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Dep. Matemática, Univ. Coimbra

Apartado 3008, 3001-454 Coimbra, Portugal

Abstract

We find conditions under which the sequence of empirical means of

associated random variables, {Xn, n ≥ 1}, satisfies the large deviation

principle.
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1 Introduction, assumptions and auxiliary re-

sults

Consider a sequence {Xn, n ≥ 1} of associated and strictly stationary real

valued random variables. In this paper, we prove a large deviation principle

(LDP) for the sequence of partial means.

We recall that a sequence of random variables {Xn, n ≥ 1} is said to be asso-

ciated if for any m ∈ IN and any two real-valued coordinatewise nondecreasing
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‡Author supported by Centro de Matemática da Universidade de Coimbra, Fundação para

a Ciência e Tecnologia (FCT) and POCTI.

1



Acc
ep

te
d m

an
usc

rip
t 

functions f and g it holds

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0 ,

whenever this covariance exists. This definition was introduced in statistics

by Esary, Proschan and Walkup (1967) who were motivated from applications

in reliability theory. Independently, this notion appeared also in statistical

mechanics, referred as the KFG inequalities after the work of Fortuin, Kasteleyn

and Ginibre (1971). There has been an intense research on the subject matter

of association. For a brief review of the relevant literature on this subject,

we suggest Roussas (1999) and Dewan and Prakasa Rao (2001),which include,

besides numerous references, several applications of this concept.

As mentioned before, we will find conditions under which the large devia-

tion principle (LDP) holds for the sequence of empirical means of associated

random variables. When the random variables are independent and identically

distributed (i.i.d.), this is a classical result known in the literature of large

deviations as the Cramér’s theorem. As is well known, this result has been

extended in several directions, one of which is the case of non-independence of

the underlying random variables. The literature on this subject is now exten-

sive. For an account of the relevant results on LDPs, see, for example, Dembo

and Zeitouni (1998) and the references therein. We will prove a LDP assuming

a hyper-geometric decrease rate on the covariances Cov(X1, Xn) of associated

variables. This is in accordance with analogous results obtained under mixing

assumptions, where deviations from independence were conveniently controlled

(see, for example, Nummelin, 1990, Bryc, 1992, and Bryc and Dembo, 1996).

In fact, as is well known, the covariance structure of a collection of associated

random variables highly determines its approximate independence (cf. New-

man, 1984). So, the referred condition on the decrease rate of the covariances

is, for association, the counterpart of the hyper-geometric mixing rates assumed

to establish the LDP under φ-mixing and α-mixing in Bryc (1992) and Bryc

and Dembo (1996) (see Theorem 1 of Bryc, 1992, and Proposition 2 of Bryc

and Dembo, 1996).

We now present the assumptions to be considered in this paper.

(A1) The sequence {Xn, n ≥ 1} is associated and strictly stationary.

(A2) The variables of the sequence {Xn, n ≥ 1} are uniformly bounded, that

is, |Xn| ≤ M, n ≥ 1.

(A3) For each n ≥ 1, Xn has density function bounded by a1(B1)n, for some

a1 > 0 and some B1 > 1.
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These assumptions are usual in associated literature, except for (A3). Con-

cerning this last assumption, we remark that when we consider a sequence

of independent and identically distributed random variables, say Y1, Y2, . . .,

having a common bounded density with compact support, and take Xn =

c (Yn + . . . + Yn+m), for some fixed m ∈ IN and c ∈ IR, then these variables

verify (A3). Notice further that this procedure is a commonly used method to

generate associated sequences.

In addition, we will consider an hyper-geometric decay rate of the covari-

ances. We state this condition in terms of the sequence

u(n) =
∞∑

j=n+1

Cov(X1, Xj) .

(H) u(n) ≤ a0 exp(−n log1+a n), for some a0 > 0 and a > 0.

We notice that (H) holds true if Cov(X1, Xn) = a1 exp(−n log1+a n), for

some a1 > 0 and a > 0. In fact, if we take vK(x) =
∫ +∞

x
K(t) dt, with K(t) =

exp(−t log1+a t), from the l’Hospital rule it easily follows that vK(t)/K(t) → 0,

as t −→ +∞. Now just recall that u(n) ≤ a1vK(n).

The following two lemmas will be needed for the proof of the main result.

First we state a result contained in Newman (1980), which generalizes the clas-

sical Hoeffding identity (see relation (2.2) in Newman, 1980).

Lemma 1.1 Let f and g be two absolutely continuous functions. If X1 and X2

are random variables such that E
(
f(X1)2

)
< +∞ and E

(
g(X2)2

)
< +∞, then

Cov (f(X1), g(X2)) =
∫ +∞

−∞

∫ +∞

−∞
f ′(x1)g′(x2)H1,2(x1, x2) dx1 dx2 ,

where H1,2(x1, x2) = Cov
(
I(x1,+∞)(X1), I(x2,+∞)(X2)

)
.

The next result follows from relation (21) in Newman (1980) and Corollary

to Theorem 1 in Sadikova (1996) (see Lemma 2.6 in Roussas, 1995, for details).

Lemma 1.2 (Roussas, 1995) Let X1 and X2 be two associated random variables

having density functions bounded by B0. Then, for all x1, x2 ∈ IR,

Cov
(
I(−∞,x1](X1), I(−∞,x2](X2)

) ≤ B1Cov1/3 (X1, X2) ,

where B1 = 2max(2/π2, 45B0).
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2 Large deviation principle

For the proof of the LDP, we follow the methodology of proof of Theorem 6.4.4

of Dembo and Zeitouni (1998), which deals with the large deviation principle of

the empirical mean, under a certain mixing assumption.

For n, m ≥ 1, define X
m

n = 1
n−m

∑n
i=m+1 Xi . For the sake of simplicity,

we write Xn instead of X
0

n. The following two results are key tools to prove

the LDP for the empirical mean Xn. These results are the analogues for our

framework of Lemmas 6.4.6 and 6.4.7 of Dembo and Zeitouni (1998). The proofs

follow the same sort of arguments, so we will concentrate only on the technical

details that are specific to associated variables.

Lemma 2.1 Suppose that (A1), (A3) and (H) are satisfied. Then, for each

function g : IR −→ IR concave, continuous and bounded above, the following

limit exists

Λg = lim
n→+∞

1
n

log E
(
en g(Xn)

)
.

Proof: Let g : IR −→ IR be concave, continuous and bounded above. Being

concave and continuous, g is also Lipschitz continuous on [−M,M ], that is,

there exists L > 0 such that, for all x, y ∈ [−M,M ], |g(x) − g(y)| ≤ L |x − y|.
Without loss of generality, we assume that −∞ < −B ≤ g(x) ≤ 0, for all

x ∈ [−M,M ].

As in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998), define h(n) =

− log E
(
eng(Xn)

)
and obtain

h(n + m) ≤ 2lLM − log E
(
eng(Xn)emg(X

n+l
n+m+l)

)
. (1)

For each n ∈ IN , define fn(x) = eng(x), x ∈ [−M, M ], which are Lipschitz

continuous and almost everywhere differentiable with |f ′
n(x)| ≤ nL. Applying

Lemma 1.1, we get∣∣∣Cov
(
eng(Xn), emg(X

n+l
n+m+l)

)∣∣∣
=

∣∣∣∣∣
∫

[−M,M ]2
f ′

n(x)f ′
m(y)Cov

(
I(−∞,x](Xn), I(−∞,y](X

n+l

n+m+l)
)

dx dy

∣∣∣∣∣
≤ nmL2Cov

(
Xn, X

n+l

n+m+l

)
,

remembering that all the covariances above are non-negative by association.

Using the stationarity assumption (A1), we get

∣∣∣Cov
(
eng(Xn), emg(X

n+l
n+m+l)

)∣∣∣ ≤ L2n

∞∑
i=l+2

Cov(X1, Xi) = L2(n + m)u(l) ,
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and then

E
(
eng(Xn)emg(X

n+l
n+m+l)

)
E
(
eng(Xn)

)
E
(
emg(X

n+l
n+m+l)

) ≥ 1 − L2(n + m)u(l)e(n+m)B ,

as g(x) ≥ −B, for all x ∈ [−M,M ].

Now, define Θ(l, n) = 1 − L2nu(l)enB , l, n ∈ IN . As in the proof of Lemma

6.4.6 of Dembo and Zeitouni (1998), by means of the preceding inequality, (1)

yields

h(n + m) ≤ 2lLM + h(n) + h(m) − log (Θ(l, n + m) ∨ 0) . (2)

By (H), we have, for each κ < a and for each c ∈ IR,

lim
n→+∞n u

(
n

log1+κ n

)
ecn = 0 . (3)

Let 0 < δ < a, where a is given in (H). From (3) it is obvious that

Θ
(

n
log1+δ n

, n
)

= 1 − L2nu
(

n
log1+δ n

)
enB −→ 1, as n → +∞. So, we may take

l =
[

n+m
log1+δ(n+m)

]
as in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998)

and proceed in the same way to conclude the proof.

In what follows we will use the notation Sδ
x =]x − δ, x + δ[.

Lemma 2.2 Suppose that (A1), (A3), (A4) and (H) are satisfied. If x1, x2 ∈ IR

are such that, for each δ > 0,

lim inf
n→+∞

1
n

log P
(
Xn ∈ Sδ

xi

)
> −∞, i = 1, 2 ,

then

inf
δ>0

lim inf
n→+∞

1
n

log
P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

) ≥ 0.

Proof: Fix δ > 0. From the assumptions of the lemma, there exists c1 > 0 such

that, for every sufficiently large n,

P
(
Xn ∈ Sδ/2

x1

)
P
(
Xn ∈ Sδ/2

x2

)
≥ exp(−nc1). (4)

By (A4), we may apply Lemma 1.2 to obtain∣∣∣P(Xn ∈ Sδ/2
x1

, X
n+l

2n+l ∈ Sδ/2
x2

)
− P

(
Xn ∈ Sδ/2

x1

)
P
(
X

n+l

2n+l ∈ Sδ/2
x2

)∣∣∣
≤ 4BnCov1/3

(
Xn, X

n+l

2n+l

)
,

where Bn = 2max(2/π2, 45 a1 Bn
1 ). Therefore, by the stationarity assumption

(A1),∣∣∣P(Xn ∈ Sδ/2
x1

, X
n+l

2n+l ∈ Sδ/2
x2

)
− P

(
Xn ∈ Sδ/2

x1

)
P
(
Xn ∈ Sδ/2

x2

)∣∣∣
≤ 4Bn

(
1
n2

n

∞∑
i=l+1

Cov(X1, Xi)

)1/3

= 4Bn

(
u(l)
n

)1/3

,
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which yields

P
(
Xn ∈ S

δ/2
x1 , X

n+l

2n+l ∈ S
δ/2
x2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

) ≥ 1 − 4Bn

(
u(l)
n

)1/3

exp(c1 n), (5)

for each l ∈ IN and n large enough, taking into account (4).

Following the arguments used in the proof of Lemma 6.4.7 in Dembo and

Zeitouni (1998), we get, for l = δ n
2M ,

P
(
X2n ∈ Sδ

x1+x2
2

)
≥ P

(
Xn ∈ Sδ/2

x1
, X

n+l

2n+l ∈ Sδ/2
x2

)
,

so that, from (5),

lim inf
n→+∞

1
n

log
P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

)

≥ lim inf
n→+∞

1
n

log




1 − 4Bn

(
u
(

δ n
2M

)
n

)1/3

exp(c1 n)


 ∨ 0


 .

By (3), which is valid under (H), the right-hand side above is equal to zero,

from which the desired result follows.

We may now formulate the main result of this section.

Theorem 2.3 Under (A1), (A2), (A3) and (H), the sequence {Xn, n ≥ 1}
satisfies the large deviation principle with rate function given by

Λ∗(x) = sup
t∈IR

{tx − Λ(t)}, x ∈ IR ,

which is the Fenchel-Legendre transform of

Λ(t) = lim
n→+∞

1
n

log E
(
en t Xn

)
.

Proof: The proof goes along the same lines as that of Theorem 6.4.4 of Dembo

and Zeitouni (1998), using our Lemma 2.1, together with Lemma 4.4.8 and

Theorem 4.4.10 of Dembo and Zeitouni (1998), to ensure that {Xn, n ≥ 1}
satisfies the large deviation principle with good rate function I. The convexity

of I follows in the same way as in Dembo and Zeitouni (1998), applying our
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Lemma 2.2 to obtain, for x1, x2 ∈ IR such that I(x1) < +∞ and I(x2) < +∞,

−I

(
x1 + x2

2

)
≥ inf

δ>0


lim inf

n→+∞
1
2n

log


 P

(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

)





+ inf
δ>0

{
lim inf
n→+∞

1
2n

log
(
P
(
Xn ∈ Sδ/2

x1

))}

+ inf
δ>0

{
lim inf
n→+∞

1
2n

log
(
P
(
Xn ∈ Sδ/2

x2

))}

≥ −1
2
I(x1) − 1

2
I(x2) .

The rest of the proof proceeds exactly as in Theorem 6.4.4 of Dembo and

Zeitouni (1998).
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