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We find conditions under which the sequence of empirical means of associated random variables, {Xn, n ≥ 1}, satisfies the large deviation principle.

Introduction, assumptions and auxiliary results

Consider a sequence {X n , n ≥ 1} of associated and strictly stationary real valued random variables. In this paper, we prove a large deviation principle (LDP) for the sequence of partial means.

We recall that a sequence of random variables {X n , n ≥ 1} is said to be associated if for any m ∈ IN and any two real-valued coordinatewise nondecreasing
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functions f and g it holds Cov f (X 1 , . . . , X m ) , g (X 1 , . . . , X m ) ≥ 0 , whenever this covariance exists. This definition was introduced in statistics by [START_REF] Esary | Association of random variables, with applications[END_REF] who were motivated from applications in reliability theory. Independently, this notion appeared also in statistical mechanics, referred as the KFG inequalities after the work of Fortuin, Kasteleyn and Ginibre (1971). There has been an intense research on the subject matter of association. For a brief review of the relevant literature on this subject, we suggest Roussas (1999) and Dewan and Prakasa Rao (2001),which include, besides numerous references, several applications of this concept.

As mentioned before, we will find conditions under which the large deviation principle (LDP) holds for the sequence of empirical means of associated random variables. When the random variables are independent and identically distributed (i.i.d.), this is a classical result known in the literature of large deviations as the Cramér's theorem. As is well known, this result has been extended in several directions, one of which is the case of non-independence of the underlying random variables. The literature on this subject is now extensive. For an account of the relevant results on LDPs, see, for example, Dembo and Zeitouni (1998) and the references therein. We will prove a LDP assuming a hyper-geometric decrease rate on the covariances Cov(X 1 , X n ) of associated variables. This is in accordance with analogous results obtained under mixing assumptions, where deviations from independence were conveniently controlled (see, for example, [START_REF] Nummelin | Large deviations for funccionals of stationary processes[END_REF][START_REF] Bryc | On large deviations for uniformly strong mixing sequences[END_REF][START_REF] Bryc | Large deviations and strong mixing[END_REF].

In fact, as is well known, the covariance structure of a collection of associated random variables highly determines its approximate independence (cf. Newman, 1984). So, the referred condition on the decrease rate of the covariances is, for association, the counterpart of the hyper-geometric mixing rates assumed to establish the LDP under φ-mixing and α-mixing in [START_REF] Bryc | On large deviations for uniformly strong mixing sequences[END_REF] , 1996).

We now present the assumptions to be considered in this paper.

(A1) The sequence {X n , n ≥ 1} is associated and strictly stationary.

(A2) The variables of the sequence {X n , n ≥ 1} are uniformly bounded, that is,

|X n | ≤ M, n ≥ 1.
(A3) For each n ≥ 1, X n has density function bounded by a 1 (B 1 ) n , for some a 1 > 0 and some B 1 > 1.
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These assumptions are usual in associated literature, except for (A3). Concerning this last assumption, we remark that when we consider a sequence of independent and identically distributed random variables, say Y 1 , Y 2 , . . ., having a common bounded density with compact support, and take

X n = c (Y n + . . . + Y n+m )
, for some fixed m ∈ IN and c ∈ IR, then these variables verify (A3). Notice further that this procedure is a commonly used method to generate associated sequences.

In addition, we will consider an hyper-geometric decay rate of the covariances. We state this condition in terms of the sequence

u(n) = ∞ j=n+1 Cov(X 1 , X j ) . (H) u(n) ≤ a 0 exp(-n log 1+a n),
for some a 0 > 0 and a > 0.

We notice that (H) holds true if Cov(X 1 , X n ) = a 1 exp(-n log 1+a n), for some a 1 > 0 and a > 0. In fact, if we take

v K (x) = +∞ x K(t) dt, with K(t) = exp(-t log 1+a t), from the l'Hospital rule it easily follows that v K (t)/K(t) → 0, as t -→ +∞. Now just recall that u(n) ≤ a 1 v K (n).
The following two lemmas will be needed for the proof of the main result.

First we state a result contained in [START_REF] Newman | Normal fluctuations and the FKG inequalities[END_REF] are random variables such that E f (X 1 ) 2 < +∞ and E g(X 2 ) 2 < +∞, then

Cov (f (X 1 ), g(X 2 )) = +∞ -∞ +∞ -∞ f (x 1 )g (x 2 )H 1,2 (x 1 , x 2 ) dx 1 dx 2 ,
where

H 1,2 (x 1 , x 2 ) = Cov I (x1,+∞) (X 1 ), I (x2,+∞) (X 2 ) .
The next result follows from relation (21) in [START_REF] Newman | Normal fluctuations and the FKG inequalities[END_REF] and Corollary to Theorem 1 in Sadikova (1996) (see Lemma 2.6 in Roussas, 1995, for details).

Lemma 1.2 [START_REF] Roussas | Asymptotic normality of a smooth estimate of a random field distribution function under association[END_REF] Let X 1 and X 2 be two associated random variables having density functions bounded by B 0 . Then, for all

x 1 , x 2 ∈ IR, Cov I (-∞,x1] (X 1 ), I (-∞,x2] (X 2 ) ≤ B 1 Cov 1/3 (X 1 , X 2 ) ,
where

B 1 = 2 max(2/π 2 , 45B 0 ).

A c c e p t e d m a n u s c r i p t 2 Large deviation principle

For the proof of the LDP, we follow the methodology of proof of Theorem 6.4.4

of Dembo and Zeitouni (1998), which deals with the large deviation principle of the empirical mean, under a certain mixing assumption.

For n, m ≥ 1, define

X m n = 1 n-m n i=m+1 X i .
For the sake of simplicity, we write X n instead of X 0 n . The following two results are key tools to prove the LDP for the empirical mean X n . These results are the analogues for our framework of Lemmas 6.4.6 and 6.4.7 of Dembo and Zeitouni (1998). The proofs follow the same sort of arguments, so we will concentrate only on the technical details that are specific to associated variables. Lemma 2.1 Suppose that (A1), (A3) and (H) are satisfied. Then, for each function g : IR -→ IR concave, continuous and bounded above, the following limit exists Xn) .

Λ g = lim n→+∞ 1 n log E e n g(
Proof: Let g : IR -→ IR be concave, continuous and bounded above. Being concave and continuous, g is also Lipschitz continuous on [-M, M ], that is,

there exists L > 0 such that, for all x, y ∈ [-M, M ], |g(x) -g(y)| ≤ L |x -y|.
Without loss of generality, we assume that -∞ < -B ≤ g(x) ≤ 0, for all

x ∈ [-M, M ].
As in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998), define h(n) = log E e ng (Xn) and obtain h(n + m) ≤ 2lLMlog E e ng(Xn) e mg(X n+l n+m+l ) .

(1) 

For each n ∈ IN , define f n (x) = e ng(x) , x ∈ [-M, M ],
) = [-M,M ] 2 f n (x)f m (y)Cov I (-∞,x] (X n ), I (-∞,y] (X n+l n+m+l ) dx dy ≤ nmL 2 Cov X n , X n+l n+m+l ,
remembering that all the covariances above are non-negative by association.

Using the stationarity assumption (A1), we get Cov e ng(Xn) , e mg(X n+l n+m+l ) 

≤ L 2 n ∞ i=l+2 Cov(X 1 , X i ) = L 2 (n + m)u(l) ,
yields

h(n + m) ≤ 2lLM + h(n) + h(m) -log (Θ(l, n + m) ∨ 0) . (2) 
By (H), we have, for each κ < a and for each c ∈ IR,

lim n→+∞ n u n log 1+κ n e cn = 0 . ( 3 
)
Let 0 < δ < a, where a is given in (H). From (3) it is obvious that In what follows we will use the notation

Θ n log 1+δ n , n = 1 -L 2 nu n log 1+δ n e nB -→
S δ x =]x -δ, x + δ[. Lemma 2.2 Suppose that (A1), (A3), (A4) and (H) are satisfied. If x 1 , x 2 ∈ IR are such that, for each δ > 0, lim inf n→+∞ 1 n log P X n ∈ S δ xi > -∞, i = 1, 2 , then inf δ>0 lim inf n→+∞ 1 n log P X 2n ∈ S δ x 1 +x 2 2 P X n ∈ S δ/2 x1 P X n ∈ S δ/2 x2 ≥ 0.
Proof: Fix δ > 0. From the assumptions of the lemma, there exists c 1 > 0 such that, for every sufficiently large n,

P X n ∈ S δ/2 x1 P X n ∈ S δ/2 x2 ≥ exp(-nc 1 ). (4) 
By (A4), we may apply Lemma 1.2 to obtain

P X n ∈ S δ/2 x1 , X n+l 2n+l ∈ S δ/2 x2 -P X n ∈ S δ/2 x1 P X n+l 2n+l ∈ S δ/2 x2 ≤ 4B n Cov 1/3 X n , X n+l 2n+l ,
where B n = 2 max(2/π 2 , 45 a 1 B n 1 ). Therefore, by the stationarity assumption (A1), 

P X n ∈ S δ/2 x1 , X n+l 2n+l ∈ S δ/2 x2 -P X n ∈ S δ/2 x1 P X n ∈ S δ/2 x2 ≤ 4B n 1 n 2 n ∞ i=l+1 Cov(X 1 , X i ) 1/3 = 4B n u(l) n
P X n ∈ S δ/2 x1 , X n+l 2n+l ∈ S δ/2 x2 P X n ∈ S δ/2 x1 P X n ∈ S δ/2 x2 ≥ 1 -4B n u(l) n 1/3 exp(c 1 n), (5) 
for each l ∈ IN and n large enough, taking into account [START_REF] Dewan | Associated sequences and related inference problems[END_REF].

Following the arguments used in the proof of Lemma 6.4.7 in Dembo and Zeitouni (1998), we get, for l = δ n 2M ,

P X 2n ∈ S δ x 1 +x 2 2 ≥ P X n ∈ S δ/2 x1 , X n+l 2n+l ∈ S δ/2 x2 , so that, from (5), lim inf n→+∞ 1 n log P X 2n ∈ S δ x 1 +x 2 2 P X n ∈ S δ/2 x1 P X n ∈ S δ/2 x2 ≥ lim inf n→+∞ 1 n log      1 -4B n u δ n 2M n 1/3 exp(c 1 n)    ∨ 0   . By (3) 
, which is valid under (H), the right-hand side above is equal to zero, from which the desired result follows.

We may now formulate the main result of this section. The rest of the proof proceeds exactly as in Theorem 6.4.4 of Dembo and Zeitouni (1998).

A c c e p t e d m a n u s c r i p t and then E≥ 1 -

 then1 e ng(Xn) e mg(X n+l n+m+l ) E e ng(Xn) E e mg(X n+l n+m+l ) L 2 (n + m)u(l)e (n+m)B , as g(x) ≥ -B, for all x ∈ [-M, M ]. Now, define Θ(l, n) = 1 -L 2 nu(l)e nB , l, n ∈ IN . As in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998), by means of the preceding inequality, (

  1, as n → +∞. So, we may take l = n+m log 1+δ (n+m) as in the proof of Lemma 6.4.6 of Dembo and Zeitouni (1998) and proceed in the same way to conclude the proof.

Theorem 2 . 3 A c c e p t e d m a n u s c r i p t Lemma 2 .

 232 Under (A1), (A2), (A3) and (H), the sequence {X n , n ≥ 1} satisfies the large deviation principle with rate function given byΛ * (x) = sup t∈I R {tx -Λ(t)}, x ∈ IR , which is the Fenchel-Legendre transform of Λ(t) = lim n→+∞ 1 nlog E e n t Xn .Proof: The proof goes along the same lines as that of Theorem 6.4.4 of Dembo and Zeitouni (1998), using our Lemma 2.1, together with Lemma 4.4.8 and Theorem 4.4.10 of Dembo and Zeitouni (1998), to ensure that {X n , n ≥ 1} satisfies the large deviation principle with good rate function I. The convexity of I follows in the same way as in Dembo and Zeitouni (1998), applying our 2 to obtain, for x 1 , x 2 ∈ IR such that I(x 1 ) < +∞ and I(x 2 ) < +∞,

† Author supported by Centro de Matemática da Universidade de Coimbra and Fundo Social Europeu (FSE) -PRODEP III (Action 5.3) ‡ Author supported by Centro de Matemática da Universidade de Coimbra, Fundação para a Ciência e Tecnologia (FCT) and POCTI.

A c c e p t e d m a n u s c r i p t