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The INARCH(1) model for overdispersed time series of counts has a simple structure, a parsimonious parametrization, and a great potential for applications in practice. We analyze two approaches to approximate the marginal process distribution: a Markov chain approach and the Poisson-Charlier expansion. Then approaches for estimating the two model parameters are discussed. We derive explicit expressions for the asymptotic distribution of the maximum likelihood and conditional least squares estimators. They are used for constructing simultaneous confidence regions, the finite-sample performance of which is analyzed in a simulation study. A real-data example from economics illustrates the application of the INARCH(1) model.

Count data processes (X t ) Z , where the X t have state space N 0 = {0, 1, . . .} and where the time indices t are from Z = {. . . , -1, 0, 1, . . .}, are commonly observed in real-world applications, e. g., in insurance (e. g., time series of claim counts), economics (e. g., counts of price changes), statistical process control (e. g., counts of defects), traffic (e. g., counts of accidents), network monitoring (e. g., as a part of an intrusion detection system), epidemiology (e. g., counts of cases of a certain disease) and others; for references, see (Heinen, 2003;[START_REF] Weiß | Thinning operations for modelling time series of counts -A survey[END_REF]. In line with this practical relevance, diverse models for count data time series have been proposed in literature, designed for different types of marginal distribution and autocorrelation structure, see, e. g., the recent reviews by [START_REF] Kedem | Regression models for time series analysis[END_REF][START_REF] Jung | Time series of count data: Modelling, estimation and diagnostics[END_REF][START_REF] Weiß | Thinning operations for modelling time series of counts -A survey[END_REF] propriate type of thinning operation, which are referred to as integer-valued ARMA (INARMA) models. While models based on binomial thinning are commonly used for processes with Poisson marginals, alternative approaches like random coefficient thinning, iterated thinning or quasi-binomial thinning allow to consider marginal distributions with different types of overdispersion [START_REF] Weiß | Thinning operations for modelling time series of counts -A survey[END_REF]. Overdispersion (i. e., a variance greater than the expectation) is commonly observed in practice. Typical reasons for overdispersion are the presence of positive correlation between the monitored events (Friedman, 1993;[START_REF] Poortema | On modelling overdispersion of counts[END_REF][START_REF] Paroli | Poisson hidden Markov models for time series of overdispersed insurance counts[END_REF] or a variation in the probability of the monitored events (Heimann, 1996;[START_REF] Poortema | On modelling overdispersion of counts[END_REF][START_REF] Christensen | Environmental monitoring based on a hierarchical Poisson-Gamma model[END_REF]; further potential causes of overdispersion are discussed by [START_REF] Jackson | All count distributions are not alike[END_REF]). An alternative approach for modeling time series of overdispersed counts are the rather novel INGARCH models, the integer-valued counterpart to the usual generalized autor egressive conditional heteroskedasticity models (for the latter, see [START_REF] Bera | ARCH models: Properties, estimation and testing[END_REF]). The INGARCH models were introduced by (Heinen, 2003) 1 and further investigated by (Ferland et al., 2006;Fokianos et al., 2009;Weiß, 2009;Zhu & Wang, 2009, 2010). The 1 (Heinen, 2003) referred to these models as the autoregressive conditional Poisson (ACP) models. But since these models are closely related to the cardinal GARCH models, (Ferland et al., 2006) suggested to refer to these models as the INGARCH models. INGARCH models are defined by an ARMA-like recursion, and if the range of the model parameters is restricted in an appropriate manner, then a strictly stationary solution of this recursion exists, which also has finite first and second order moments (Ferland et al., 2006). In fact, these models even have an ARMA-like autocorrelation structure, which can be determined from a system of equations being similar to the usual Yule-Walker equations (Weiß, 2009).

In the following, we refer to the INGARCH(p, 0) models as the INARCH(p) models, in analogy to the relation of the usual ARCH and GARCH models, also see (Zhu & Wang, 2009, 2010). These models can also be understood as special generalized linear models (GLM): Using the terminology of Section 1 in [START_REF] Kedem | Regression models for time series analysis[END_REF], the INARCH(p) model is a GLM with Poisson distribution as random component and the identity link as systematic component. These purely autoregressive INARCH(p) models appear to be attractive especially from a practical point of view, since they allow to perform tasks like model identification, model estimation and forecasting relatively easily, also see (Zhu & Wang, 2009, 2010). Also compared to different model families, the INARCH models exhibit several advantages. In contrast to the overdispersed p th order autoregressive models based on a thinning operation, for instance, they only require p + 1 instead of p + 2 parameters, and they have simple transition probabilities as well as a less complex model structure if p > 1. An application of the INARCH models was reported by (Weiß, 2009), who analyzed a time series of monthly claims counts of workers in the heavy manufacturing industry (burn related injuries); this time series was originally presented by (Freeland, 1998). In fact, (Weiß, 2009) showed that already the simple two-parametric INARCH(1) model is able to describe both the observed serial dependence and overdispersion satisfactorily. Also (Zhu & Wang, 2010) for the asymptotic distribution of the conditional least squares (CLS) estimators is derived. It can be used for constructing simultaneous confidence regions, the finite-sample performance of which is investigated in a simulation study. After having illustrated the application of these methods with the real-data example of Section 5, we conclude in Section 6.

The INARCH(1) Model: Definition and

Basic Properties

In this section, we shall briefly review the definition and known basic properties of the INARCH(1) model.

Definition (INARCH(1) Model

) Let (X t ) Z be a process with state space N 0 , let β > 0 and 0 < α < 1. The process (X t ) Z is said to fol- low an INARCH(1) model if X t , conditioned on X t-1 , X t-2 , . . ., is Poisson distributed according to P o(β + α • X t-1 ).
The INARCH(1) model of Definition 2.1 is a stationary Markov chain (Ferland et al., 2006). Since the transition probabilities it is also irreducible and aperiodic and hence ergodic (Zhu & Wang, 2009), also see (Fokianos et al., 2009), who showed ergodicity for the more general INGARCH(1,1) model. All moments exist (Ferland et al., 2006), and its autocorrelation function ρ X (n) := Corr[X t , X t-n ] simply equals α n , like in the standard AR(1) case (Weiß, 2009). It has to be mentioned, however, that the value of α and therefore also of ρ X (n) is restricted to positive values, like in the case of the popular INAR(1) models. The marginal distribution of the INARCH(1) model can be expressed in terms of its cumulants: If

p i|j := P (X t = i | X t-1 = j) = exp (-β -α • j) • (β + α • j) i i! > 0, (1) 
µ X (z) := E[exp (z • X t )] denotes the moment generating function (mgf), the cumulant generating function (cgf ) is defined as κ X (z) := ln (µ X (z)). The coefficients κ r of the series expansion κ X (z) = ∑ ∞ r=1 κr r! • z r are referred to
as the cumulants of X, with κ r = κ X (r) (0). The following Proposition 2.2, which was proven by (Weiß, 2009), summarizes essential results about the marginal cumulants of an INARCH(1) process.

Proposition (Marginal

Cumulants) Let (X t ) Z be an INARCH(1)
process according to Definition 2.1. Then the cumulants are determined recursively from 

κ 1 = β 1-α , κ n = -(1 -α n ) -1 • ∑ n-1 j=1 s n,j • κ j for n ≥ 2,
s n,0 = 0 and s n,n = 1 for n ≥ 1, s n+1,j = s n,j-1 -n • s n,j
for j = 1, . . . , n and n ≥ 1.

In particular,

κ 1 = β 1-α , κ 2 = β (1-α)(1-α 2 ) , κ 3 = 1+2α 2 1-α 3 •κ 2 , κ 4 = 1+6α 2 +5α 3 +6α 5 (1-α 3 )(1-α 4 ) •κ 2 .
As a consequence of Proposition 2.2, mean µ X , variance σ 2 X , skewness and excess of X t are given by β 1-α ,

β (1-α)(1-α 2 ) , 1+2α 2 1+α+α 2 • √ 1+α β and 1+6α 2 +5α 3 +6α 5 β(1+α+α 2 )(1+α 2 ) ,
respectively. Since σ 2 X > µ X , the INARCH(1) model allows to describe overdispersion.

The Marginal Distribution of INARCH(1)

Processes

An explicit expression for the marginal distribution of an INARCH(1) process (X t ) Z is not known. But since (X t ) Z is an ergodic Markov chain, it follows for the marginal probabilities p i := P (X t = i) that

p i = lim n→∞ p i|j (n) for all i, j ∈ N 0 , ( 2 
)
where the n-step transition probabilities

p i|j (n) := P (X t = i | X t-n = j)
with n ∈ N are determined recursively via 

p i|j (n) = ∑ ∞ r=0 p i|r • p r|j (n -1). ( 3 
p i ≈ p i|j (N ), where p i|j (n) ≈ ∑ M r=0 p i|r • p r|j (n -1) (4) 
for arbitrary i, j ∈ N 0 . As an example, one may choose j := ⌈µ X ⌉ (smallest integer not less than µ X ).

This Markov chain approach has the disadvantage that it is computationally difficult and that it requires an appropriate choice of M, N , also see Section 3.1 below. Therefore, it would be desirable to find a more simple approximation of the marginal distribution. Since the marginal distribution is defined through assuming a conditional Poisson distribution, it appears to be a quite natural approach to try to approximate the marginal distribution with the help of the Poisson-Charlier expansion of [START_REF] Barbour | Asymptotic expansions in the Poisson limit theorem[END_REF] 

κ (1) = κ 1 , κ (n) = α n • κ n for n ≥ 2.
The proof of Proposition 3.1 is provided by Appendix B.1. In Sections 3.1 and 3.2, we shall investigate the performance of the Poisson-Charlier approximations by comparing the marginal distributions overally and by only considering the effect on the ARL of a c control chart, respectively. We consider approximations up to order 4, see Table A.1, since higher order approximations become too complex for practice and one may apply the Markov chain approach instead.

Study: Approximate Marginal Distribution

To analyze the performance of the first four Poisson-Charlier approximations to the marginal distribution of the INARCH(1) process as given by Table A iteration p (k+1) = Pp (k) as long as the Chebycheff distance between p (k+1) and p (k) was larger than 10 -15 , which determines N . In the following, the main results are reported and illustrated by selected graphs.

Independent of the concrete parametrization, it turned out that the approximations can only be used in the central region of the marginal distribution;

for k → ∞, the relative error of the approximations to the probability p k tends to -100 %, since the approximations decrease faster to 0 than the true probabilities. Otherwise, the performance of the approximations is only moderately influenced by the choice of β, but depends heavily on the choice of α. This is exemplified by the graphs of Figure 1 

Study: Approximate ARLs of c Chart

A possible application, where knowledge about the central marginal probabilities of an INARCH(1) process is required, is the computation of average run lengths (ARLs) of control charts. Since such ARLs are computed by averaging about marginal probabilities, it seems possible that the Poisson-Charlier approximations lead to satisfactory results also for larger values of α.

For this purpose, c control charts for different in-control parametrizations and different types of shift in α and β were investigated. A c chart with lower and upper control limits LCL and UCL monitors the observed counts X t directly.

Since an INARCH(1) process is a Markov chain, ARLs can be computed with the well-known Markov chain approach of [START_REF] Brook | An approach to the probability distribution of cusum run length[END_REF], which was a). This result appears to be reasonable in view of the results of Section 3.1. For α 0 = 0.6, at least the approximations of order ≥ 3 can be used, while these approximations lead to errors between -5 % and +5 % for α 0 = 0.75.

Estimation of Parameters

Let x 1 , . . . , x T be a time series from an INARCH(1) process with parameters α, β according to Definition 2.1. In the following, we discuss and compare approaches for estimating these two model parameters, also see (Zhu & Wang, 2009). A related study for the case of an INGARCH(1,1) model was done by (Ferland et al., 2006;Fokianos et al., 2009).

Maximum Likelihood Approach

As already proposed by (Ferland et al., 2006), α and β can be estimated with a conditional maximum likelihood (ML) approach. This type of likelihood 

L(β, α) := P (X T = x T , . . . , X 2 = x 2 | X 1 = x 1 ) = ∏ T t=2 e -β-αx t-1 • (β + αx t-1 ) xt /x t ! = e -(T -1)β • e -α ∑ T t=2 x t-1 • ∏ T t=2 (β + αx t-1 ) xt / ( ∏ T t=2 x t !
) .

(5)

The ML estimates are either obtained by numerically maximizing the loga-

rithmic likelihood function ℓ(β, α) := ln ( L(β, α) )
directly, or by solving the following system of equations:

∑ T t=2 x t /( βML + αML x t-1 ) = T -1, βML = 1 T -1 • ( ∑ T t=2 x t -αML • ∑ T t=2 x t-1
) .

(6) (Zhu & Wang, 2009) analyzed the mean square error of the ML estimator in a simulation study.

The observed Fisher information J(β, α), i. e., the negative Hessian of ℓ(β, α),

is given by J(β, α) = ∑ T t=2 J t (β, α) with J t (β, α) =     xt (β+αx t-1 ) 2 xtx t-1 (β+αx t-1 ) 2 xtx t-1 (β+αx t-1 ) 2 xtx 2 t-1 (β+αx t-1 ) 2     . ( 7 
)
The proof of formulae ( 6) and ( 7) is provided by Appendix B.2. An explicit expression for the expectation of J t (β, α), the expected Fisher information showed that the ML estimators are asymptotically normally distributed:

I(β, α)
√ T -1 • ( βML -β, αML -α) ⊤ ∼ a N ( 0, I -1 (β, α) ) , ( 8 
)
where ∼ a is an abbreviation for asymptotic distribution. In practice, the observed Fisher information J(β, α) can be used to approximate (T -1)•I(β, α), and plugging in the obtained estimates allows, for instance, to approximate the asymptotic standard errors of the ML estimators, also see (Ferland et al., 2006). Related investigations (together with finite-sample results from a simulation study), but concerning the INGARCH(1,1) model, were done by (Fokianos et al., 2009).

Conditional Least Squares Approach

The conditional least squares (CLS) estimators are obtained by minimizing

CSS(β, α) := ∑ T t=2 ( x t -E[X t | X t-1 = x t-1 ] ) 2 = ∑ T t=2 (x t -β -αx t-1 ) 2 . (9)
Evaluating the derivatives of ( 9), one obtains the explicit expression αCLS for the CLS estimators, also see [START_REF] Klimko | On conditional least squares estimation for stochastic processes[END_REF]. The asymptotic distribution of the CLS estimators ( 10) is given by 

= ∑ T t=2 X t X t-1 -1 T -1 • ∑ T t=2 X t • ∑ T s=2 X s-1 ∑ T t=2 X 2 t-1 -1 T -1 • ( ∑ T t=2 X t-1 ) 2 , βCLS = 1 T -1 ( ∑ T t=2 X t -αCLS • ∑ T t=2 X t-1 ) (10) 
√ T -1 ( βCLS -β, αCLS -α) ⊤ D → N (0, Σ β,α ) with Σ β,α =     β 1-α ( β(1 + α) + 1+2α 4 1+α+α 2 ) -β(1 + α) -(1+2α)α 3 1+α+α 2 -β(1 + α) -(1+2α)α 3 1+α+α 2 (1 -α 2 ) ( 1 + α(1+2α 2 ) β(1+α+α 2 ) )     , (11) 

Method of Moments

Since the INARCH(1) process (X t ) Z satisfies E[X t ] = β/(1 -α) and ρ X (1) = α, the method of moments implies to estimate α and β as αMM =

∑ T t=2 (X t -XT )(X t-1 -XT ) ∑ T t=1 (X t -XT ) 2 , βMM = XT • (1 -αMM ), ( 12 
)
where XT = 1 T ∑ T t=1 X t denotes the empirical mean of the segment X 1 , . . . , X T .

So both estimators ( 10) and ( 12) are nearly equal to each other. In fact, the arguments of Theorem 3 in (Freeland & McCabe, 2005) carry over, i. e., both estimators have the same asymptotic properties.

Simultaneous Confidence Regions

In The first confidence region is based on the fact that (Y -µ

) ⊤ Σ -1 (Y -µ) is χ 2 p -distributed for a p-dimensional normal vector Y ∼ N (µ, Σ). If z denotes
the γ-quantile of the χ 2 2 -distribution, then we obtain from the asymptotic distribution (11) of the CLS estimators ( 10)

{ (β, α) | ( βCLS -β, αCLS -α) Σ -1 β,α ( βCLS -β, αCLS -α) ⊤ < z T -1 } , ( 13 
)
which defines an asymptotically exact simultaneous confidence region for (β, α) on level γ, the CLS 1 confidence region. In complete analogy, we define the ML 1 confidence region based on the ML estimators as

{ (β, α) | ( βML -β, αML -α) J(β, α) ( βML -β, αML -α) ⊤ < z } . ( 14 
)
The shape of these regions can be recognized from Figures 5 (a) and (c), respectively, which are computed from the data discussed in Section 5.

Because of computational reasons and the non-rectangular shape of regions ( 13) and ( 14), one might prefer an only approximate but rectangular confidence region for the parameters of the INARCH(1) model. Let z denote the (3 + γ)/4-quantile of the N (0, 1)-distribution, then the region obtained by replacing Σ β,α by Σ βCLS , αCLS and by applying the Bonferroni inequality equals

{ (β, α) | ( βCLS -β) 2 < z 2 T -1 • βCLS( 1+2 α4 CLS + βCLS (1+ αCLS )(1+ αCLS + α2 CLS )) 1-α3 CLS , (α CLS -α) 2 < z 2 T -1 • ( 1 -α2 CLS + αCLS + α3 CLS -2 α5 CLS βCLS (1+ αCLS + α2 CLS )
)} .

( It is referred to as the CLS 2 confidence region, while we refer to are the true process parameters, a simulation study was done. For each combination of the true parameters (β, α), for each γ, T and each type of confidence region, 50,000 time series were generated. From each time series, the respective estimates and confidence region were computed. Then it was checked if this region contained the true parameter tuple. The number of 'successes' divided by 50,000 is an estimate of the true coverage probability.

{ (β, α) | ( βML -β) 2 < z 2 • ( J( βML , αML ) -1 ) 11 , (α ML -α) 2 < z 2 • ( J( βML , αML ) -1 ) 22 )} ( 
The results are tabulated in Tables 1 to 4.

The results of Table 1 show that the performance of the asymptotically exact CLS 1 region (13) depends heavily on the length T of the available time series and the true autocorrelation parameter α, but only slightly on the particular choice of γ. In general, the difference between γ and the estimated coverage probability (usually < γ) decreases for increasing difference increases for increasing α. In contrast, the ML 1 region ( 14), see

Table 3, appears to be much more robust against T and α, and is therefore clearly preferable especially for small T .

The approximate confidence regions ( 15) and ( 16), see Tables 2 and4, derived from the Bonferroni inequality are always conservative, i. e., their true coverage probability is larger than the nominal level, although this difference decreases for increasing γ. Compared to the asymptotically exact region, the Bonferroni regions lead to an equal or even better performance for large values of γ.

From a practical point of view, the following recommendations can be derived from the Tables 1 and4: The ML 1 region ( 14) appears to be a good choice for any α, γ, T . In contrast, the CLS 1 region (13) leads to a reliable result for a small degree of autocorrelation, say α ≤ 0. In the following, we analyze monthly strike data published by the U.S. Bureau of Labor Statistics (http://www.bls.gov/wsp/). The considered time series of counts describes the number of work stoppages leading to 1000 workers or more being idle in effect in the period. We restrict to the period from January 1994 to December 2002 (108 observations), which was already investigated by [START_REF] Jung | Estimation in Conditional First Order Autoregression with Discrete Support[END_REF]. A line plot of the data is shown in Figure 4 (a), and from the partial autocorrelation function in (c), it becomes clear that a first order autoregressive model seems to be reasonable. [START_REF] Jung | Estimation in Conditional First Order Autoregression with Discrete Support[END_REF] fitted a Poisson INAR(1) model to the data, but since the estimates obtained with different methods deviated heavily from each other, they concluded that such a model is not appropriate. And in fact, see [START_REF] Jung | Estimation in Conditional First Order Autoregression with Discrete Support[END_REF], the data exhibits overdispersion (the empirical variance equals 7.92, being much larger than the mean 4.94), making the Poisson marginal distribution an unreasonable choice, also see Figure 4 (d).

Therefore, we fit an INARCH(1) model to the data, using the approaches discussed in Section 4 before. The estimates obtained with different methods, see 

:= x t -Ê[X t | X t-1 = x t-1 ] = x t -β -α • x t-1 for t ≥ 2
shows that the fitted INARCH(1) model seems to be a good choice. 1)). For a description of these models as well as for their parametrization, see [START_REF] Weiß | Thinning operations for modelling time series of counts -A survey[END_REF]. The corresponding ML estimates and asymptotic standard errors (again shown in parentheses and computed from the respective observed Fisher information) are given in Table 5. The performance of these models is measured in terms of the information criteria AIC and BIC, see Table 5, and it becomes clear that the INARCH(1) model clearly performs best.

Finally, we computed the simultaneous confidence regions according to Sec- Tables 1 to 4, where the cells highlighted in gray give the estimated coverages for an INARCH(1) process with true parameters β = 2 and α = 0.6, being close to the situation considered here. It becomes clear that the confidence region CLS 1 has a lower coverage, while ML 1 reaches its nominal level quite well. Also the approximate regions CLS 2 and ML 2 perform quite well for γ ≥ 0.975. 

F

A The Poisson-Charlier Approximation

The Poisson-Charlier expansion was introduced by [START_REF] Barbour | Asymptotic expansions in the Poisson limit theorem[END_REF], a good description is provided in Section 4 of [START_REF] Audenaert | Inverse moments of univariate discrete distributions via the Poisson expansion[END_REF]. The Poisson-Charlier expansion is essentially based on the following observation:

If p X (z) := E[z X ] denotes the probability generating function (pgf) of the random count variable X with marginal probabilities p i for i ∈ N 0 and mean µ X , then the factorial cumulant generating function (fcgf ) of X is defined as

k X (z) := ln ( p X (1 + z) ) = ln E[(1 + z) X ] =: ∞ ∑ r=1 κ (r) r! • z r , (A.1)
where the coefficients κ (r) of the series expansion of k X (z) are referred to as the factorial cumulants of X. The factorial cumulants are related to the usual cumulants through the relation [START_REF] Douglas | Analysis with standard contagious distributions[END_REF]p. 470) If now, in turn, the fcgf of X is known, then its pgf is obtained as .3) This leads to the idea to approximate the true pgf of X by the m th order approximation .4) where in the case of the Poisson distribution, the first order approximation already

κ (n) = ∑ n j=1 s n,j • κ j , (A.2)
p X (z) = exp ( k X (z -1) ) = exp ( ∑ ∞ r=1 κ (r) r! • (z -1) r ) . ( A 
p X (z) ≈ exp ( ∑ m r=1 κ (r) r! • (z -1) r ) , ( A 
gives the exact pgf.

The Poisson-Charlier expansion of [START_REF] Barbour | Asymptotic expansions in the Poisson limit theorem[END_REF] is a further refinement of this approach. Let π i := e -κ 1 • κ i 1 /i! for i ∈ N 0 denote the Poisson probabilities of the P o(κ 1 )-distribution, where κ 1 = µ X = κ (1) , and let ∇ denote the (backward) difference operator, i. e., ∇π i = π i -π i-1 . Then the m th order Poisson-Charlier approximation of the true probability p i is given by f m (∇) • π i , where f m is defined as the (m -1) th order Taylor polynomial in z around z = 0 and evaluated in z = 1 of the function

f (z, ∇) := exp ( 1 z • ∞ ∑ r=2 κ (r) r! • (-z∇) r
) , (A.5) see [START_REF] Audenaert | Inverse moments of univariate discrete distributions via the Poisson expansion[END_REF]. The first four approximations are summarized in 

f 1 (∇) = 1, f 2 (∇) = 1 + 1 2 κ (2) ∇ 2 , f 3 (∇) = 1 + 1 2 κ (2) ∇ 2 -1 6 κ (3) ∇ 3 + 1 8 κ 2 (2) ∇ 4 , f 4 (∇) = 1 + 1 2 κ (2) ∇ 2 -1 6 κ (3) ∇ 3 + ( κ 2 (2) 8 + κ (4) 24 ) ∇ 4 -1 12 κ (2) κ (3) ∇ 5 + 1 48 κ 3 (2) ∇ 6 .
belonging to the P o(µ X )-distribution. The higher order approximations account for the deviation of the true distribution of X from the Poisson distribution, where the deviation is measured in terms of the factorial cumulants. 

B Proofs

(z) = exp ( β(z -1) ) • p X ( exp ( α(z -1)
) ) , also see (Weiß, 2009). Hence, we obtain for the fcgf k X (z) the relation

k X (z) = βz + κ X (αz).
Differentiating this relation, it follows that 

k ′ X (z) = β + α • κ ′ X (αz), and 
k (n) X (z) = α n • κ (n) X (αz) for n ≥ 2.

B.3 Proof of Formula (11)

The INARCH(1) process according to Definition 2.1 is an ergodic stationary Markov chain, having the moments [START_REF] Douglas | Analysis with standard contagious distributions[END_REF]. Therefore, the asymptotic distribution of the CLS estimators (10) can be determined by applying the results of Section 3 in [START_REF] Klimko | On conditional least squares estimation for stochastic processes[END_REF]) (alternatively, Theorem 4 in (Zhu & Wang, 2009) might be applied). Adapting their notations, we define

µ X = κ 1 = β 1-α , µ X,2 := E[X 2 t ] = κ 2 + µ 2 X = β(1+β(1+α)) (1-α)(1-α 2 ) , µ X,3 := E[X 3 t ] = κ 3 + 3κ 2 µ X + µ 3 X = β (1-α) 3 • ( 1+2α 2 ( 
g t-1 (β, α) := E[X t | X t-1 , . . .] = β + α • X t-1 , u t (β, α) := X t -g t-1 (β, α) = X t -β -α • X t-1 .
(B.5)

The function g t-1 (β, α) is easily shown to satisfy the regularity conditions (i) to (iii) defined on page 634 of [START_REF] Klimko | On conditional least squares estimation for stochastic processes[END_REF]. Especially, we obtain that

V :=     E [( ∂ ∂β g t-1 ) • ( ∂ ∂β g t-1 )] E [( ∂ ∂β g t-1 ) • ( ∂ ∂α g t-1
)] (B.6) see formula (B.4). The inverse of V equals 

E [( ∂ ∂α g t-1 ) • ( ∂ ∂β g t-1 )] E [( ∂ ∂α g t-1 ) • ( ∂ ∂α g t-1 )]     =     E[1] E [ X t-1 ] E [ X t-1 ] E [ X 2 t-1 ]     =     1 β 1-α β 1-α β(1+β(1+α)) (1-α)(1-α 2 )     ,
V -1 =     1 + β(1 + α) -(1 -α 2 ) -(1 -α 2 ) (1-α)(1-α 2 ) β     . (B.
) • u 2 t ]     =     E [ 1 • (β + α • X t-1 ) ] E [ X t-1 • (β + α • X t-1 ) ] E [ X t-1 • (β + α • X t-1 ) ] E [ X 2 t-1 • (β + α • X t-1 ) ]     = β 1-α •     1 α+β(1+α) 1-α 2 α+β(1+α) 1-α 2 β(1+2α) (1-α)(1-α 2 ) + β 2 (1-α) 2 + α(1+2α 2 ) (1-α 2 )(1-α 3 )     .
(B.8) Formula (B.8) follows, since

E [ f (X t-1 ) • u 2 t (β, α) ] = E [ f (X t-1 ) • E[(X t -β -α • X t-1 ) 2 | X t-1 ] ] = E [ f (X t-1 ) • V [X t -β -α • X t-1 | X t-1 ] ] = E [ f (X t-1 ) • (β + α • X t-1 ) ]
because of the conditional Poisson distribution. So we can apply Theorem 3.2 of [START_REF] Klimko | On conditional least squares estimation for stochastic processes[END_REF] to obtain the asymptotic distribution of the CLS estimators (10):

√ T -1 ( βCLS -β, αCLS -α) ⊤ D → N (0, V -1 WV -1 )
, where 

V -1 WV -1 =     β 1-α ( β(1 + α) + 1+2α 4 1+α+α 2 ) -β(1 + α) -(1+2α)α 3 1+α+α 2 -β(1 + α) -(1+2α)α 3 1+α+α 2 (1 -α 2 ) ( 1 + α(

  . Particularly popular are ARMA-type models based on an ap-

  proposed to use an INARCH(1) model for a time series of download counts. A further real-data example, where again an INARCH(1) model proves to be appropriate, is presented in Section 5 below: monthly strike data published by the U.S. Bureau of Labor Statistics. So in spite of its simple structure and its parsimonious parametrization, the INARCH(1) model seems to be of great practical relevance. It can be considered as a counterpart to the very popular Poisson INAR(1) model, but being able to describe overdispersion. For these reasons, we shall analyze the INARCH(1) model in more details in this article. In Section 2, we review the definition and basic properties of the INARCH(1) model. Section 3 shows how to approximate the marginal process distribution with the help of the Poisson-Charlier expansion. The goodness of this approximation is investigated, also in view of approximating the average run 5 ) of a c control chart. Section 4 discusses approaches for the estimation of the two model parameters. In particular, an explicit expression

Figure 1 :Figure 2 :

 12 Figure 1: Marginal distribution (P) and relative errors of Poisson-Charlier approximations (PCn) for (a) (β, α) = (4.5, 0.1), (b) (β, α) = (3.75, 0.25), (c) (β, α) = (3, 0.4), (d) (β, α) = (2.5, 0.5), (e) (β, α) = (2, 0.6).

βα

  Figure 3: ARL(β) of c chart and relative errors of Poisson-Charlier approximations (PCn) for (a) (β 0 , α 0 ) = (2.5, 0.5), (b) (β 0 , α 0 ) = (2, 0.6), (c) (β 0 , α 0 ) = (1.25, 0.75).

→

  where D abbreviates convergence in distribution. The proof of formula (11) is provided by Appendix B.3. Among others, formula (11) allows to approximate the asymptotic standard errors of the CLS estimators by plugging in the obtained estimates. Compared to the ML estimators of the previous Section 4.1, the CLS estimators have the advantage of being computed more easily (explicit formula instead of numerical maximization) and of having an explicit, data-independent expression for the asymptotic distribution, while the ML estimators usually have smaller standard errors within a class of estimating functions, see (Godambe & Heyde, 1987), as also indicated by the results of (Fokianos et al., 2009) concerning the INGARCH(1,1) model and by Table 5 below. A type of weighted CLS estimators, with the same asymptotic properties as the ML estimators of Section 4.1, was proposed by (Zhu& Wang, 2009), who also investigated its mean square error in a

  the sequel, we shall propose different types of confidence region based either on the CLS estimators (10), the asymptotic distribution of which is given by formula (11), or based on the ML estimator of Section 4.1, where the inverse of the observed Fisher information (7) is used to approximate the true covariance.2 We present results from a simulation study, where we investigated the performance of the confidence regions for time series of finite length. Explicit recommendations for the use of the confidence regions are derived.

  16) as the ML 2 confidence region. The shape of these regions can be recognized from Figures 5 (b) and (d), respectively. The practitioner is interested in the performance of these confidence regions for finite values of T , say T = 100, 200, 500 or 1000. To estimate the true coverage probability P ( I γ ∋ (β, α) ) of the confidence region I γ , where (β, α)

  Finally, we also compare the INARCH(1) model to different types of AR(1)-like model for time series of counts: the two-parametric equidispersed Poisson INAR(1) model and the three-parametric overdispersed negative binomial random coefficient thinning INAR(1) model (NB RCINAR(1)), negative binomial iterated thinning INAR(1) model (NB IINAR(1)) and generalized Poisson quasi-binomial thinning INAR(1) model (GP QINAR(

Page

  tion 4.4 for different values of γ; the results are shown in Figure 5. Obviously, the estimated value of α deviates significantly from 0 in all cases. The performance of these confidence regions can be recognized from the results of 29

Figure 4 :Figure 5 :

 45 Figure 4: Monthly strike data: (a) Line plot, (b) empirical autocorrelation and (c) partial autocorrelation function, (d) histogram with P o(4.94) fit.

  s n,j denote again the Stirling numbers of the first kind, see Proposition 2.2. In the case of the Poisson distribution P o(λ), one simply obtains k X (z) = λz, i. e., κ (1) = κ 1 = λ and κ (r) = 0 for r ≥ 2.

  Using κ (n) = k X (n) (0) and κ n = κ X (n) (0) completes the proof.Maximizing ℓ(β, α) is equivalent to maximizing l(β, α) = -(T -1)β -α ∑ T t=2 x t-1 + ∑ T t=2 x t • ln (β + αx t-1 ), (B.1)see formula (5). Taking partial derivatives, one obtains∂ ∂β ℓ(β, α) = -(T -1) + ∑ T t=2 x t /(β + αx t-1 ) x t x t-1 /(β + αx t-1 ) β • (a) + α • (b), it follows that β(T -1) + α ∑ T t=2 x t-1 = ∑ T t=2 x t (β + αx t-1 )/(β + αx t-1 ) = ∑ T t=2 x t . (B.3)Combining formulae (B.2) and (B.3), the proof of formula (6) is complete. Furthermore, formula (7) follows from formula (B.2) by taking again partial derivatives.
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	function is easy to compute, since the process has a conditional Poisson
	16
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Table 3 :

 3 Estimated coverage probabilities of the confidence region ML 1 : (14).

	T , as expected. But the
	22

Table 4 :

 4 Estimated coverage probabilities of the confidence region ML 2 : (16).

				γ = 0.90, T =		γ = 0.95, T =
	β	α	100	200	500 1000	100	200	500 1000
	2 0.2 0.921 0.921 0.923 0.926 0.958 0.960 0.960 0.962
		0.4 0.923 0.922 0.922 0.927 0.960 0.959 0.959 0.963
		0.6 0.920 0.926 0.927 0.925 0.959 0.960 0.963 0.962
		0.8 0.915 0.921 0.923 0.926 0.956 0.959 0.960 0.962
	4 0.2 0.930 0.929 0.931 0.930 0.964 0.963 0.964 0.965
		0.4 0.931 0.932 0.931 0.931 0.964 0.964 0.964 0.965
		0.6 0.929 0.929 0.930 0.930 0.963 0.964 0.965 0.963
		0.8 0.920 0.926 0.929 0.932 0.958 0.961 0.964 0.966
	6 0.2 0.934 0.936 0.934 0.934 0.966 0.967 0.965 0.966
		0.4 0.933 0.935 0.935 0.934 0.965 0.967 0.967 0.965
		0.6 0.932 0.934 0.934 0.936 0.964 0.967 0.967 0.968
		0.8 0.924 0.931 0.932 0.934 0.959 0.964 0.965 0.967
				γ = 0.975, T =		γ = 0.99, T =
	β	α	100	200	500 1000	100	200	500 1000
	2 0.2 0.977 0.979 0.980 0.980 0.990 0.991 0.992 0.992
		0.4 0.979 0.979 0.980 0.981 0.991 0.991 0.992 0.992
		0.6 0.978 0.980 0.980 0.981 0.990 0.991 0.991 0.992
		0.8 0.977 0.979 0.980 0.981 0.990 0.991 0.992 0.992
	4 0.2 0.982 0.981 0.982 0.982 0.992 0.993 0.993 0.993
		0.4 0.982 0.981 0.982 0.982 0.992 0.992 0.993 0.993
		0.6 0.980 0.982 0.982 0.981 0.992 0.993 0.993 0.992
		0.8 0.978 0.979 0.982 0.982 0.990 0.992 0.993 0.992
	6 0.2 0.983 0.984 0.982 0.983 0.993 0.994 0.993 0.993
		0.4 0.982 0.983 0.983 0.984 0.993 0.993 0.993 0.994
		0.6 0.981 0.983 0.982 0.984 0.993 0.993 0.993 0.993
		0.8 0.979 0.982 0.982 0.982 0.991 0.993 0.993 0.993

Data Example: Counts of Strikes

  In those situations, where the true coverage probability of the CLS 1 region is too small, i. e., if T is small and α
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	large, the approximate and rectangular Bonferroni regions (15) or (16) can
	be used as a further alternative, at least if γ ≥ 0.95.
	27

2, or if the sample size satisfies T ≥ 500 (0.4 ≤ α ≤ 0.6) or even T ≥ 1000 (α ≈ 0.8); it is interesting to note that

(Fokianos et al., 2009) 

found similar restrictions for the sample size concerning the INGARCH(1,1) model.

  Table 5, are close to each other; the numbers shown in parentheses are the respective asymptotic standard errors computed as described in Section 4.

	close to the empirical variance 7.92. Also an analysis of the corresponding
	empirical residuals
	εt
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	v i e
	w
	O n l
	y
	The variance of the ML estimated INARCH(1) model equals 8.37, being

Table 5 :

 5 Estimated parameters of several models.

	Model	Method Par. 1	Par. 2 Par. 3 AIC BIC
	INARCH(1)	MM 0.5735 2.1090	
	(α, β)	(0.0881)	(0.4277)	
		CLS 0.5841 2.0716	
		(0.0876)	(0.4273)	
		ML 0.6364 1.8114	464.3 469.7
		(0.0807)	(0.3860)	
	Po INAR(1)	ML 0.5061 2.4603	473.1 478.5
	(α, λ)	(0.0561)	(0.2989)	
	NB RCINAR(1)	ML 0.5918 10.1779 0.6701 467.1 475.2
	(ρ, n, p)	(0.0632)	(4.8583)	(0.1076)
	NB IINAR(1)	ML 0.6308 7.7564 4.2181 466.8 474.8
	(ρ, n, α)	(0.0797)	(3.8682)	(1.5811)
	GP QINAR(1)	ML 0.5928 4.0912 0.1841 466.9 475.0
	(ρ, λ, θ)	(0.0627)	(0.4826)	(0.0667)
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	It becomes clear that the first order approximation is just the Poisson approxima-

tion, i. e., the true probabilities p i are approximated by the Poisson probabilities π i 37 Page 39 of 59 URL: http://mc.manuscriptcentral.com/lssp E-mail: comstat@univmail.cis.mcmaster.

ca Communications in Statistics -Simulation and Computation

  Table A.1: The first four Poisson-Charlier approximations.

	F o r
	P
	e
	e r
	R
	e
	v i e
	w
	O n l
	y

ca Communications in Statistics -Simulation and Computation

  

	Page 41 of 59	
	see Proposition 2.2 and formula [1,5] on page 452 in	
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	1+α)(1+α+α 2 ) + 3β 1+α + β 2 )	,
	(B.4)
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  Furthermore, also the following expectations exist, see (B.4):
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	W :=	   	E E	[( ∂ ∂β g t-1 [( ∂ ∂α g t-1	) )	• •	( ∂ ∂β g t-1 ( ∂ ∂β g t-1	) )	• u 2 t • u 2 t	] ]	E E	[( ∂ ∂β g t-1 [( ∂ ∂α g t-1	) )	• •	( ∂ ∂α g t-1 ( ∂ ∂α g t-1	)	• u 2 t	]
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Note that the CLS and ML estimates can be computed using the available R functions lm(data ) and glm(data, family=poisson(link="identity")), respectively.
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