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Convergence of a sequence of bivariate Archimedean copulas to another Archimedean copula or to the comonotone copula is shown to be equivalent with convergence of the corresponding sequence of Kendall distribution functions. No extra differentiability conditions on the generators are needed.

Introduction

Let C n be a sequence of bivariate Archimedean copulas with generators ψ n and Kendall distribution functions K n . In this note, we establish necessary and sufficient conditions in terms of ψ n or K n for convergence of the sequence of copulas C n to a limiting copula C which is either Archimedean or comonotone. In particular, we extend results in Genest and MacKay (1986, Proposition 4.2 A c c e p t e d m a n u s c r i p t and 4.3) and Nelsen (1999, Theorems 4.4.7 and 4.4.8) to generators that are possibly not everywhere differentiable. Moreover, we show that convergence of the sequence of copulas is equivalent to convergence of the corresponding sequence of Kendall distribution functions. These extensions are used in [START_REF] Charpentier | Lower tail dependence for Archimedean copulas: characterizations and pitfalls[END_REF] to study lower tail dependence for Archimedean copulas, extending and partially correcting [START_REF] Juri | Copula convergence theorems for tail events[END_REF].

The link between Archimedean copulas and their Kendall distribution functions has already been exploited in the context of statistical inference on Archimedean copulas [START_REF] Genest | Statistical Inference Procedures for Bivariate Archimedean Copulas[END_REF][START_REF] Barbe | On Kendall's process[END_REF][START_REF] Wang | Model Selection and Semiparametric Inference for Bivariate Failure-Time Data[END_REF][START_REF] Genest | Goodness-of-fit procedures for copula models based on the probability integral transformation[END_REF]. Our findings add perspective to these papers by showing that closeness of Kendall distribution functions indeed implies closeness of the corresponding Archimedean copulas.

The structure of the paper is as follows. We start with some preliminaries in Section 2. In Section 3, we extend to the case of general Archimedean copulas C the expression in Genest and MacKay (1986, Proposition 3.3) for the joint distribution function of the pair of random variables (X, C(X, Y )), where (X, Y ) is itself a random pair with distribution function C. The main results in this paper involve characterizations of the convergence of a sequence of Archimedean copulas to another Archimedean copula or to the comonotone copula (Sections 4 and 5). Extensions to higher dimensions are treated in Section 6. We conclude in Section 7 with a counterexample showing that not every limit copula of a sequence of Archimedean copulas is necessarily Archimedean or comonotone.

Preliminaries

A function C : [0, 1] 2 → [0, 1] is called a (bivariate) copula if it is the distribution function of a (bivariate) random vector with uniform-(0, 1) margins, or more precisely, the restriction to

[0, 1] 2 thereof. A function ψ : [0, 1] → [0, ∞]
is called a generator if it is convex, decreasing and ψ(1) = 0. The generalized inverse of ψ is denoted by

ψ ← (t) = inf{u ∈ [0, 1] | ψ(u) ≤ t}, t ∈ [0, ∞].
A copula C is called Archimedean if there exists a generator ψ such that [START_REF] Schweizer | Probabilistic Metric Spaces[END_REF][START_REF] Genest | Copules archimédiennes et familles de lois bidimensionnelles dont les marges sont données[END_REF]. The conditions imposed on ψ are necessary and sufficient for the expression in the previous display to define a copula. The copula C determines the generator ψ uniquely The class of Archimedean copulas encompasses many well known bivariate parametric distributions, such as the Frank, Clayton or Gumbel copulas (Nelsen, 1999, Table 4.1). Furthermore, if the inverse of the generator, ψ ← , is the Laplace transform of a nonnegative random variable, then the corresponding Archimedean copula C reduces to the proportional frailty model in [START_REF] Marshall | Families of multivariate distributions[END_REF] and [START_REF] Oakes | Bivariate survival models induced by frailties[END_REF].

C(u, v) = ψ ← {ψ(u) + ψ(v)}, (u, v) ∈ [0, 1] 2 (
If the generator is a natural way to identify the Archimedean copula, other functions can be considered as well. The Kendall distribution function K of a copula C is defined as the distribution function of the random variable C(X, Y ), where (X, Y ) is a random pair with distribution function C, so

K(t) = Pr[C(X, Y ) ≤ t], t ∈ [0, 1].
If the copula C is Archimedean with generator ψ, then K(t) = t -λ(t) with λ(t) = ψ(t)/ψ (t) and ψ is the right-hand derivative of ψ on [0, 1) (Genest and Rivest, 1993, Proposition 1.1). Conversely, from K or λ it is possible to reconstruct ψ up to a multiplicative constant via

ψ(u) = ψ(u 0 ) exp u u 0 1 λ(t) dt , 0 < u 0 < 1; 0 ≤ u ≤ 1.

Auxiliary result

The following result is a useful device to deduce properties of the generator ψ of an Archimedean copula C from the copula itself. For twice continuously differentiable generators, the result can already be found in Genest and MacKay (1986, Proposition 3.3).

Proposition 1 Let (X, Y ) be a bivariate random vector with joint distribution function C, a bivariate Archimedean copula with generator ψ. Let ψ be the right-hand derivative of ψ on [0, 1).

Put Z = C(X, Y ). For (z, x) ∈ [0, 1] 2 , Pr[X ≤ x, Z ≤ z] =                            x if x ≤ z ≤ 1, z + ψ(x) ψ (z) - ψ(z) ψ (z) if 0 < z < x ≤ 1, ψ(x) -ψ(0) ψ (0) if z = 0 < x and ψ (0) > -∞, 0 if z = 0 < x and ψ (0) = -∞.

A c c e p t e d m a n u s c r i p t

Proof

. Since Z = C(X, Y ) ≤ X, we have Pr[X ≤ x, Z ≤ z] = Pr[X ≤ x] = x for x ≤ z ≤ 1.
Hence we can restrict attention to z < x.

The case z = 0 < x follows from the case 0 < z < x by the fact that ψ (0) = lim z↓0 ψ (z) and the fact that lim z↓0 ψ(z)/ψ (z) = 0 if ψ (z) = -∞, the latter property following from convexity.

Hence we can restrict attention to the case 0 < z < x. Since both ψ and the function z → Pr[X ≤ x, Z ≤ z] are right-continuous, it suffices to prove the stated equality for z such that ψ is continuous in z.

We have Pr

[X ≤ x, Z ≤ z] = z + Pr[z < X ≤ x, Z ≤ z].
We can focus on the last term on the right-hand side. Let n be a positive integer, and let

z = u 0 < u 1 < • • • < u n = x be such that ψ(u i ) = 1 - i n ψ(z) + i n ψ(x), i = 0, 1, . . . , n.
We have

Pr[z < X ≤ x, Z ≤ z] = n i=1 Pr[u i-1 < X ≤ u i , Z ≤ z]. If u i-1 < X ≤ u i , then C(u i-1 , Y ) ≤ Z ≤ C(u i , Y ). Hence n i=1 Pr[u i-1 < X ≤ u i , C(u i , Y ) ≤ z] ≤ Pr[z < X ≤ x, Z ≤ z] ≤ n i=1 Pr[u i-1 < X ≤ u i , C(u i-1 , Y ) ≤ z]. Further, for z ≤ u ≤ 1, since ψ and ψ ← are decreasing, C(u, Y ) ≤ z is equivalent to Y ≤ ψ ← {ψ(z) -ψ(u)}. We find that Pr[z < X ≤ x, Z ≤ z] ≤ n i=1 Pr[u i-1 < X ≤ u i , Y ≤ ψ ← {ψ(z) -ψ(u i-1 )}] = n i=1 (C(u i , ψ ← {ψ(z) -ψ(u i-1 )}) -C(u i-1 , ψ ← {ψ(z) -ψ(u i-1 )})) = n i=1 (ψ ← {ψ(u i ) + ψ(z) -ψ(u i-1 )} -ψ ← {ψ(z)}) .

A c c e p t e d m a n u s c r i p t

Our choice of the grid {u i } is such that

ψ(u i ) -ψ(u i-1 ) = -{ψ(z) -ψ(x)}/n, i = 1, . . . , n. Hence Pr[z < X ≤ x, Z ≤ z] ≤ n ψ ← [ψ(z) -{ψ(z) -ψ(x)}/n] -ψ ← {ψ(z)} Since ψ ← is convex with nondecreasing derivative 1/(ψ • ψ ← ), ψ ← (a) -ψ(b) ≤ (a -b) 1 ψ {ψ ← (a)} , 0 < a < b < ψ(0).
Combine the two previous displays to find

Pr[z < X ≤ x, Z ≤ z] ≤ - ψ(z) -ψ(x) ψ (ψ ← [ψ(z) -{ψ(z) -ψ(x)}/n])
Let n tend to infinity and use the fact that z is a continuity point of ψ to find

Pr[z < X ≤ x, Z ≤ z] ≤ - ψ(z) -ψ(x) ψ (z) .
The inequality in the other direction follows in a completely similar fashion, so the details are omitted.

4 Convergence to an Archimedean copula

In this section, we investigate necessary and sufficient conditions on a sequence of Archimedean copulas C n with generators ψ n to converge to an Archimedean copula C with generator ψ. Let ψ n and ψ be the right-hand derivatives of ψ n and ψ, respectively, and denote

λ n = ψ n /ψ n , λ = ψ/ψ , K n (t) = t -λ n (t), and 
K(t) = t -λ(t).
For twice continuously differentiable generators, the equivalence of (i) and (ii) in Proposition 2 below was already established in Genest and MacKay (1986, Proposition 4.2). The claim that characterizations (iii) and (v) are sufficient for copula convergence seems to be new. Note that condition (ii) requires convergence of ψ n (x)/ψ n (y) for all x and y while condition (iii) only requires convergence of ψ n (x)/ψ n (x) for all x. Condition (v) implies that the map from an Archimedean copula to its Kendall distribution function is a homeomorphism with respect to the topology of weak convergence.

Proposition 2

The following five conditions are equivalent:

(i) lim n→∞ C n (x, y) = C(x, y) for all (x, y) ∈ [0, 1] 2

A c c e p t e d m a n u s c r i p t

(ii) lim n→∞ ψ n (x)/ψ n (y) = ψ(x)/ψ (y) for every x ∈ (0, 1] and y ∈ (0, 1) such that ψ is continuous in y. (iii) lim n→∞ λ n (x) = λ(x) for every x ∈ (0, 1) such that λ is continuous in x.

(iv) There exist positive constants κ n such that lim n→∞ κ n ψ n (x) = ψ(x) for all x ∈ [0, 1]. (v) lim n→∞ K n (x) = K(x) for every x ∈ (0, 1) such that K is continuous in x.

Proof. (i) implies (ii). Let (X, Y ) and (X n , Y n ) be pairs of random variables with joint distribution functions C and C n , respectively. Also, put Z = Y ) and

Z n = C n (X n , Y n ). By (i), (X n , Y n ) converges in distribution to (X, Y ) as n → ∞. Moreover, since C is a continuous distribution function, the convergence of C n to C is necessarily uniform in (x, y) ∈ [0, 1] 2 . Hence (X n , Z n ) converges in distribution to (X, Z) as n → ∞. By Proposition 1, we have lim n→∞ ψ n (x) -ψ n (y) ψ n (y) = ψ(x) -ψ(y) ψ (y) for all 0 < y < x ≤ 1 such that ψ is continuous in y. Choose x = 1 to find lim n→∞ ψ n (y) ψ n (y) = ψ(y) ψ (y) .
Combine the two previous displays to get

lim n→∞ ψ n (x) ψ n (y) = ψ(x) ψ (y) 
for every 0 < y ≤ x ≤ 1 such that y < 1 and ψ is continuous in y. Let 0 < x i < 1 for i = 1, 2 and apply the above display to (x 1 , y) and (x 2 , y) for some 0 < y < min(x 1 , x 2 ) in which ψ is continuous to arrive at

lim n→∞ ψ n (x 1 ) ψ n (x 2 ) = ψ(x 1 ) ψ(x 2 ) .
Combine the last two displays to arrive at (ii).

(ii) implies (iii). Trivial.

(iii) implies (iv). For 0 < x < y < 1, we have

log ψ n (y) -log ψ n (x) = y x ψ n (z) ψ n (z) dz = y x 1 λ n (z)
dz.

Suppose that we can show that the limit of the integral of the right-hand side of the previous display is equal to the integral of the (almost everywhere) limit of the integrand. Then we have lim n→∞ {log ψ n (y) -log ψ n (x)} = log ψ(y) -log ψ(x).

A c c e p t e d m a n u s c r i p t

This, in turn, obviously implies (iv).

In order to justify interchanging limit and integral in the previous paragraph, we will show that (iii) implies lim sup

n→∞ sup z∈[x,y] ψ n (z) ψ n (z) < ∞. Let 0 < ε < x be such that |ψ (x -ε)| ≤ ψ(y)/(4ε).
By (iii), we have

lim n→∞ 1 |ψ n (z)| ψ n (z) > 2 |ψ (z)| ψ(z) = 0
for almost every z ∈ [x -ε, y]. Since the above indicator variables are bounded and converge pointwise to zero, there exists a positive integer n ε such that

y x-ε 1 |ψ n (z)| ψ n (z) > 2 |ψ (z)| ψ(z) dz < ε for all integer n ≥ n ε . Hence, for z ∈ [x, y] and integer n ≥ n ε , there exist z -ε < u < z such that |ψ n (u)| ψ n (u) ≤ 2 |ψ (u)| ψ(u) ≤ 2 |ψ (x -ε)| ψ(y) ≤ 1 2ε
But then, since ψ n and |ψ n | are both nonincreasing,

ψ n (z) |ψ n (z)| ≥ ψ n (u) -(z -u)|ψ n (u)| |ψ n (u)| ≥ 2ε -ε = ε,
as required.

(iv) implies (i). Let φ n = κ n ψ n . Then φ n is a generator of C n . Since each φ n is monotone and since ψ is monotone and continuous, we have lim

n→∞ φ n (x n ) = ψ(x) whenever lim n→∞ x n = x in [0, 1]. Hence also lim n→∞ φ ← n (t n ) = ψ ← (t) whenever lim n→∞ t n = t in [0, ∞]. Hence, for every (x, y) ∈ [0, 1] 2 , C n (x, y) = φ ← n {φ n (x) + φ n (y)} → ψ ← {ψ(x) + ψ(y)} = C(x, y),
as n → ∞.

(v) implies (iii) and conversely. Trivial.

2

Example 3 In Prange and Scherer (2006, section 2.4), in the context of basket type credit derivatives, the dependence between asset value and latent variable is modeled by an Archimedean copula with a piecewise linear generator. That

A c c e p t e d m a n u s c r i p t

is, on a set of nodes 0 = x 0 < x 1 < . . . < x n = 1, values 1 = y 0 > y 1 > . . . > y n = 0 are specified and the generator ψ is defined to be a piecewise linear convex function with ψ(x i ) = y i . The points y i , i = 1, . . . , n -1 must be chosen to satisfy the convexity of ψ.

By Proposition 2, the corresponding Archimedean copula is a continuous function of the abscissa points x i and the ordinates y i . Moreover, the class of Archimedean copulas with piecewise linear generators is dense in the set of Archimedean copulas: For a given Archimedean copula C with generator ψ we can find a sequence of piecewise linear generators ψ n such that lim n→∞ ψ n (x) = ψ(x) for every x ∈ [0, 1]; for instance, let ψ n be the linear interpolation of ψ on the set {i/n; i = 1, . . . , n}, with ψ n (0) chosen in such a way that ψ n is linear on [0, 2/n]. The corresponding sequence of Archimedean copulas C n then converges pointwise to C.

Example 4 The countermonotone copula C(x, y) = max(x + y -1, 0) is Archimedean with generator ψ(t) = 1 -t for t ∈ [0, 1]. By Proposition 2, a sequence of Archimedean copulas C n with Kendall distribution functions K n converges to the countermonotone copula if and only if lim n→∞ K n (x) = 0 for every x ∈ (0, 1).

Convergence to the comonotone copula

The comonotone copula is itself not an Archimedean copula, so that Proposition 2 is not suitable for deciding whether a sequence of copulas converges to the comonotone copula. The following resulting, extending Nelsen (1999, Theorem 4.4.8) to arbitrary generators, gives such a criterion. Let C n , ψ n , λ n , and K n be as in the beginning of Section 4.

Proposition 5

The following four conditions are equivalent:

(i) lim n→∞ C n (x, y) = min(x, y) for all (x, y) ∈ [0, 1] 2 (ii) lim n→∞ λ n (x) = 0 for every x ∈ (0, 1). (iii) lim n→∞ ψ n (y)/ψ n (x) = 0 for every 0 ≤ x < y ≤ 1. (iv) lim n→∞ K n (x) =
x for every x ∈ (0, 1).

Proof. (i) implies (ii). Let (X n , Y n ) be a pair of random variables with distribution function C n . Since the limit of C n is the comonotone copula, (X n , Y n ) converges in distribution to (X, X), where X is a uniform random variable on (0, 1). But since the convergence in (i) is necessarily uniform, we find that Z n = C n (X n , Y n ) converges in distribution to min(X, X) = X, whence 

Pr[Z n ≤ z] = z + ψ n (z) ψ n (z) , 0 < z < 1.
Hence we arrive at (ii).

(ii) implies (iii). Let 0 < x < y < 1 (the cases x = 0 or y = 1 follow by monotonicity of ψ n ). We have

ψ n (x) ψ n (y) -1 = ψ n (x) -ψ n (y) ψ n (y) ≥ (y -x)|ψ n (y)| ψ n (y)
.

By (ii), the right-hand side diverges to infinity as n → ∞.

(iii) implies (i). Since each C n is a symmetric copula, it suffices to consider 0 < x ≤ y < 1. Take 0 < w < x. By (ii), we have ψ n (w) ≥ 2ψ n (x) ≥ ψ n (x) + ψ n (y) for all sufficiently large integer n, whence

w ≤ ψ ← n {ψ n (x) + ψ n (y)} = C n (x, y) ≤ x.
Let first n → ∞ and then w ↑ x to find that lim n→∞ C n (x, y) = x.

6 Extension to higher dimensions

Propositions 2 and 5 can be readily extended to the general multivariate case. Let d be an integer at least two. A d-variate copula C is the distribution function of a d-variate random vector (X 1 , . . . , X d ),

C(x 1 , . . . , x d ) = Pr[X 1 ≤ x 1 , . . . , X d ≤ x d ]
the components of which are uniformly distributed on the interval [0, 1]. A d-variate copula C is called Archimedean if there exists a generator ψ such that

C(x 1 , . . . , x d ) = ψ ← {ψ(x 1 ) + • • • + ψ(x d )} for all (x 1 , . . . , x d ) ∈ [0, 1] d .
In general, extra conditions on the generator ψ are required to ensure that the expression in the above display defines a genuine copula. A sufficient condition is for instance that ψ ← is d-times differentiable and (-D) j ψ ← ≥ 0 for every j = 1, . . . , d; see for instance Kimberling (1974, Theorems 1 and 2), [START_REF] Schweizer | Probabilistic Metric Spaces[END_REF], Barbe et al. (1996, Example 3), andNelsen (1999, Section 4.6). A special case arises if ψ ← is completely monotonic, that is, if ψ ← is infinitely times differentiable and if (-D) j ψ ← ≥ 0 for every positive integer j. In this case, ψ ← is the Laplace transform of a nonnegative random variable and C reduces to the proportional frailty model [START_REF] Marshall | Families of multivariate distributions[END_REF][START_REF] Oakes | Bivariate survival models induced by frailties[END_REF].

A c c e p t e d m a n u s c r i p t

Obviously, if the distribution function of the random vector (X 1 , . . . , X d ) is given by the d-variate Archimedean copula C with generator ψ, then the distribution function of every bivariate subvector (X i , X j ), with i = j, is given by the bivariate Archimedean copula with the same generator. This property can be used to upgrade Propositions 2 and 5 to the general multivariate case.

Let C n be a sequence of d-variate Archimedean copulas with generators ψ n .

On the one hand, if C n converges to another d-variate Archimedean copula C with generator ψ or to the d-variate comonotone copula, then the sequence of bivariate Archimedean copulas with generators ψ n must converge to the bivariate Archimedean copula with generator ψ or to the bivariate comonotone copula, respectively. Hence, the stated conditions on the sequence of generators are certainly necessary for convergence of the sequence of copulas. On the other hand, they are also sufficient, as the proofs of the implications "(iv) implies (i)" in Proposition 2 and "(iii) implies (i)" in Proposition 5 carry over to the d-variate case with only notational changes.

Note that there is no analogon in dimension d ≥ 3 of Example 4: if d ≥ 3, then the Fréchet-Hoeffding lower bound max(x 1 + • • • + x d -1, 0) is not a copula, whereas the point-wise limit of a sequence of copulas is necessarily a copula.

Counterexample

From Propositions 2 and 5, one might get the impression that every limit copula of a sequence of Archimedean copulas is necessarily Archimedean or comonotone. This is not true, as is demonstrated by the following example.

For integer n ≥ 2, define a generator ψ n by

ψ n (x) =      n -2(n -1)x if 0 ≤ x ≤ 1/2, 2(1 -x) if 1/2 ≤ x ≤ 1.
In words, ψ n is piecewise linear with knots ψ n (0) = n, ψ n (1/2) = 1, and ψ n (1) = 0. Denoting the right-hand derivative of ψ n with ψ n , we have

K n (x) = x - ψ n (x) ψ n (x) =      n/{2(n -1)} if 0 ≤ x < 1/2, 1 if 1/2 ≤ x ≤ 1.
Let C n be the Archimedean copula with generator ψ n . For real z, denote z + = max(z, 0). By direct computation, we find that lim n→∞ C n (x, y) = C(x, y) 

  multiplicative constant. If ψ(0) = ∞, then ψ ← is the ordinary inverse of ψ; in this case, the generator and the Archimedean copula are called strict.

  n→∞ Pr[Z n ≤ z] = z for all z ∈ [0, 1]. But by Proposition 1,
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where

(1)

The copula C corresponds to the uniform distribution with respect to onedimensional Lebesgue measure on the union of the two line segments

By Genest and Rivest (1993, Proposition 1.2), the Kendall distribution function K of an Archimedean copula necessarily satisfies lim t↑v K(t) < v for every 0 < v < 1. As the function K in (2) violates this condition in v = 1/2, the copula C in (1) cannot be Archimedean.