the segmentX1, . . . , XT .

So both estimators (10) and (12) are nearly equal to each other. In fact, the

arguments of Theorem 3 in (Freeland & McCabe, 2005) carry over, i. e., both

estimators have the same asymptotic properties.

4.4 Simultaneous Confidence Regions

In the sequel, we shall propose different types of confidence region based

either on the CLS estimators (10), the asymptotic distribution of which is

given by formula (11), or based on the ML estimator of Section 4.1, where

the inverse of the observed Fisher information (7) is used to approximate

the true covariance.2 We present results from a simulation study, where we

investigated the performance of the confidence regions for time series of finite

length. Explicit recommendations for the use of the confidence regions are

derived.

2Note that the CLS and ML estimates can be computed using the available R functions

lm(data ) and glm(data, family=poisson(link="identity")), respectively.
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The first confidence region is based on the fact that (Y −µ)⊤Σ−1(Y −µ) is

χ2
p-distributed for a p-dimensional normal vector Y ∼ N(µ,Σ). If z denotes

the γ-quantile of the χ2
2-distribution, then we obtain from the asymptotic

distribution (11) of the CLS estimators (10)

{
(β, α) | (β̂CLS − β, α̂CLS − α) Σ−1

β,α (β̂CLS − β, α̂CLS − α)⊤ < z
T−1

}
, (13)

which defines an asymptotically exact simultaneous confidence region for

(β, α) on level γ, the CLS1 confidence region. In complete analogy, we define

the ML1 confidence region based on the ML estimators as

{
(β, α) | (β̂ML − β, α̂ML − α) J(β, α) (β̂ML − β, α̂ML − α)⊤ < z

}
. (14)

The shape of these regions can be recognized from Figures 5 (a) and (c),

respectively, which are computed from the data discussed in Section 5.

Because of computational reasons and the non-rectangular shape of regions

(13) and (14), one might prefer an only approximate but rectangular con-

fidence region for the parameters of the INARCH(1) model. Let z denote

the (3 + γ)/4-quantile of the N(0, 1)-distribution, then the region obtained

by replacing Σβ,α by Σβ̂CLS,α̂CLS
and by applying the Bonferroni inequality

equals{
(β, α) | (β̂CLS − β)2 < z2

T−1
· β̂CLS(1+2α̂4

CLS+β̂CLS(1+α̂CLS)(1+α̂CLS+α̂2
CLS))

1−α̂3
CLS

,

(α̂CLS − α)2 < z2

T−1
·
(
1− α̂2

CLS +
α̂CLS+α̂3

CLS−2α̂5
CLS

β̂CLS(1+α̂CLS+α̂2
CLS)

)}
.

(15)
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It is referred to as the CLS2 confidence region, while we refer to

{
(β, α) | (β̂ML − β)2 < z2 ·

(
J(β̂ML, α̂ML)

−1
)
11
,

(α̂ML − α)2 < z2 ·
(
J(β̂ML, α̂ML)

−1
)
22

)} (16)

as the ML2 confidence region. The shape of these regions can be recognized

from Figures 5 (b) and (d), respectively.

The practitioner is interested in the performance of these confidence regions

for finite values of T , say T = 100, 200, 500 or 1000. To estimate the true

coverage probability P
(
Iγ ∋ (β, α)

)
of the confidence region Iγ, where (β, α)

are the true process parameters, a simulation study was done. For each

combination of the true parameters (β, α), for each γ, T and each type of

confidence region, 50,000 time series were generated. From each time series,

the respective estimates and confidence region were computed. Then it was

checked if this region contained the true parameter tuple. The number of

‘successes’ divided by 50,000 is an estimate of the true coverage probability.

The results are tabulated in Tables 1 to 4.

The results of Table 1 show that the performance of the asymptotically exact

CLS1 region (13) depends heavily on the length T of the available time series

and the true autocorrelation parameter α, but only slightly on the particular

choice of γ. In general, the difference between γ and the estimated coverage

probability (usually < γ) decreases for increasing T , as expected. But the
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Table 1: Estimated coverage probabilities of the confidence region CLS1:
(13).

γ = 0.90, T = γ = 0.95, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.895 0.898 0.898 0.901 0.944 0.947 0.947 0.950

0.4 0.887 0.893 0.898 0.899 0.935 0.942 0.948 0.949
0.6 0.867 0.884 0.893 0.896 0.917 0.933 0.942 0.948
0.8 0.811 0.852 0.881 0.891 0.866 0.904 0.931 0.940

4 0.2 0.894 0.895 0.897 0.900 0.942 0.945 0.950 0.950
0.4 0.884 0.891 0.898 0.899 0.934 0.940 0.947 0.949
0.6 0.863 0.882 0.892 0.895 0.914 0.932 0.942 0.946
0.8 0.808 0.850 0.882 0.889 0.864 0.902 0.932 0.940

6 0.2 0.893 0.898 0.900 0.899 0.944 0.947 0.949 0.949
0.4 0.882 0.892 0.897 0.899 0.931 0.942 0.947 0.949
0.6 0.864 0.883 0.894 0.897 0.913 0.932 0.943 0.947
0.8 0.809 0.849 0.882 0.892 0.863 0.900 0.931 0.942

γ = 0.975, T = γ = 0.99, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.968 0.972 0.974 0.975 0.984 0.988 0.989 0.989

0.4 0.961 0.967 0.973 0.973 0.979 0.984 0.988 0.989
0.6 0.945 0.959 0.968 0.973 0.967 0.978 0.986 0.989
0.8 0.903 0.935 0.958 0.966 0.936 0.961 0.977 0.983

4 0.2 0.967 0.970 0.975 0.975 0.984 0.987 0.989 0.989
0.4 0.961 0.967 0.972 0.975 0.980 0.985 0.988 0.989
0.6 0.943 0.960 0.969 0.971 0.966 0.978 0.986 0.988
0.8 0.900 0.934 0.959 0.965 0.931 0.959 0.978 0.983

6 0.2 0.969 0.972 0.973 0.974 0.985 0.987 0.989 0.989
0.4 0.959 0.967 0.972 0.974 0.977 0.984 0.988 0.989
0.6 0.943 0.958 0.969 0.972 0.967 0.977 0.985 0.988
0.8 0.899 0.932 0.958 0.968 0.931 0.958 0.977 0.985
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Table 2: Estimated coverage probabilities of the confidence region CLS2:
(15).

γ = 0.90, T = γ = 0.95, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.920 0.922 0.924 0.922 0.957 0.959 0.962 0.961

0.4 0.922 0.925 0.924 0.925 0.959 0.961 0.961 0.961
0.6 0.925 0.927 0.927 0.927 0.960 0.961 0.962 0.962
0.8 0.919 0.928 0.931 0.932 0.956 0.964 0.965 0.965

4 0.2 0.927 0.931 0.930 0.929 0.960 0.963 0.964 0.964
0.4 0.928 0.929 0.931 0.933 0.962 0.963 0.966 0.966
0.6 0.928 0.930 0.933 0.931 0.962 0.963 0.965 0.965
0.8 0.920 0.930 0.932 0.934 0.956 0.962 0.965 0.965

6 0.2 0.928 0.931 0.932 0.932 0.962 0.964 0.965 0.966
0.4 0.931 0.932 0.933 0.935 0.963 0.965 0.966 0.966
0.6 0.930 0.931 0.935 0.935 0.963 0.963 0.966 0.966
0.8 0.924 0.930 0.935 0.936 0.958 0.962 0.967 0.968

γ = 0.975, T = γ = 0.99, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.976 0.978 0.980 0.980 0.990 0.990 0.992 0.992

0.4 0.978 0.980 0.979 0.980 0.989 0.992 0.992 0.992
0.6 0.979 0.980 0.980 0.980 0.991 0.991 0.992 0.992
0.8 0.976 0.981 0.983 0.982 0.990 0.992 0.993 0.993

4 0.2 0.979 0.981 0.981 0.982 0.990 0.992 0.992 0.992
0.4 0.979 0.980 0.982 0.982 0.990 0.991 0.993 0.993
0.6 0.980 0.980 0.982 0.983 0.991 0.992 0.993 0.993
0.8 0.975 0.981 0.982 0.982 0.989 0.991 0.993 0.992

6 0.2 0.979 0.981 0.982 0.983 0.991 0.992 0.992 0.993
0.4 0.980 0.981 0.982 0.982 0.991 0.993 0.992 0.993
0.6 0.980 0.981 0.982 0.983 0.991 0.992 0.993 0.993
0.8 0.977 0.980 0.983 0.984 0.990 0.991 0.993 0.993
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Table 3: Estimated coverage probabilities of the confidence region ML1: (14).

γ = 0.90, T = γ = 0.95, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.903 0.902 0.898 0.901 0.948 0.950 0.948 0.950

0.4 0.900 0.900 0.900 0.901 0.948 0.948 0.949 0.951
0.6 0.895 0.896 0.899 0.898 0.945 0.946 0.949 0.949
0.8 0.885 0.888 0.897 0.898 0.937 0.941 0.947 0.947

4 0.2 0.901 0.902 0.899 0.904 0.950 0.950 0.950 0.953
0.4 0.900 0.899 0.899 0.898 0.950 0.949 0.947 0.948
0.6 0.897 0.898 0.897 0.901 0.946 0.948 0.949 0.950
0.8 0.884 0.891 0.898 0.896 0.939 0.943 0.948 0.948

6 0.2 0.902 0.900 0.898 0.899 0.949 0.950 0.949 0.950
0.4 0.898 0.899 0.897 0.899 0.949 0.948 0.949 0.949
0.6 0.893 0.898 0.899 0.901 0.944 0.947 0.949 0.950
0.8 0.882 0.891 0.898 0.897 0.938 0.944 0.949 0.949

γ = 0.975, T = γ = 0.99, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.972 0.974 0.974 0.975 0.987 0.989 0.989 0.989

0.4 0.971 0.973 0.974 0.975 0.987 0.988 0.989 0.990
0.6 0.969 0.972 0.974 0.974 0.985 0.988 0.989 0.989
0.8 0.964 0.968 0.972 0.973 0.983 0.985 0.989 0.990

4 0.2 0.975 0.975 0.975 0.976 0.989 0.990 0.989 0.990
0.4 0.973 0.973 0.973 0.974 0.988 0.989 0.988 0.990
0.6 0.971 0.973 0.975 0.975 0.988 0.989 0.990 0.990
0.8 0.967 0.970 0.974 0.974 0.986 0.987 0.989 0.989

6 0.2 0.974 0.974 0.974 0.974 0.989 0.989 0.989 0.990
0.4 0.974 0.974 0.975 0.975 0.989 0.989 0.990 0.989
0.6 0.970 0.974 0.974 0.975 0.987 0.990 0.990 0.990
0.8 0.968 0.971 0.974 0.976 0.986 0.988 0.989 0.990
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Table 4: Estimated coverage probabilities of the confidence region ML2: (16).

γ = 0.90, T = γ = 0.95, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.921 0.921 0.923 0.926 0.958 0.960 0.960 0.962

0.4 0.923 0.922 0.922 0.927 0.960 0.959 0.959 0.963
0.6 0.920 0.926 0.927 0.925 0.959 0.960 0.963 0.962
0.8 0.915 0.921 0.923 0.926 0.956 0.959 0.960 0.962

4 0.2 0.930 0.929 0.931 0.930 0.964 0.963 0.964 0.965
0.4 0.931 0.932 0.931 0.931 0.964 0.964 0.964 0.965
0.6 0.929 0.929 0.930 0.930 0.963 0.964 0.965 0.963
0.8 0.920 0.926 0.929 0.932 0.958 0.961 0.964 0.966

6 0.2 0.934 0.936 0.934 0.934 0.966 0.967 0.965 0.966
0.4 0.933 0.935 0.935 0.934 0.965 0.967 0.967 0.965
0.6 0.932 0.934 0.934 0.936 0.964 0.967 0.967 0.968
0.8 0.924 0.931 0.932 0.934 0.959 0.964 0.965 0.967

γ = 0.975, T = γ = 0.99, T =
β α 100 200 500 1000 100 200 500 1000
2 0.2 0.977 0.979 0.980 0.980 0.990 0.991 0.992 0.992

0.4 0.979 0.979 0.980 0.981 0.991 0.991 0.992 0.992
0.6 0.978 0.980 0.980 0.981 0.990 0.991 0.991 0.992
0.8 0.977 0.979 0.980 0.981 0.990 0.991 0.992 0.992

4 0.2 0.982 0.981 0.982 0.982 0.992 0.993 0.993 0.993
0.4 0.982 0.981 0.982 0.982 0.992 0.992 0.993 0.993
0.6 0.980 0.982 0.982 0.981 0.992 0.993 0.993 0.992
0.8 0.978 0.979 0.982 0.982 0.990 0.992 0.993 0.992

6 0.2 0.983 0.984 0.982 0.983 0.993 0.994 0.993 0.993
0.4 0.982 0.983 0.983 0.984 0.993 0.993 0.993 0.994
0.6 0.981 0.983 0.982 0.984 0.993 0.993 0.993 0.993
0.8 0.979 0.982 0.982 0.982 0.991 0.993 0.993 0.993
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difference increases for increasing α. In contrast, the ML1 region (14), see

Table 3, appears to be much more robust against T and α, and is therefore

clearly preferable especially for small T .

The approximate confidence regions (15) and (16), see Tables 2 and 4, de-

rived from the Bonferroni inequality are always conservative, i. e., their true

coverage probability is larger than the nominal level, although this difference

decreases for increasing γ. Compared to the asymptotically exact region,

the Bonferroni regions lead to an equal or even better performance for large

values of γ.

From a practical point of view, the following recommendations can be derived

from the Tables 1 and 4: The ML1 region (14) appears to be a good choice

for any α, γ, T . In contrast, the CLS1 region (13) leads to a reliable result for

a small degree of autocorrelation, say α ≤ 0.2, or if the sample size satisfies

T ≥ 500 (0.4 ≤ α ≤ 0.6) or even T ≥ 1000 (α ≈ 0.8); it is interesting to

note that (Fokianos et al., 2009) found similar restrictions for the sample size

concerning the INGARCH(1,1) model. In those situations, where the true

coverage probability of the CLS1 region is too small, i. e., if T is small and α

large, the approximate and rectangular Bonferroni regions (15) or (16) can

be used as a further alternative, at least if γ ≥ 0.95.
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5 Real-Data Example: Counts of Strikes

In the following, we analyze monthly strike data published by the U.S. Bureau

of Labor Statistics (http://www.bls.gov/wsp/). The considered time series

of counts describes the number of work stoppages leading to 1000 workers or

more being idle in effect in the period. We restrict to the period from January

1994 to December 2002 (108 observations), which was already investigated

by (Jung et al., 2005). A line plot of the data is shown in Figure 4 (a),

and from the partial autocorrelation function in (c), it becomes clear that a

first order autoregressive model seems to be reasonable. (Jung et al., 2005)

fitted a Poisson INAR(1) model to the data, but since the estimates obtained

with different methods deviated heavily from each other, they concluded that

such a model is not appropriate. And in fact, see (Jung et al., 2005), the

data exhibits overdispersion (the empirical variance equals 7.92, being much

larger than the mean 4.94), making the Poisson marginal distribution an

unreasonable choice, also see Figure 4 (d).

Therefore, we fit an INARCH(1) model to the data, using the approaches

discussed in Section 4 before. The estimates obtained with different methods,

see Table 5, are close to each other; the numbers shown in parentheses are the

respective asymptotic standard errors computed as described in Section 4.

The variance of the ML estimated INARCH(1) model equals 8.37, being
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close to the empirical variance 7.92. Also an analysis of the corresponding

empirical residuals

ϵ̂t := xt − Ê[Xt | Xt−1 = xt−1] = xt − β̂ − α̂ · xt−1 for t ≥ 2

shows that the fitted INARCH(1) model seems to be a good choice. Finally,

we also compare the INARCH(1) model to different types of AR(1)-like model

for time series of counts: the two-parametric equidispersed Poisson INAR(1)

model and the three-parametric overdispersed negative binomial random co-

efficient thinning INAR(1) model (NB RCINAR(1)), negative binomial it-

erated thinning INAR(1) model (NB IINAR(1)) and generalized Poisson

quasi-binomial thinning INAR(1) model (GP QINAR(1)). For a description

of these models as well as for their parametrization, see (Weiß, 2008). The

corresponding ML estimates and asymptotic standard errors (again shown in

parentheses and computed from the respective observed Fisher information)

are given in Table 5. The performance of these models is measured in terms

of the information criteria AIC and BIC, see Table 5, and it becomes clear

that the INARCH(1) model clearly performs best.

Finally, we computed the simultaneous confidence regions according to Sec-

tion 4.4 for different values of γ; the results are shown in Figure 5. Obviously,

the estimated value of α deviates significantly from 0 in all cases. The per-

formance of these confidence regions can be recognized from the results of
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Table 5: Estimated parameters of several models.

Model Method Par. 1 Par. 2 Par. 3 AIC BIC

INARCH(1) MM 0.5735 2.1090
(α, β) (0.0881) (0.4277)

CLS 0.5841 2.0716
(0.0876) (0.4273)

ML 0.6364 1.8114 464.3 469.7
(0.0807) (0.3860)

Po INAR(1) ML 0.5061 2.4603 473.1 478.5
(α, λ) (0.0561) (0.2989)

NB RCINAR(1) ML 0.5918 10.1779 0.6701 467.1 475.2
(ρ, n, p) (0.0632) (4.8583) (0.1076)

NB IINAR(1) ML 0.6308 7.7564 4.2181 466.8 474.8
(ρ, n, α) (0.0797) (3.8682) (1.5811)

GP QINAR(1) ML 0.5928 4.0912 0.1841 466.9 475.0
(ρ, λ, θ) (0.0627) (0.4826) (0.0667)
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Figure 4: Monthly strike data: (a) Line plot, (b) empirical autocorrelation
and (c) partial autocorrelation function, (d) histogram with Po(4.94) fit.
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Figure 5: Simultaneous confidence regions according to Section 4.4: (a) and
(b) based on CLS estimates, (c) and (d) based on ML estimates. Confidence
levels γ = 0.9 (darkest gray), 0.95, 0.975 and 0.99 (lightest gray).

Tables 1 to 4, where the cells highlighted in gray give the estimated coverages

for an INARCH(1) process with true parameters β = 2 and α = 0.6, being

close to the situation considered here. It becomes clear that the confidence

region CLS1 has a lower coverage, while ML1 reaches its nominal level quite

well. Also the approximate regions CLS2 and ML2 perform quite well for

γ ≥ 0.975.
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6 Conclusion and Future Work

In this article, we recommended the INARCH(1) model as a simple and parsi-

moniously parametrized model for time series of overdispersed counts. After

having reviewed the definition and basic properties of the INARCH(1) model,

we showed how to approximate the marginal process distribution with the

help of the Poisson-Charlier expansion. It became clear that this approxima-

tion always leads to an improvement compared to a Poisson approximation,

but can be applied really satisfactorily only for INARCH(1) processes with

an at most moderate degree of autocorrelation; otherwise, the more com-

plex Markov chain method is preferable. Then we considered the problem

of parameter estimation and derived explicit expressions for the asymptotic

distribution of the ML and CLS estimators. Furthermore, we constructed

several simultaneous confidence regions for the two model parameters, the

performance of which is influenced by the length of the available time se-

ries and the degree of autocorrelation. A real-data example showed that the

INARCH(1) model has a great potential for applications in practice.

A particularly important issue for future research is to investigate if the

Poisson-Charlier expansion might be applicable also to different types of

count data time series. For none of the INGARCH models, the marginal

distribution is explicitly known (comparable to the case of the usual GARCH
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models), but which is also true for different model types like the INAR(p)

models of (Du & Li, 1991).
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A The Poisson-Charlier Approximation

The Poisson-Charlier expansion was introduced by (Barbour, 1987), a good de-

scription is provided in Section 4 of (Audenaert, 2009). The Poisson-Charlier

expansion is essentially based on the following observation:

If pX(z) := E[zX ] denotes the probability generating function (pgf) of the random

count variable X with marginal probabilities pi for i ∈ N0 and mean µX , then the

factorial cumulant generating function (fcgf) of X is defined as

kX(z) := ln
(
pX(1 + z)

)
= lnE[(1 + z)X ] =:

∞∑
r=1

κ(r)

r!
· zr, (A.1)

where the coefficients κ(r) of the series expansion of kX(z) are referred to as the fac-

torial cumulants of X. The factorial cumulants are related to the usual cumulants

through the relation (Douglas, 1980; p. 470)

κ(n) =
∑n

j=1 sn,j · κj , (A.2)
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where the sn,j denote again the Stirling numbers of the first kind, see Propo-

sition 2.2. In the case of the Poisson distribution Po(λ), one simply obtains

kX(z) = λz, i. e., κ(1) = κ1 = λ and κ(r) = 0 for r ≥ 2.

If now, in turn, the fcgf of X is known, then its pgf is obtained as

pX(z) = exp
(
kX(z − 1)

)
= exp

(∑∞
r=1

κ(r)

r! · (z − 1)r
)
. (A.3)

This leads to the idea to approximate the true pgf of X by the mth order approx-

imation

pX(z) ≈ exp
(∑m

r=1
κ(r)

r! · (z − 1)r
)
, (A.4)

where in the case of the Poisson distribution, the first order approximation already

gives the exact pgf.

The Poisson-Charlier expansion of (Barbour, 1987) is a further refinement of this

approach. Let πi := e−κ1 · κi1/i! for i ∈ N0 denote the Poisson probabilities of

the Po(κ1)-distribution, where κ1 = µX = κ(1), and let ∇ denote the (backward)

difference operator, i. e., ∇πi = πi − πi−1. Then the mth order Poisson-Charlier

approximation of the true probability pi is given by fm(∇) ·πi, where fm is defined

as the (m−1)th order Taylor polynomial in z around z = 0 and evaluated in z = 1

of the function

f(z,∇) := exp

(
1

z
·

∞∑
r=2

κ(r)

r!
· (−z∇)r

)
, (A.5)

see (Audenaert, 2009). The first four approximations are summarized in Table A.1.

It becomes clear that the first order approximation is just the Poisson approxima-

tion, i. e., the true probabilities pi are approximated by the Poisson probabilities πi
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Page 39 of 59

URL: http://mc.manuscriptcentral.com/lssp E-mail:  comstat@univmail.cis.mcmaster.ca

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly
Table A.1: The first four Poisson-Charlier approximations.

f1(∇) = 1,

f2(∇) = 1 + 1
2
κ(2)∇2,

f3(∇) = 1 + 1
2
κ(2)∇2 − 1

6
κ(3)∇3 + 1

8
κ2
(2)∇4,

f4(∇) = 1 + 1
2
κ(2)∇2 − 1

6
κ(3)∇3 +

(κ2
(2)

8
+

κ(4)

24

)
∇4 − 1

12
κ(2)κ(3)∇5 + 1

48
κ3
(2)∇6.

belonging to the Po(µX)-distribution. The higher order approximations account

for the deviation of the true distribution of X from the Poisson distribution, where

the deviation is measured in terms of the factorial cumulants.

B Proofs

B.1 Proof of Proposition 3.1

One can prove Proposition 3.1 by applying formula (A.2) to Proposition 2.2, but

a direct proof appears to be more easy. According to Definition 2.1, the marginal

pgf pX(z) of the INARCH(1) model is characterized by the equality

pX(z) = exp
(
β(z − 1)

)
· pX

(
exp

(
α(z − 1)

))
,

also see (Weiß, 2009). Hence, we obtain for the fcgf kX(z) the relation

kX(z) = βz + κX(αz).

Differentiating this relation, it follows that

k′X(z) = β + α · κ′X(αz), and k
(n)
X (z) = αn · κ(n)X (αz) for n ≥ 2.
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Using κ(n) = kX

(n)(0) and κn = κX
(n)(0) completes the proof.

B.2 Proof of Formulae (6) and (7)

Maximizing ℓ(β, α) is equivalent to maximizing

ℓ̃(β, α) = −(T − 1)β − α
∑T

t=2 xt−1 +
∑T

t=2 xt · ln (β + αxt−1), (B.1)

see formula (5). Taking partial derivatives, one obtains

∂
∂β ℓ(β, α) = −(T − 1) +

∑T
t=2 xt/(β + αxt−1)

!
= 0 (a),

∂
∂α ℓ(β, α) = −

∑T
t=2 xt−1 +

∑T
t=2 xtxt−1/(β + αxt−1)

!
= 0 (b).

(B.2)

Taking β · (a) + α · (b), it follows that

β(T − 1) + α
∑T

t=2 xt−1 =
∑T

t=2 xt(β + αxt−1)/(β + αxt−1) =
∑T

t=2 xt. (B.3)

Combining formulae (B.2) and (B.3), the proof of formula (6) is complete. Further-

more, formula (7) follows from formula (B.2) by taking again partial derivatives.

B.3 Proof of Formula (11)

The INARCH(1) process according to Definition 2.1 is an ergodic stationary Markov

chain, having the moments

µX = κ1 = β
1−α , µX,2 := E[X2

t ] = κ2 + µ2
X = β(1+β(1+α))

(1−α)(1−α2)
,

µX,3 := E[X3
t ] = κ3 + 3κ2µX + µ3

X = β
(1−α)3

·
(

1+2α2

(1+α)(1+α+α2)
+ 3β

1+α + β2
)
,

(B.4)
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see Proposition 2.2 and formula [1,5] on page 452 in (Douglas, 1980). Therefore, the

asymptotic distribution of the CLS estimators (10) can be determined by applying

the results of Section 3 in (Klimko & Nelson, 1978) (alternatively, Theorem 4 in

(Zhu & Wang, 2009) might be applied). Adapting their notations, we define

gt−1(β, α) := E[Xt | Xt−1, . . .] = β + α ·Xt−1,

ut(β, α) := Xt − gt−1(β, α) = Xt − β − α ·Xt−1.

(B.5)

The function gt−1(β, α) is easily shown to satisfy the regularity conditions (i) to (iii)

defined on page 634 of (Klimko & Nelson, 1978). Especially, we obtain that

V :=

 E
[(

∂
∂β gt−1

)
·
(

∂
∂β gt−1

)]
E
[(

∂
∂β gt−1

)
·
(

∂
∂α gt−1

)]
E
[(

∂
∂α gt−1

)
·
(

∂
∂β gt−1

)]
E
[(

∂
∂α gt−1

)
·
(

∂
∂α gt−1

)]


=

 E[1] E
[
Xt−1

]
E
[
Xt−1

]
E
[
X2

t−1

]
 =

 1 β
1−α

β
1−α

β(1+β(1+α))
(1−α)(1−α2)

 ,

(B.6)

see formula (B.4). The inverse of V equals

V−1 =

 1 + β(1 + α) −(1− α2)

−(1− α2) (1−α)(1−α2)
β

 . (B.7)
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Furthermore, also the following expectations exist, see (B.4):

W :=

 E
[(

∂
∂β gt−1

)
·
(

∂
∂β gt−1

)
· u2t
]

E
[(

∂
∂β gt−1

)
·
(

∂
∂α gt−1

)
· u2t
]

E
[(

∂
∂α gt−1

)
·
(

∂
∂β gt−1

)
· u2t
]

E
[(

∂
∂α gt−1

)
·
(

∂
∂α gt−1

)
· u2t
]


=

 E
[
1 · (β + α ·Xt−1)

]
E
[
Xt−1 · (β + α ·Xt−1)

]
E
[
Xt−1 · (β + α ·Xt−1)

]
E
[
X2

t−1 · (β + α ·Xt−1)
]


= β
1−α ·

 1 α+β(1+α)
1−α2

α+β(1+α)
1−α2

β(1+2α)
(1−α)(1−α2)

+ β2

(1−α)2
+ α(1+2α2)

(1−α2)(1−α3)

 .

(B.8)

Formula (B.8) follows, since

E
[
f(Xt−1) · u2t (β, α)

]
= E

[
f(Xt−1) · E[(Xt − β − α ·Xt−1)

2 | Xt−1]
]

= E
[
f(Xt−1) · V [Xt − β − α ·Xt−1 | Xt−1]

]
= E

[
f(Xt−1) · (β + α ·Xt−1)

]
because of the conditional Poisson distribution. So we can apply Theorem 3.2

of (Klimko & Nelson, 1978) to obtain the asymptotic distribution of the CLS

estimators (10):

√
T − 1 (β̂CLS − β, α̂CLS − α)⊤

D→ N(0,V−1WV−1), where

V−1WV−1 =


β

1−α

(
β(1 + α) + 1+2α4

1+α+α2

)
−β(1 + α)− (1+2α)α3

1+α+α2

−β(1 + α)− (1+2α)α3

1+α+α2 (1− α2)
(
1 + α(1+2α2)

β(1+α+α2)

)
 .

(B.9)
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