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GEVREY REGULARITY OF SUBELLIPTIC MONGE-AMPÈRE

EQUATIONS IN THE PLANE

HUA CHEN, WEI-XI LI AND CHAO-JIANG XU

Abstract. In this paper, we establish the Gevrey regularity of solutions for

a class of degenerate Monge-Ampère equations in the plane, under the as-

sumption that one principle entry of the Hessian is strictly positive and an

appropriately finite type degeneracy degeneracy, then we prove that the so-

lution of the degenerate Monge-Amp‘ere equation will be smooth in Gevrey

classes.

1. Introduction

In this paper, we study the regularity problem for the real Monge-Ampère equa-
tion

(1.1) det
(

D2u
)

= k(x), x ∈ Ω ⊂ R
d,

where Ω is an open domain of Rd, d ≥ 2. We consider the convex solution u of
equation (1.1), then k is a nonnegative function. In the case when k > 0, the
equation (1.2) is elliptic and the theory is well developed. For instance, it’s shown
in [1] that there exists a unique solution u to the Dirichlet problem for (1.1), smooth
up to the boundary of Ω, provided that k is smooth and the boundary ∂Ω of Ω is
strictly convex. In the degenerate case, i.e.,

Σk = {x ∈ Ω; k(x) = 0,∇k(x) = 0} 6= ∅.

The equation (1.1) is then a full nonlinear degenerate elliptic equation. The exis-
tence and uniqueness of the solution for the Dirichlet problem of the equation (1.1)
have already been studied in [10]. Also in [12], they proved that the Monge-Ampère
equation has a C∞ convex local solution if the order of degenerate point for the
smooth coefficient k is finite.

As far as the regularity problem is concerned, a result in [19] proved that, for
the degenerate Monge-Ampère equation, if the solution u ∈ Cρ for ρ > 4 (so that
it is a classical solution), then u will be C∞ smooth.

However, in general, the convex solution u to (1.1) is at most in C1,1 if k is only
smooth and nonnegative (see [8] for example). To get a higher regularity, some
extra assumptions are needed to impose on k. This problem has been studied by P.
Guan [9] in two dimension case, in which the smoothness of C∞ for a C1,1 solution
u of the equation (1.1) is obtained, if k vanishes in finite order, i.e. k ≈ x2ℓ +Ay2n

with ℓ ≤ n,A ≥ 0, and one principal curvature of u is strictly positive. In a recent
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paper [11], the last assumption is relaxed to the bounding of trace of Hessian from
below, i.e., △u ≥ c0 > 0. For such C∞ regularity problem, see also earlier work of
C.-J. Xu [18] which is concerned with the C∞ regularity for general two-dimensional
degenerate elliptic equation. In a recent work [13], the authors extended Guan’s
two-dimensional result of [9] to higher dimensional case.

It is natural to ask that, in the degenerate case, would it be the best possible for
the regularity of solution here to be C∞ smooth? One may expect that, in case of
coefficient k with higher regularity, the solution u would have better regularity than
C∞ smooth. we will introduce the Gevrey class, an intermediate space between the
spaces of the analytic functions and the C∞ functions. There is well-developed the-
ory on the Gevrey regularity (see the definition later) for nonlinear elliptic equations
of any order, see [7] for instance. For the linear degenerate elliptic problem, there
have been many works on the Gevrey hypoellipticity of linear subelliptic operators
of second order (e.g. [4, 5] and the reference therein). The difficulty concerned with
equation (1.1) lies on the mixture of degeneracy and nonlinearity.

In this paper, we attempt to explore the regularity of solutions of equation (1.1)
in the frame of Gevrey class. We study the problem in two dimension case

(1.2) uxxuyy − u2xy = k(x, y), (x, y) ∈ Ω,

and assume that uyy > 0, then we can apply the classic partial Legendre trans-
formation (see [16] for instance), to translate the equation (1.2) to the following
divergence form quasi-linear equation

(1.3) ∂ssw(s, t) + ∂t {k(s, w(s, t))∂tw(s, t)} = 0.

This quasi-linearity allows us to adopt the idea used in [2], to obtain the Gevrey
regularity for the above divergence form equation. In order to go back to the
original problem, i.e., the Gevrey regularity for the equation (1.2), a key point
would be to show that the Gevrey regularity is invariant under the partial Legendre
transformation, which will be proved in Section 3.

Now let us recall the definition of the space of Gevrey class functions, which is
denoted by Gσ(U), for σ ≥ 1, with U an open subset of Rd and σ being called
Gevrey index. We say that f ∈ Gσ(U) if f ∈ C∞(U) and for any compact subset
K of U , there exists a constant CK , depending only on K, such that for all multi-
indices α ∈ Z

d
+,

‖∂αf‖L∞(K) ≤ C
|α|+1
K (|α|!)σ.

The constant CK here is called the Gevrey constant of f.We remark that the above
inequality is equivalent to the following condition:

‖∂αf‖L2(K) ≤ C
|α|+1
K (|α|!)σ .

In this paper, both estimates above will be used. Observe that G1(U) is the space
of real analytic functions in U .

We state now our main result as follows, where Ω is an open neighborhood of
origin in R

2.

Theorem 1.1. Let u be a C1,1 weak convex solution to the Monge-Ampère equation
(1.2). Suppose that uyy ≥ c0 > 0 in Ω and that k(x, y) is a smooth function defined
in Ω, satisfying

(1.4) c−1(x2ℓ +Ay2n) ≤ k(x, y) ≤ c(x2ℓ +Ay2n), (x, y) ∈ Ω
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where c > 0, A ≥ 0 and ℓ ≤ n are two nonnegative integers. Then u ∈ Gℓ+1(Ω),
provided k ∈ Gℓ+1(Ω).

Remark 1.2. If k is C∞ smooth and satisfies the condition (1.4), and uyy > 0, P.
Guan [9] has proved that a C1,1 solution of the equation (1.2) will be C∞ smooth.
In [11], the assumption that uyy > 0 is relaxed to the bounding of trace of Hessian
from below, i.e., △u ≥ c0 > 0, but the assumption (1.4) is changed to A > 0 and
ℓ = n. Our main contribution here is to obtain the Gevrey regularity Gℓ+1.

Remark 1.3. The regularity result of main theorem seems the best possible, since
in the particular case of ℓ = 0, we have u ∈ G1(Ω) (i.e., the solution is analytic in
Ω), and in this case the equation (1.2) is elliptic, thus our result coincides with the
well-known analytic regularity result for nonlinear elliptic equations. We can also
justify that if k is independent of second variable y (then A = 0), the equation (1.3)
is linear, it is known that, see [4], the optimal regularity result is that the solution
lies in Gℓ+1.

Remark 1.4. The extension of above result to higher dimensional cases and more
general models of the Monge-Amère equations with k = k(x, u,Du) is our coming
work. By using the results of [13], the idea is the same.

The paper is organized as follows: the section 2 is devoted to proving the Gevrey
regularity for the quasi-linear equation (1.3). In Section 3 we prove our main result
by virtue of the classic partial Legendre transformation. We prove the technical
lemmas in Section 4.

2. Gevrey regularity of quasi-linear subelliptic equations

In this section we study the Gevrey regularity of solutions for the following
quasi-linear equation near the origin of R2

(2.1) ∂ssw + ∂t (k(s, w)∂tw) = 0.

We assume that k(s, w) satisfies the condition

(2.2) c−1(s2ℓ +Aw2n) ≤ k(s, w) ≤ c(s2ℓ +Aw2n),

where c > 1, A ≥ 0 are two constants and ℓ ≤ n are two positive integers. Since
Gevrey regularity is a local property, we study the problem on the unit ball in R

2,

B =
{

(s, t)
∣

∣ s2 + t2 < 1
}

,

and denote W = [−1, 1] × [−‖w‖L∞(B̄), ‖w‖L∞(B̄)]. We prove the the following
result in this section.

Theorem 2.1. Suppose that w(s, t) ∈ C∞(B̄) is a solution to the quasi-linear
equation (2.1), and that k ∈ Gℓ+1(W ). Then w ∈ Gℓ+1(B).

We recall some notations and elementary results for the Sobolev space and
pseudo-differential operators. Let Hκ(R2), κ ∈ R, be the classical Sobolev space
equipped with the norm ‖ · ‖κ. Observe ‖·‖0 = ‖·‖L2(R2). Recall that H

κ(R2) is an

algebra if κ > 1. We need also the interpolation inequality for Sobolev space: for
any ε > 0 and any r1 < r2 < r3,

(2.3) ‖h‖r2 ≤ ε‖h‖r3 + ε−(r2−r1)/(r3−r2)‖h‖r1, ∀ h ∈ Hr3(R2).
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Let U be an open subset of R2 and Sa(U), a ∈ R, be the symbol space of classical
pseudo-differential operators. We say P = P (s, t,Ds, Dt) ∈ Op(Sa(U)), a pseudo-
differential operator of order a, if its symbol σ(P )(s, t; ζ, η) ∈ Sa(U) with (ζ, η)
the dual variable of (s, t). If P ∈ Op(Sa(U)), then P is a continuous operator
from Hκ

c (U) to Hκ−a
loc (U). Here Hκ

c (U) is the subspace of Hκ(R2) consisting of

the distributions having their compact support in U , and Hκ−a
loc (U) consists of the

distributions h such that φh ∈ Hκ−a(R2) for any φ ∈ C∞
0 (U). For more detail

on the pseudo-differential operator, we refer to the book [17]. Remark that if
P1 ∈ Op(Sa1), P2 ∈ Op(Sa2(U)), then [P1, P2] ∈ Op(Sa1+a2−1(U)). In this paper,

we shall use the pseudo-differential operator Λr =
(

1 + |Ds|
2 + |Dt|

2
)

r
2

of order

r, r ∈ R, whose symbol is given by

σ(Λr) =
(

1 + ζ2 + η2
)

r
2 .

In the following discussions, we denote, for P ∈ Op(Sa),

‖P∂mv‖κ =
∑

|α|=m

‖P∂αv‖κ and
[

v
]

j,U
=

∑

|γ|=j

‖∂γv‖L∞(U) .

We consider the following linearized operator corresponding to (2.1) and the
solution w,

L = ∂ss + ∂t
(

k̃(s, t)∂t ·
)

,

where k̃(s, t) = k(s, w(s, t)). To simplify the notation, we extended smoothly the

function k̃ to R2 by constant outside of B̄, similar for k. We have firstly the following
subelliptic estimate.

Lemma 2.2. Under the assumption (2.2), for any r ∈ R, there exists Cr > 0 such
that

(2.4) ‖v‖2r+ 1
ℓ+1

+ ‖∂sΛ
rv‖20 + ‖k̃

1
2 ∂tΛ

rv‖20 ≤ Cr

{

‖Lv‖2r− 1
ℓ+1

+ ‖v‖20

}

,

for any v ∈ C∞
0 (B), where Cr depends only on

[

k̃
]

j,B̄
, 0 ≤ j ≤ 2.

Remark 2.3. By using Faà di Bruno’s formula,
[

k̃
]

j,B̄
is bounded by a polynomial

of
[

k
]

i,W
,
[

w
]

i,B̄
, 0 ≤ i ≤ j.

Proof. Firstly, we study the case of r = 0. Observe

(2.5) ‖∂sv‖
2
0 + ‖k̃

1
2 ∂tv‖

2
0 = ‖∂sv‖

2
0 +

∫

R2

k̃(s, t)|∂tv(s, t)|
2dsdt = − (Lv, v) .

Then the assumption (2.2) implies

‖∂sv‖
2
0 + ‖sℓ∂tv‖

2
0 ≤ c

{

‖∂sv‖
2
0 + ‖k̃

1
2 ∂tv‖

2
0

}

= −c (Lv, v) .

Since the vector fields {∂s, sℓ∂t} satisfies the Hörmander’s condition of order ℓ, we
get (see [6, 15])

(2.6) ‖v‖2 1
ℓ+1

≤ C0

{

‖∂sv‖
2
0 + ‖k̃

1
2 ∂tv‖

2
0 + ‖v‖20

}

= −C0 (Lv, v) + C0‖v‖
2
0.

By Cauchy-Schwarz inequality, we have proved (2.4) with r = 0. Since we have

extended k̃ to R
2, (2.5) (2.6) also hold for any v ∈ S(R2).
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Now for the general case, we have

‖∂sΛ
rv‖20 + ‖k̃

1
2 ∂tΛ

rv‖20 = − (ΛrLv, Λrv)−
(

[

k̃, Λr
]

∂tv, ∂tΛ
rv
)

≤ ‖Lv‖2r− 1
ℓ+1

+ ‖v‖2r+ 1
ℓ+1

−
(

[

k̃, Λr
]

∂tv, ∂tΛ
rv
)

.

Since for v ∈ C∞
0 (B), we have Λrv ∈ S(R2). Then (2.6) implies

‖v‖2r+ 1
ℓ+1

+ ‖∂sΛ
rv‖20 + ‖k̃

1
2 ∂tΛ

rv‖20(2.7)

≤ C0

{

‖Lv‖2r− 1
ℓ+1

+ ‖v‖20 −
(

[

k̃, Λr
]

∂tv, ∂tΛ
rv
)}

.

We consider now the commutator
[

k̃, Λr
]

, the pseudo-differential calculus give

σ
([

k̃, Λr
])

=
∑

|α|=1

∂αs,tk̃(s, t)∂
α
ζ,ησ

(

Λr
)

(ζ, η) + σ(R2)(s, t, ζ, η),

with σ(R2) ∈ Sr−2(R2) and

|(R2∂tv, ∂tΛ
rv)| ≤ C2‖v‖

2
r,

where C2 depends only on
[

k̃
]

j,B̄
, 0 ≤ j ≤ 2. Thus

(

[

k̃, Λr
]

∂tv, ∂tΛ
rv
)

≤ C0 ‖v‖r

{∥

∥

∥

(

∂sk̃
)

∂tΛ
rv
∥

∥

∥

0
+
∥

∥

∥

(

∂tk̃
)

∂tΛ
rv
∥

∥

∥

0

}

+ C‖v‖2r.

Moreover, note that k̃ is nonnegative, and hence we have the following well-known
inequality

|∂sk̃(s, t)|
2 + |∂tk̃(s, t)|

2 ≤ 4[ k̃ ]2,R2 k̃(s, t).(2.8)

For the sake of completeness, we will present the proof of the above inequality later.
By Cauchy-Schwarz inequality and interpolation inequality (2.3), one has

(

[

k̃, Λr
]

∂tv, ∂tΛ
rv
)

≤
1

2C0

(∥

∥

∥
k̃

1
2 ∂tΛ

r v
∥

∥

∥

2

0
+ ‖v‖2r+ 1

ℓ+1

)

+ Cr‖v‖
2
0.

Thus Lemma 2.2 follows. Now it remains to show (2.8). For any h ∈ R, the
following formula holds

k̃(s+ h, t) = k̃(s, t) + ∂sk̃(s, t)h+
1

2
∂ssk̃(s0, t)h

2, s0 ∈ R.

Observe k̃ ≥ 0, then for all h ∈ R we get 0 ≤ k̃(s, t) + ∂sk̃(s, t)h+ 1
2 [ k̃ ]2,R2h2. So

the the discriminant of this polynomial is nonpositive; that is,

|∂sk̃(s, t)|
2 ≤ 2[ k̃ ]2,R2 k̃(s, t).

Similarly |∂tk̃(s, t)|2 ≤ 2[ k̃ ]2,R2 k̃(s, t). This gives (2.8). �

Remark 2.4. With same proof, we can also prove the following estimate

‖v‖2r+m+ 1
ℓ+1

+
∑

|α|≤m

(

‖∂sΛ
r∂αv‖20 + ‖k̃

1
2 ∂tΛ

r∂αv‖20

)

≤ Cr,m

{

‖Lv‖2r+m− 1
ℓ+1

+ ‖v‖20

}

for any v ∈ C∞
0 (B).
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A key technical step in the proof of Gverey regularity is to choose a adapted
family of cutoff functions. For 0 < ρ < 1, set

Bρ =
{

(s, t)
∣

∣ s2 + t2 < 1− ρ
}

.

For each integer m ≥ 2 and each number 0 < ρ < 1, we choose the cutoff function
ϕρ,m satisfying the following properties:

(2.9)











supp ϕρ,m ⊂ B (m−1)ρ
m

, and ϕρ,m(s, t) = 1 in Bρ,

sup
(s,t)∈B

∣

∣∂kϕρ,m

∣

∣ ≤ Ck

(

m
ρ

)k

.

For such cut-off functions, we have the following

Lemma 2.5 (Corollary 0.2.2 of [5]). There exists a constant C, such that for any
0 ≤ κ ≤ 4, and any f ∈ S(R2),

(2.10)
∥

∥

(

∂jϕρ,m

)

f
∥

∥

κ
≤ C

{

(

m

ρ

)j

‖f‖κ +

(

m

ρ

)j+κ

‖f‖0

}

, 0 ≤ j ≤ 2.

We prove now Theorem 2.1 by the following Proposition.

Proposition 2.6. Let w ∈ C∞(B̄) be a smooth solution of the quasi-linear equation
(2.1). Suppose k ∈ Gℓ+1(R2). Then there exists a constant L, such that for any
integer m ≥ 5, we have the following estimate

‖ϕρ,m∂
mw‖2+ j

ℓ+1
+ ‖∂sΛ

2+ j−1
ℓ+1ϕρ,m∂

mw‖0 + ‖k̃
1
2 ∂tΛ

2+ j−1
ℓ+1ϕρ,m∂

mw‖0

≤
Lm−2

ρ(ℓ+1)(m−3)

(

m

ρ

)j
(

(m− 3)!
)ℓ+1

, 0 ≤ j ≤ ℓ+ 1, 0 < ρ < 1.
(2.11)

Remark 2.7. The constant L in Proposition 2.6 depends on ℓ,
[

w
]

8,B̄
, the Gevrey

constant of k, and is independent of m.

As an immediate consequence, for each compact subset K ⊂ B, if we choose
ρ0 = 1

2dist (K, ∂B). Then ϕρ0,m = 1 on K for any m, and (2.11) for j = 0 yields,

‖∂mw‖L2(K) ≤

(

L

ρℓ+1
0

)m+1

(m!)
ℓ+1

, ∀ m ∈ N.

This gives u ∈ Gℓ+1(B). The proof of Theorem 2.1 is thus completed.

The proof of Proposition 2.6 is by induction on m. We state now the following
two Lemmas, and postpone their proof to the last section.

Lemma 2.8. Let k ∈ Gℓ+1(R2) and w ∈ C∞(B̄) be a solution of equation (2.1).
Suppose that for some N > 5, (2.11) is satisfied for any 5 ≤ m ≤ N − 1, and that
for some 0 ≤ j0 ≤ ℓ, we have

∥

∥ϕρ,N∂
Nw

∥

∥

2+
j0
ℓ+1

+
∥

∥

∥
∂sΛ

2+
j0−1

ℓ+1 ϕρ,N∂
Nw

∥

∥

∥

0
+
∥

∥

∥
k̃

1
2 ∂tΛ

2+
j0−1

ℓ+1 ϕρ,N∂
Nw

∥

∥

∥

0

≤
C0L

N−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0 (

(N − 3)!
)ℓ+1

, ∀ 0 < ρ < 1,

(2.12)
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where C0 is a constant independent of L,N . Then there exists a constant C1 inde-
pendent of L,N, such that for any 0 < ρ < 1,

(2.13)
∥

∥Lϕρ,N∂
Nw

∥

∥

2+
j0−1
ℓ+1

≤
C1L

N−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
(

(N − 3)!
)ℓ+1

.

Lemma 2.9. Let k ∈ Gℓ+1(R2) and w ∈ C∞(B̄) be a solution of equation (2.1).
Suppose that for some N > 5, (2.11) is satisfied for any 5 ≤ m ≤ N − 1. Then
there exists a constants C2 independent of L,N, such that

(2.14)
∥

∥Lϕρ,N∂
N−1w

∥

∥

2+ j−1
ℓ+1

≤
C2L

N−3

ρ(ℓ+1)(N−4)

(

N − 1

ρ

)j+1
(

(N − 4)!
)ℓ+1

for all 0 < ρ < 1, 0 ≤ j ≤ ℓ+ 1.

Here and throughout the proof, C and Cj are used to denote suitable constants

which depend on ℓ,
[

k̃
]

0,B
,
[

w
]

8,B̄
and the Gevrey constant of k, but it is indepen-

dent of m and L.

Proof of Proposition 2.6. The proof is by induction on m. Firstly by using
(2.10), the direct calculus implies, for m = 5, all 0 < ρ < 1 and all integers j
with 0 ≤ j ≤ ℓ+ 1,

‖ϕρ,m∂
mw‖2+ j

ℓ+1
+
∥

∥

∥
∂sΛ

2+ j−1
ℓ+1ϕρ,m∂

mw
∥

∥

∥

0
+
∥

∥

∥
k̃

1
2 ∂tΛ

2+ j−1
ℓ+1 ϕρ,m∂

mw
∥

∥

∥

0
≤
M1

ρ4

with M1 a constant depending only on
[

k̃
]

0,B
,
[

w
]

8,B̄
and the constant C in (2.10).

Then (2.11) obviously holds for m ≤ 5 if we choose L ≥M1.
Now we can finish the proof of Proposition 2.6 by induction, for any N > 5

Claim :(2.11) is true for m = N if it is true for all 3 ≤ m ≤ N − 1.

We prove this claim again by induction on j, for 0 ≤ j ≤ ℓ+ 1.
Case of j = 0: We apply Remark 2.4 with r = 2 − 1

ℓ+1 , m = 1 and v =

ϕρ,N∂
N−1w ∈ C∞

0 (B),

‖ϕρ,N∂
Nw‖22 + ‖∂sΛ

2− 1
ℓ+1ϕρ,N∂

Nw‖20 + ‖k̃
1
2 ∂tΛ

2− 1
ℓ+1ϕρ,N∂

Nw‖20

≤ ‖ϕρ,N∂
N−1w‖22+1 + ‖∂sΛ

2− 1
ℓ+1 ∂1

(

ϕρ,N∂
N−1w

)

‖20

+ ‖k̃
1
2 ∂tΛ

2− 1
ℓ+1 ∂1

(

ϕρ,N∂
N−1w

)

‖20 + C
∥

∥

(

∂1ϕρ,N

)

∂N−1w
∥

∥

2

3− 1
ℓ+1

≤ C3

{

∥

∥Lϕρ,N∂
N−1w

∥

∥

2

3− 2
ℓ+1

+ ‖ϕρ,N∂
N−1w‖20 +

∥

∥

(

∂1ϕρ,N

)

∂N−1w
∥

∥

2

3− 1
ℓ+1

}

.

By the induction assumption, we use now Lemma 2.9, to get
∥

∥Lϕρ,N∂
N−1w

∥

∥

3− 2
ℓ+1

=
∥

∥Lϕρ,N∂
N−1w

∥

∥

2+ ℓ−1
ℓ+1

≤
C2L

N−3

ρ(ℓ+1)(N−4)

(

N − 1

ρ

)ℓ+1
[

(N − 4)!
]ℓ+1

≤
2ℓ+1C2L

N−3

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

.
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Hence the proof will be complete if we can show that (the term ‖ϕρ,N∂
N−1w‖0 is

easier to treat)

(2.15)
∥

∥

(

∂1ϕρ,N

)

∂N−1w
∥

∥

3− 1
ℓ+1

≤
C4L

N−3

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

.

Setting ρ1 = (N−1)ρ
N , then for any k ≥ 2,

ϕρ1,k = 1, on Bρ1 ,

which implies that ϕρ1,k = 1 on the Supp ϕρ,N ⊂ Bρ1 for any k ≥ 2. From (2.10),
we have

∥

∥

(

∂1ϕρ,N

)

∂N−1w
∥

∥

3− 1
ℓ+1

=
∥

∥

(

∂1ϕρ,N

)

ϕρ1,N−1∂
N−1w

∥

∥

2+ ℓ
ℓ+1

≤ C5

{

(

N

ρ

)

∥

∥ϕρ1,N−1∂
N−1w

∥

∥

2+ ℓ
ℓ+1

+

(

N

ρ

)4− 1
ℓ+1

∥

∥ϕρ1,N−1∂
N−1w

∥

∥

0

}

.

On the other hand, the induction assumption with m = N − 1, j = ℓ, 0 ≤ ρ1 ≤ 1,
yields

N

ρ
‖ϕρ1,N−1∂

N−1w‖2+ ℓ
ℓ+1

≤
N

ρ

LN−3

ρ1(ℓ+1)(N−4)

(N − 1

ρ1

)ℓ
[

(N − 4)!
]ℓ+1

≤ (2e)ℓ+1 LN−3

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

.

Setting now ρ̃1 = (N−2)ρ1

N−1 , then for any k ≥ 2,

ϕρ̃1,k = 1, on Bρ̃1 ,

which implies that ϕρ̃1,k = 1 on the Supp ϕρ1,N ⊂ Bρ̃1 for any k ≥ 2. The induction
assumption with m = N − 3, j = 0, 0 ≤ ρ̃1 ≤ 1, yields

(

N

ρ

)4− 1
ℓ+1

∥

∥ϕρ1,N−1∂
N−1w

∥

∥

0
=

(

N

ρ

)4− 1
ℓ+1

∥

∥ϕρ1,N−1∂
2ϕρ̃1,N−3∂

N−3w
∥

∥

0

≤

(

N

ρ

)4− 1
ℓ+1

∥

∥ϕρ̃1,N−3∂
N−3w

∥

∥

2

≤

(

N

ρ

)4− 1
ℓ+1 LN−5

ρ̃
(ℓ+1)(N−6)
1

[

(N − 6)!
]ℓ+1

≤ Cℓ
LN−5

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

,

where we have used the fact that

3(ℓ+ 1)− 4 +
1

ℓ+ 1
≥ 0, ∀ ℓ ≥ 0.

Therefore, we get (2.15) with C4 = C5((2e)
ℓ+1 + 2Cℓ, and finally for all 0 < ρ < 1,

∥

∥ϕρ,N∂
Nw

∥

∥

2
+
∥

∥

∥
∂sΛ

2− 1
ℓ+1ϕρ,N∂

Nw
∥

∥

∥

0
+
∥

∥

∥
k̃

1
2 ∂tΛ

2− 1
ℓ+1ϕρ,N∂

Nw
∥

∥

∥

0

≤
LN−2

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

,

(2.16)

if we choose

L ≥ 2C
1/2
3

(

2ℓ+1C2 + C4

)

.
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We prove now that (2.11) is true for m = N and j = j0 + 1 if it is

true for m = N and 0 ≤ j ≤ j0. We apply (2.4) with r = 2 + j0
ℓ+1 and

v = ϕρ,N∂
Nw ∈ C∞

0 (B),

‖ϕρ,N∂
Nw‖2

2+
j0+1
ℓ+1

+ ‖∂sΛ
2+

j0
ℓ+1ϕρ,N∂

Nw‖20 + ‖k̃
1
2 ∂tΛ

2+
j0
ℓ+1ϕρ,N∂

Nw‖20

≤ C3

{

∥

∥Lϕρ,N∂
Nw

∥

∥

2

2+
j0−1
ℓ+1

+ ‖ϕρ,N∂
Nw‖20

}

.

Firstly,

‖ϕρ,N∂
Nw‖20 ≤ ‖ϕρ1,N−2∂

N−2w‖2 ≤
LN−4

ρ1(ℓ+1)(N−5)

(

(N − 5)!
)ℓ+1

≤ e2(ℓ+1) LN−4

ρ(ℓ+1)(N−5)

(

(N − 5)!
)ℓ+1

.

Now for the term ‖Lϕρ,N∂
Nw‖

2+
j0−1

ℓ+1
, we are exactly in the hypothesis of Lemma

2.8, (2.13) implies that

‖ϕρ,N∂
Nw‖

2+
j0+1
ℓ+1

+ ‖∂sΛ
2+

j0
ℓ+1ϕρ,N∂

Nw‖0 + ‖k̃
1
2 ∂tΛ

2+
j0
ℓ+1ϕρ,N∂

Nw‖0

≤ C
1/2
3

(C1 + eℓ+1)LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
(

(N − 3)!
)ℓ+1

.

Finally, if we choose

L ≥ max
{

M1, 2C
1/2
3

(

2ℓ+1C2 + C4

)

, C
1/2
3 (C1 + eℓ+1)

}

,

we get the validity of (2.11) for j = j0 + 1, and hence for all 0 ≤ j ≤ ℓ + 1. Thus
the proof of Proposition 2.6 is completed. �

3. Gevrey regularity of solutions for Monge-Ampère equations

In this section we prove Theorem 1.1. In the following discussions, we always
assume u(x, y) is a smooth solution of the Monge-Ampère equation (1.2) and uyy >
0 in Ω, a neighborhood of the origin.

We first introduce the classic partial Legendre transformation (e.g. [16]) to
translate the Gevrey regularity problem to the divergence form quasi-linear equa-
tion (2.1). Define the transformation T : (x, y) −→ (s, t) by setting

(3.1)

{

s = x,

t = uy.

It is easy to verify that

JT =

(

sx sy
tx ty

)

=

(

1 0
uxy uyy

)

,

and

J−1
T =

(

xs xt
ys yt

)

=

(

1 0
−

uxy

uyy

1
uyy

)

.

Thus if u ∈ C∞ and uyy > 0 in Ω, then the transformations

T : Ω −→ T (Ω), T−1 : T (Ω) −→ Ω
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are C∞ diffeomorphism. In [9], P. Guan proved that if u(x, y) ∈ C1,1(Ω) is a weak
solution of the Monge-Ampère equation (1.2) and uyy > 0 in Ω, then y(s, t) ∈
C0,1 (T (Ω)) is a weak solution of equation

(3.2) ∂ssy + ∂t

{

k(s, y(s, t))∂ty
}

= 0.

He proved also the smoothness of y(s, t) ∈ C∞(T (Ω)) and u ∈ C∞(Ω).
We prove now the following theorem which, together with Theorem 2.1, implies

immediately Theorem 1.1.

Theorem 3.1. Let y(s, t) ∈ Gℓ+1 (T (Ω)) be a solution of equation (3.2). Assume
that k(x, y) ∈ Gℓ+1(Ω). Then u(x, y) ∈ Gℓ+1 (Ω) .

We begin with the following results, which can be found in Rodino’s book [14]
(page 21).

Lemma 3.2. If g(z), h(z) ∈ Gℓ+1 (U) , then (g h)(z) ∈ Gℓ+1 (U) , and moreover
1

g(z) ∈ Gℓ+1 (U) if g(z) 6= 0. If H ∈ Gℓ+1(Ω) and the mapping v : U −→ Ω is

Gℓ+1(U), then H(v(·)) ∈ Gℓ+1(U).

We study now the stability of Gevrey regularity by non linear composition. The
following result is due to Friedman [7].

Lemma 3.3 (Lemma 1 of [7]). Let Mj be a sequence of positive numbers satisfying
the following monotonicity condition:

(3.3)
j!

i!(j − i)!
MiMj−i ≤ C∗Mj , (i = 1, 2, · · · , j; j = 1, 2, · · · )

with C∗ a constant. Let F (z, p) be a smooth function defined on Ω×(−b, b) ⊂ R
2×R

satisfying that, for some constant C,

max
(z,p)∈Ω×(−b,b)

∣

∣∂γz ∂
i
pF (z, p)

∣

∣ ≤ C|γ|+iM|γ|−2Mi−2,

for all γ ∈ Z
2
+, i ∈ Z+ with |γ| , i ≥ 2. Then there exist two constants C̃, C∗,

depending only on the above constants C∗ and C, such that for every H0, H1 > 1
with H1 ≥ C̃H0, if the smooth function ξ(z) satisfies that max

z∈Ω
|ξ(z)| < b and that

max
z∈B

∣

∣∂βz ξ(z)
∣

∣ ≤ H0, for β with |β| ≤ 1,(3.4)

max
z∈B

∣

∣∂βz ξ(z)
∣

∣ ≤ H0H
|β|−2
1 M|β|−2, for all β ∈ Z

2
+ with 2 ≤ |β| ≤ N,(3.5)

where N ≥ 2 is a given integer, then for all α ∈ Z
2
+ with |α| = N,

max
z∈B

|∂αz (F (z, ξ(z)))| ≤ C∗H0H
N−2
1 MN−2.

Remark 3.4. Under the same assumptions as the above lemma, if we replace (3.4)
and (3.5), respectively, by

max
z∈Ω

∣

∣∂mzi ξ(z)
∣

∣ ≤ H0, for m ≤ 1,

max
z∈Ω

∣

∣∂mzi ξ(z)
∣

∣ ≤ H0H
m−2
1 Mm−2, for all m ∈ Z+ with 2 ≤ m ≤ N,

with 1 ≤ i ≤ 2 some fixed integer and N ≥ 2 a given integer, then

max
z∈Ω

∣

∣∂Nzi (F (z, ξ(z)))
∣

∣ ≤ C∗H0H
N−2
1 MN−2.
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We prepare firstly two propositions. In the follows, let K be any fixed compact
subset of Ω.

Proposition 3.5. Assume that y(s, t) ∈ Gℓ+1(T (Ω)) and k(x, y) ∈ Gℓ+1(Ω), then
the functions Fm(s, t) ∈ Gℓ+1 (T (Ω)) ,m = 1, 2, 3, where

F1(s, t) = (uxy ◦ T
−1)(s, t) = uxy(x(s, t), y(s, t)),

F2(s, t) = (uxx ◦ T−1)(s, t) = uxx(x(s, t), y(s, t)),

and

F3(s, t) = (uyy ◦ T
−1)(s, t) = uyy(x(s, t), y(s, t)).

Proof. Indeed, since y(s, t) ∈ Gℓ+1 (T (Ω)) , then we conclude ys(s, t), yt(s.t) ∈
Gℓ+1 (T (Ω)) ; that is

−
uxy(x(s, t), y(s, t))

uyy(x(s, t), y(s, t))
,

1

uyy(x(s, t), y(s, t))
∈ Gℓ+1 (T (Ω)) .

Lemma 3.2 yields that F3(s, t), F1(s, t) ∈ Gℓ+1 (T (Ω)). Moreover, the fact that
k(x, y) ∈ Gℓ+1(Ω) and x(s, t) = s, y(s, t) ∈ Gℓ+1 (T (Ω)) , implies k(s, y(s, t)) ∈
Gℓ+1 (T (Ω)), we have, in view of the equation (1.2),

F2(s, t) = uxx(x(s, t), y(s, t)) ∈ Gℓ+1 (T (Ω)) .

This gives the conclusion. �

As a consequence of the above proposition, there exists a constantM∗, depending
only on the Gevrey constants of k(x, y) and y(s, t), such that for all i, j ∈ Z+ with
i, j ≥ 2,

(3.6) max
(s,t)∈T (K)

∣

∣

∣
∂is∂

j
tFm(s, t)

∣

∣

∣
≤M i+j

∗

[

(i− 2)!
]ℓ+1[

(j − 2)!
]ℓ+1

, m = 1, 2, 3.

Proposition 3.6. Assume that y(s, t) ∈ Gℓ+1(T (Ω)) and k(x, y) ∈ Gℓ+1(Ω). There
exists a constant M, depending only on the Gevrey constants of the functions y(s, t)
and k(x, y), such that for all i ≥ 2,

(3.7) max
(x,y)∈K

∣

∣∂ixuy(x, y)
∣

∣+ max
(x,y)∈K

∣

∣∂ixux(x, y)
∣

∣ ≤ 2
[

u
]

3,K
Mi−2

[

(i− 2)!
]ℓ+1

.

Proof. We first use induction on integer i to show that

(3.8) max
(x,y)∈K

∣

∣∂ixuy(x, y)
∣

∣ ≤
[

u
]

3,K
Mi−2

[

(i− 2)!
]ℓ+1

, i ≥ 2.

Obviously, (3.8) is valid for i = 2. Now assuming

(3.9) max
(x,y)∈K

∣

∣∂ixuy(x, y)
∣

∣ ≤
[

u
]

3,K
Mi−2((i − 2)!)ℓ+1, for all 2 ≤ i ≤ N

with N ≥ 2 an integer, we need to show that
(3.10)

max
(x,y)∈K

∣

∣∂N+1
x uy(x, y)

∣

∣ = max
(x,y)∈K

∣

∣∂Nx uxy(x, y)
∣

∣ ≤
[

u
]

3,K
MN−1

[

(N − 1)!
]ℓ+1

.

Observe that F1 = uxy ◦ T−1 which implies

uxy(x, y) = (F1 ◦ T )(x, y) = F1(x, uy(x, y)).
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Thus the desired estimate (3.10) will follow if we can prove

(3.11) max
(x,y)∈K

∣

∣∂Nx
[

F1 (x, uy(x, y))
]∣

∣ ≤
[

u
]

3,K
MN−1

[

(N − 1)!
]ℓ+1

.

In the following we shall apply Remark 3.4 to deduce the above estimate.
Define

Mj = (j!)ℓ+1, H0 =
[

u
]

3,K
, H1 = M.

Clearly {Mj} satisfies the monotonicity condition (3.3). Furthermore, (3.9) and
(3.6) yield

max
(x,y)∈K

∣

∣∂ixuy(x, y)
∣

∣ ≤ H0, for i ≤ 1,

max
(x,y)∈K

∣

∣∂ixuy(x, y)
∣

∣ ≤ H0H
i−2
1 Mi−2, for all i with 2 ≤ i ≤ N,

and

max
(s,t)∈T (K)

∣

∣

∣
∂is∂

j
tF1(s, t)

∣

∣

∣
≤M i+j

∗ Mi−2Mj−2, for all i, j ∈ N with i, j ≥ 2.

Then it follows from the above three inequalities that the conditions in Remark
3.4 are satisfied, with zi = x, ξ(z) = uy(x, y) and F (z, ξ(z)) = F1(x, uy(x, y)). This
yields

max
(x,y)∈K

∣

∣∂Nx
[

F1 (x, uy(x, y))
]∣

∣ ≤ C∗H0H
N−2
1 MN−2

= C∗

[

u
]

3,K
MN−2

[

(N − 2)!
]ℓ+1

with C∗ a constant depending only on M∗ and hence on the Gevrey constants of
y(s, t) and k(x, y). Then estimate (3.11) follows if we choose M large enough such
that M ≥ C∗. This completes the proof of (3.8).

Now it remains to prove

max
(x,y)∈K

∣

∣∂ixux(x, y)
∣

∣ ≤
[

u
]

3,K
Mi−2

[

(i− 2)!
]ℓ+1

, i ≥ 2.

This can be deduce similarly as above. In view of (3.8) and (3.6), we can use Remark
3.4, with z = (x, y), zi = x, ξ(z) = uy(x, y) and F (z, ξ(z)) = F2(x, uy(x, y)), to
obtain the above estimate. �

End of the proof of Theorem 3.1: Now we can show u ∈ Gℓ+1(Ω), i.e.,

(3.12) max
(x,y)∈K

|∂αu(x, y)| ≤ 2[u]3,KMm−3
[

(m− 3)!
]ℓ+1

, ∀ |α| = m ≥ 3,

where M is the constant given in (3.7).
We use induction on m. The validity of (3.12) for m = 3 is obvious. Assuming,

for some positive integer m0 ≥ 4,

(3.13) max
(x,y)∈K

|∂γu(x, y)| ≤ 2[u]3,KMm−3
[

(m−3)!
]ℓ+1

, ∀ 3 ≤ |γ| = m ≤ m0−1.

we need to show the validity of (3.12) for m = m0. In the following discussions, let
α be any fixed multi-index with |α| = m0. In view of (3.7), we only need to consider
the case when ∂α = ∂α̃∂2y with α̃ a multi-index satisfying |α̃| = m0 − 2. Observe

F3 = uyy ◦ T−1 which implies

uyy(x, y) = (F3 ◦ T ) (x, y) = F3(x, uy(x, y)).



GEVREY REGULARITY 13

Hence

∂αu = ∂α̃uyy = ∂α̃
[

F3(x, uy(x, y))
]

, |α̃| = m0 − 2.

So the validity of (3.12) form = m0 will follow if we show that, for any |α̃| = m0−2,

(3.14) max
(x,y)∈K

∣

∣∂α̃
[

F3(x, uy(x, y))
]
∣

∣ ≤ 2[u]3,KMm0−3
[

(m0 − 3)!
]ℓ+1

.

To obtain the above estimate, we take Mj , H0, H1 as in the proof of Proposition
3.6; that is

Mj = (j!)ℓ+1, H0 =
[

u
]

3,K
, H1 = M.

Then from (3.6) and the induction assumption (3.13), one has

max
(x,y)∈K

|∂γuy(x, y)| ≤ 2H0, for |γ| = m ≤ 1,

max
(x,y)∈K

|∂γuy(x, y)| ≤ 2H0H
m−2
1 Mm−2, for all 2 ≤ |γ| = m ≤ m0 − 2,

and

max
(s,t)∈T (K)

∣

∣

∣
∂is∂

j
tF3(s, t)

∣

∣

∣
≤M i+j

∗ Mi−2Mj−2, for all i, j ∈ N with i, j ≥ 2.

Consequently, Lemma 3.3, with z = (x, y), ξ(z) = uy(x, y), N = m0 − 2 and
F (z, ξ(z)) = F3(x, uy(x, y)), yields for any |α̃| = m0 − 2

max
(x,y)∈K

∣

∣∂α̃
[

F3 (x, uy(x, y))
]∣

∣ ≤ 2C̃H0H
m0−4
1 Mm0−4

= 2C̃
[

u
]

3,K
Mm0−4

[

(m0 − 4)!
]ℓ+1

,

where C̃ is a constant depending only the Gevrey constants of k(x, y) and y(s, t).

Thus (3.14) follows if we choose M large enough such that M ≥ 2C̃. This gives
validity of (3.12) for m = m0 and hence for all m ≥ 3, completing the proof of
Theorem 3.1.

4. Technical lemmas

In this section, we prove the technical Lemmas( Lemma 2.8 and Lemma 2.9)
used in the section 2. Firstly as an analogue of Lemma 3.3, we have

Lemma 4.1. Let N > 4 and 0 < ρ < 1 be given. Let {Mj} be a positive sequence
satisfying the monotonicity condition (3.3) and that

Mj ≥ ρ−j , j ≥ 0.

Suppose F (s, t, p), g(s, t) are two smooth functions satisfying the following two con-
ditions:

1) There exists a constant C such that for any j, l ≥ 2,
∥

∥∂
γ
s,t∂

l
pF

∥

∥

C4(B̄×[−b,b])
≤ Cj+lMj−2Ml−2, ∀ |γ| = j,

where b =
[

g
]

0,B̄
and ‖·‖C4(B̄×[−b,b]) is the standard Hörder norm.

2) There exist two constants H0, H1 ≥ 1, satisfying H1 ≥ C̃H0 with C̃ a constant
depending only on the above constant C, such that

[

g
]

6,B̄
≤ H0 and for any 0 <

ρ∗ < 1 with ρ∗ ≈ ρ and any j, 2 ≤ j ≤ N,

‖ϕρ∗,j∂
jg‖ν ≤ H0H

j−2
1 Mj−2,



14 H. CHEN, W.-X. LI, AND C.-J. XU

where 1 < ν < 4 is a real number.
Then there exists a constant C∗ depending only on C, such that

∥

∥ϕρ,N∂
N
(

F
(

·, g(·)
)) ∥

∥

ν
≤ C∗H0H

N−2
1 MN−2.

Proof. The proof is similar to Lemma 5.3 of [3], so we give only main idea of the
proof here. In the proof, we use Cn to denote constants which depend only on n and
may be different in different contexts. By Faà di Bruno’ formula, ϕρ,ND

α[F (·, g(·))]
is the linear combination of terms of the form

ϕρ,N

(

∂
β
s,t∂

l
pF

)

(·, g(·)) ·
l

∏

j=1

∂γjg,(4.1)

where |β| + l ≤ |α| and γ1 + γ2 + · · · + γl = α − β, and if γi = 0, Dγig doesn’t
appear in (4.1). Since Hν(R2) for ν > 1 is an algebra, then we have

‖ϕρ,N

(

∂
β
s,t∂

l
pF

)

(·, g(·)) ·
l

∏

j=1

∂γjg‖ν

≤
∥

∥ψ
(

∂
β
s,t∂

l
pF

)

(·, g(·))
∥

∥

ν
·

l
∏

j=1

∥

∥ϕρ,|γj |∂
γjg

∥

∥

ν
,

where ψ ∈ C∞
0 (R2) and ψ = 1 on supp ϕρ,N . The above inequality allows us

to adopt the approach used by Friedman to prove Lemma 3.3, to get the desired
estimate. Instead of the L∞ norm in Lemma 3.3, we use Hν-norm here. But there
is no additional difficulty since Hν(R2) is an algebra. We refer to [7] for more
detail. �

Applying the above result to the functions k̃(s, t)
def
= k(s, w(s, t)) and k̃w(s, t)

def
=

ky(s, w(s, t)), we have

Corollary 4.2. Let N0 > 4 and j0 ∈ [0, ℓ + 1] be any given integers. Suppose
k(x, y) ∈ Gℓ+1(R2) and w(s, t) ∈ C∞(B̄) satisfying that for all 5 ≤ m ≤ N0 and
all ρ with 0 < ρ < 1,

(4.2) ‖ϕρ,m∂
mw‖

2+
j0−1
ℓ+1

≤
c∗L

m−2

ρ(ℓ+1)(m−3)

(

m

ρ

)j0
[

(m− 3)!
]ℓ+1

,

where L, c∗ are two constants with c∗ independent of L. Then there exists a constant
c̃, depending only on the Gevrey constants of k, w, and the above constant c∗, such
that for all 5 ≤ m ≤ N0 and all ρ with 0 < ρ < 1,

∥

∥

∥
ϕρ,m∂

mk̃
∥

∥

∥

2+
j0−1
ℓ+1

+
∥

∥

∥
ϕρ,m∂

mk̃w

∥

∥

∥

2+
j0−1
ℓ+1

(4.3)

≤
c̃Lm−2

ρ(ℓ+1)(m−3)

(

m

ρ

)j0
[

(m− 3)!
]ℓ+1

.

Proof. We set H0 = c∗

(

[

w
]

8,B̄
+ 1

)

, H1 = L and

M0 =
1

ρ3
, Mj =

[

(j − 1)!
]ℓ+1

ρ(ℓ+1)(j−1)

(

j + 2

ρ

)j0

, j ≥ 1.
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Then by (4.2), we have

‖ϕρ,m∂
mw‖

2+
j0−1

ℓ+1
≤ H0H

m−2
1 Mm−2, 2 ≤ m ≤ N0.

On the other hand, the fact that k ∈ Gℓ+1(R2), ky ∈ Gℓ+1(R2) and Mj ≥
[

(j −

1)!
]ℓ+1

implies
∥

∥∂ix∂
j
yk(x, y)

∥

∥

C4(Ω)
+
∥

∥∂ix∂
j
yky(x, y)

∥

∥

C4(Ω)
≤ Ci+jMi−2Mj−2, ∀ i, j ≥ 2,

where C is the Gevrey constant of k. Then by Lemma 4.1, the desired inequality
(4.3) will follow if we show that {Mj} satisfies the monotonicity condition (3.3).
For every 0 < i < j, we compute

(

j

i

)

MiMj−i =
j!

i!(j − i)!

(

(i− 1)!
)ℓ+1

ρ(ℓ+1)(i−1)

(

i+ 2

ρ

)j0

(

(j − i− 1)!
)ℓ+1

ρ(ℓ+1)(j−i−1)

(

j − i+ 2

ρ

)j0

=
1

ρ(ℓ+1)(j−2)

j!
(

(i− 1)!
)ℓ(

(j − i− 1)!
)ℓ

i(j − i)

(

i+ 2

ρ

)j0 (j − i+ 2

ρ

)j0

≤
9j0

ρ(ℓ+1)(j−2)

j!
(

(j − 2)!
)ℓ

i(j − i)

(

i

ρ

)j0 (j − i

ρ

)j0

≤

{

9ℓ+1ρ(ℓ+1)−j0
j2ij0−1(j − i)j0−1

(j − 1)ℓ+1(j + 2)j0

}

(

(j − 1)!
)ℓ+1

ρ(ℓ+1)(j−1)

(

j + 2

ρ

)j0

≤

{

9ℓ+1ρ(ℓ+1)−j0
j2j2(j0−1)

(j − 1)ℓ+1(j + 2)j0

}

(

(j − 1)!
)ℓ+1

ρ(ℓ+1)(j−1)

(

j + 2

ρ

)j0

≤ CℓMj,

where Cℓ is a constant depending only on ℓ. In the last inequality we used the fact
that ℓ + 1− j0 ≥ 0. This completes the proof of Corollary 4.2. �

We prove now the technical Lemmas of section 2. We present a complete proof
of Lemma 2.8, but omit the proof of Lemma 2.9 since it is similar.

Proof of Lemma 2.8. We recall the hypothesis of Lemma 2.8; that is, one has
(1) k ∈ Gℓ+1(R2) and Lw = 0;
(2) for some N > 5, (2.11) is satisfied for any 5 ≤ m ≤ N − 1;
(3) for some 0 ≤ j0 ≤ ℓ,

∥

∥ϕρ,N∂
Nw

∥

∥

2+
j0
ℓ+1

+
∥

∥

∥
∂sΛ

2+
j0−1
ℓ+1 ϕρ,N∂

Nw
∥

∥

∥

0
+
∥

∥

∥
k̃

1
2 ∂tΛ

2+
j0−1
ℓ+1 ϕρ,N∂

Nw
∥

∥

∥

0

≤
C0L

N−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0 (

(N − 3)!
)ℓ+1

.

(4.4)

We want to prove

(4.5)
∥

∥Lϕρ,N∂
Nw

∥

∥

2+
j0−1
ℓ+1

≤
C1L

N−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
(

(N − 3)!
)ℓ+1

for all 0 < ρ < 1.
It follows from Lw = 0 that

Lϕρ,N∂
αw =

[

L, ϕρ,N

]

∂αw + ϕρ,N

[

L, ∂α
]

w, |α| = N.
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Hence the desired estimate (4.5) will follow if we can prove that

∥

∥

[

L, ϕρ,N

]

∂Nw
∥

∥

2+
j0−1
ℓ+1

≤
C1L

N−3

2ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

,(4.6)

and

∑

|α|=N

∥

∥ϕρ,N

[

L, ∂α
]

w
∥

∥

2+
j0−1
ℓ+1

≤
C1L

N−3

2ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.(4.7)

We shall proceed to show the above two estimates by the following steps. As a
convention, in the sequel we use Cj to denote different constants independent of
L,N.

Step 1. We claim

(4.8) ‖ϕρ,m∂
mw‖0 ≤

C1LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)−2(ℓ+1)
[

(N − 3)!
]ℓ+1

, ∀ 3 ≤ m ≤ N.

To confirm this, we set ρ̃ = (m−1)ρ
m . Then

‖ϕρ,m∂
mw‖0 =

∥

∥ϕρ,m∂
2ϕρ̃,m−2∂

m−2u
∥

∥

0
≤

∥

∥ϕρ̃,m−2∂
m−2u

∥

∥

2
,

we can use (2.11) with j = 0 to compute

∥

∥ϕρ̃,m−2∂
m−2u

∥

∥

2
≤

L(m−2)−2

ρ̃(ℓ+1)((m−2)−3)

[

((m− 2)− 3)!
]ℓ+1

≤
C0LN−4

ρ(ℓ+1)(m−5)

[

(m− 5)!
]ℓ+1

≤

(

N

ρ

)−2(ℓ+1)
C0LN−3

ρ(ℓ+1)(N−3)

[

(N − 3)!
]ℓ+1

,

which implies (4.8) at once.

Step 2. In this step, we shall prove the following two inequalities:

(4.9)
∥

∥

∥
(∂tϕρ,N ) k̃∂t∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤
C2LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

and

(4.10)
∥

∥(∂sϕρ,N ) ∂s∂
Nw

∥

∥

2+
j0−1

ℓ+1

≤
C3LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.

To prove the first inequality (4.9), we use (2.10) to get
∥

∥

∥
(∂tϕρ,N )k̃∂t∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

=
∥

∥

∥
(∂tϕρ,N )k̃∂tϕρ1,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤ C4

{

(

N

ρ

)

∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

+

(

N

ρ

)3+
j0−1
ℓ+1 ∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

0

}

.
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Furthermore, the interpolation inequality (2.3) gives

(

N

ρ

)3+
j0−1
ℓ+1 ∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

0

≤

(

N

ρ

)

∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

+

(

N

ρ

)4+
j0−1
ℓ+1 ∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

−1

≤

(

N

ρ

)

∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

+ C5

(

N

ρ

)4+
j0−1
ℓ+1

∥

∥ϕρ1,N∂
Nw

∥

∥

0

≤

(

N

ρ

)

∥

∥

∥
k̃∂tϕρ1,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

+
C6LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

,

where we have used (4.8) and Λ−1k̃∂t is bounded in L2. On the other hand, note
that
∥

∥

∥
k̃∂tϕρ̃,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤
∥

∥

∥
k̃∂tΛ

2+
j0−1
ℓ+1 ϕρ̃,N∂

Nw
∥

∥

∥

0
+
∥

∥

∥

[

k̃, Λ2+
j0−1
ℓ+1

]

∂tϕρ̃,N∂
Nw

∥

∥

∥

0

≤ C7
{∥

∥

∥
k̃

1
2 ∂tΛ

2+
j0−1

ℓ+1 ϕρ̃,N∂
Nw

∥

∥

∥

0
+
∥

∥ϕρ̃,N∂
Nw

∥

∥

2+
j0
ℓ+1

}

,

which together with (4.4) yields:

∥

∥

∥
k̃∂tϕρ̃,N∂

Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤
C8LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0
[

(N − 3)!
]ℓ+1

,

and hence we obtain the desired inequality (4.9), combining the above inequalities.
Similar arguments can be applied to prove (4.10). This completes the proof.

Step 3. We now claim that

∥

∥(∂ssϕρ,N ) ∂Nw
∥

∥

2+
j0−1

ℓ+1

+
∥

∥

∥
(∂ttϕρ,N ) k̃ ∂Nw

∥

∥

∥

2+
j0−1
ℓ+1

≤
C9LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)
]ℓ+1

.

(4.11)

To confirm this, we use (2.10) to get

∥

∥(∂ssϕρ,N ) ∂Nw
∥

∥

2+
j0−1
ℓ+1

+
∥

∥

∥
(∂ttϕρ,N ) k̃ ∂Nw

∥

∥

∥

2+
j0−1
ℓ+1

≤ C10

{

(

N

ρ

)2
∥

∥ϕρ1,N∂
Nw

∥

∥

2+
j0−1

ℓ+1

+

(

N

ρ

)4+
j0−1

ℓ+1
∥

∥ϕρ1,N∂
Nw

∥

∥

0

}

.

The interpolation inequality (2.3) yields

(

N

ρ

)2
∥

∥ϕρ1,N∂
Nw

∥

∥

2+
j0−1
ℓ+1

≤

(

N

ρ

)

∥

∥ϕρ1,N∂
Nw

∥

∥

2+
j0
ℓ+1

+

(

N

ρ

)2(ℓ+1)+j0+1
∥

∥ϕρ1,N∂
Nw

∥

∥

0
.

The above two inequalities, together with (4.4) and (4.8), give the desired estimate
(4.11) at once.
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Step 4. Now we are ready to prove (4.6), the estimate on the commutator of L
with the cut-off function ϕρ,N . Firstly, one has

[

L, ϕρ,N

]

=2 (∂sϕρ,N ) ∂s + (∂ssϕρ,N ) + 2 (∂tϕρ,N ) k̃∂t

+ (∂ttϕρ,N ) k̃ + (∂tϕρ,N )
(

∂tk̃
)

.

Observe that
∥

∥

∥
(∂tϕρ,N )

(

∂tk̃
)

∂Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤C11
{

(

N

ρ

)

∥

∥ϕρ1,N∂
Nw

∥

∥

2+
j0−1
ℓ+1

+

(

N

ρ

)3+
j0−1
ℓ+1

∥

∥ϕρ1,N∂
Nw

∥

∥

0

}

,

hence from (4.4) and (4.8), we have

∥

∥

∥
(∂tϕρ,N )

(

∂tk̃
)

∂Nw
∥

∥

∥

2+
j0−1
ℓ+1

≤
C12LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)
]ℓ+1

.

Together with (4.9), (4.10) and (4.11), this yields the desired estimate (4.6) at once.

Step 5. In this step we shall deal with the non linear terms, and prove

(4.12)
∥

∥

∥
ϕρ,N∂t∂

N k̃
∥

∥

∥

2+
j0−1
ℓ+1

≤
C13LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.

Recall
∥

∥

∥
ϕρ,N∂t∂

N k̃
∥

∥

∥

2+
j0−1

ℓ+1

=
∑

|α|=N

∥

∥

∥
ϕρ,N∂t∂

αk̃
∥

∥

∥

2+
j0−1

ℓ+1

. Leibniz’s formula

gives, for any α with |α| = N,

ϕρ,N∂t∂
αk̃ =

∑

1≤|β|≤|α|

(

α

β

)

ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

+ ϕρ,N k̃w∂t∂
αw

=
∑

5≤|β|≤|α|−4

(

α

β

)

ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

+ ϕρ,N k̃w∂t∂
αw +Rα

with k̃w(s, t) = kw(s, w(s, t))) and

Rα =
∑

1≤|β|≤4

(

α

β

)

ϕρ,N

(

∂βk̃w
) (

∂t∂
α−βw

)

+
∑

|α|−3≤|β|≤|α|

(

α

β

)

ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

.

Since Hκ(R2), κ > 1 is an algebra, we have

∑

|α|=N

∑

5≤|β|≤|α|−4

(

α

β

)

∥

∥

∥
ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

∥

∥

∥

2+
j0−1
ℓ+1

≤
∑

|α|=N

∑

5≤|β|≤|α|−4

(

α

β

)

∥

∥

∥
ϕρ1,|β|∂

βk̃w

∥

∥

∥

2+
j0−1
ℓ+1

∥

∥ϕρ,N∂t∂
α−βw

∥

∥

2+
j0−1
ℓ+1

≤
N−4
∑

i=5

N !

i!(N − i)!

∥

∥

∥
ϕρ1,i∂

ik̃w

∥

∥

∥

2+
j0−1
ℓ+1

∥

∥ϕρ,N∂
N−i+1w

∥

∥

2+
j0−1

ℓ+1

.
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We can use (4.3) in Corollary 4.2, to get for each i with 5 ≤ i ≤ m

‖ϕρ1,i∂
ik̃w‖2+ j0−1

ℓ+1
≤

C14L
i−2

ρ1(ℓ+1)(i−3)

(

i

ρ1

)j0
[

(i− 3)!
]ℓ+1

≤
C15Li−2

ρ(ℓ+1)(i−3)

(

i

ρ

)j0
[

(i− 3)!
]ℓ+1

.

Observing N−i+1 ≤ N for each i ≥ 1, we use (4.8) and the induction assumptions
(2.11) and (4.4), to compute

∥

∥ϕρ,N∂
N−i+1w

∥

∥

2+
j0−1
ℓ+1

≤ C
{

∥

∥ϕρ1,N−i+1∂
N−i+1w

∥

∥

2+
j0−1
ℓ+1

+

(

N

ρ

)2+
j0−1
ℓ+1

∥

∥ϕρ1,N−i+1∂
N−i+1w

∥

∥

0

}

≤
∥

∥ϕρ1,N−i+1∂
N−i+1w

∥

∥

2+
j0−1
ℓ+1

+
C16LN−i−1

ρ(ℓ+1)(N−i−2)

(

N − i+ 1

ρ

)j0
[

(N − i− 2)!
]ℓ+1

≤
∥

∥ϕρ1,N−i+1∂
N−i+1w

∥

∥

2+
j0
ℓ+1

+
C16LN−i−1

ρ(ℓ+1)(N−i−2)

(

N − i+ 1

ρ

)j0
[

(N − i − 2)!
]ℓ+1

≤
C17LN−i−1

ρ(ℓ+1)(N−i−2)

(

N − i+ 1

ρ

)j0
[

(N − i− 2)!
]ℓ+1

.

Then

∑

|α|=N

∑

5≤|β|≤|α|−4

(

α

β

)

‖ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

‖
2+

j0−1
ℓ+1

≤
∑

5≤i≤N−4

N !

i! (N − i)!

C15Li−2

ρ(ℓ+1)(i−3)

(

i

ρ

)j0
[

(i− 3)!
]ℓ+1

×
C16LN−i−1

ρ(ℓ+1)(N−i−2)

(

N − i+ 1

ρ

)j0
[

(N − i− 2)!
]ℓ+1

≤
C18LN−3

ρ(ℓ+1)(N−5)

(

N

ρ

)2j0
∑

5≤i≤N−3

N !

i3 (N − i)2
[

(i − 3)!
]ℓ[

(N − i− 2)!
]ℓ

≤
C18LN−3

ρ(ℓ+1)(N−4)

(

N

ρ

)j0+1
∑

5≤i≤N−4

(N − 5)!N5+(j0−1)

i3 (N − i)
2

[

(N − 5)!
]ℓ

≤
C19LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1 ∑

5≤i≤N−4

N4+j0+1

N2(ℓ+1)i3 (N − i)
2

≤
C19LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1 ∑

5≤i≤N−4

N2

i3 (N − i)
2 .

Here the last inequality holds since 4+ j0 − 2(ℓ+1) ≤ 2. Moreover, observing that

the series
∑

5≤i≤N−4

N2

i3(N−i)2 is dominated from above by a constant independent of
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N , then we get

∑

|α|=N

∑

5≤|β|≤|α|−4

(

α

β

)

‖ϕρ,N

(

∂βk̃w
) (

∂t∂
α−βw

)

‖
2+

j0−1
ℓ+1

≤
C20L

N−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.

It’s a straightforward verification to prove that

∑

|α|=N

‖Rα‖2+ j0−1
ℓ+1

≤
C21LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.

So we have proved that

∑

|α|=N

∑

1≤|β|≤|α|

(

α

β

)

∥

∥

∥
ϕρ,N

(

∂β k̃w
) (

∂t∂
α−βw

)

∥

∥

∥

2+
j0−1
ℓ+1

(4.13)

≤
C22LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
]ℓ+1

.

Observe
∥

∥

∥
ϕρ,N∂t∂

N k̃
∥

∥

∥

2+
j0−1
ℓ+1

is bounded from above by

∑

|α|=N

∑

1≤|β|≤|α|

(

α

β

)

∥

∥

∥
ϕρ,N

(

∂βk̃w
) (

∂t∂
α−βw

)

∥

∥

∥

2+
j0−1
ℓ+1

+ ‖ϕρ,N k̃w∂t∂
Nw‖

2+
j0−1
ℓ+1

.

So to get the desired estimates (4.12) it remains to estimate the last term above.
Direct calculations yield that

‖ϕρ,N k̃w∂t∂
Nw‖

2+
j0−1
ℓ+1

= ‖ϕρ,N k̃w∂tϕρ1,N∂
Nw‖

2+
j0−1
ℓ+1

≤ C23
{

‖k̃wΛ
2+

j0−1
ℓ+1 ∂tϕρ1,N∂

Nw‖0 + ‖
[

k̃w, Λ
2+

j0−1
ℓ+1

]

∂tϕρ1,N∂
Nw‖0

+

(

N

ρ

)2+
j0−1

ℓ+1

‖k̃w∂tϕρ1,N∂
Nw‖0

}

≤ C24
{

‖k̃wΛ
2+

j0−1

ℓ+1 ∂tϕρ1,N∂
Nw‖0 + ‖ϕρ1,N∂

Nw‖
2+

j0−1
ℓ+1

+

(

N

ρ

)2+
j0−1
ℓ+1

‖ϕρ1,N∂
Nw‖1

}

.

≤ C25
{

‖k̃wΛ
2+

j0−1
ℓ+1 ∂tϕρ1,N∂

Nw‖0 + ‖ϕρ1,N∂
Nw‖

2+
j0−1

ℓ+1

+

(

N

ρ

)

(2ℓ+j0+1)2

(ℓ+1)(j0+ℓ)

‖ϕρ1,N∂
Nw‖0

}

.

In the last inequality we used the interpolation inequality (2.3). Combining the
fact that

|kw(s, w)| ≤ C
(

sup
w∈R

|kww(s, w)|
)

1
2 (k(s, w))

1
2 ,



GEVREY REGULARITY 21

which can be deduced from the nonnegativity of k(s, w), we obtain

‖ϕρ,N k̃w(s, w)∂t∂
Nw‖

2+
j0−1
ℓ+1

≤ C26
{

‖k̃
1
2Λ2+

j0−1
ℓ+1 ∂tϕρ1,N∂

Nw‖0 + ‖ϕρ1,N∂
Nw‖

2+
j0
ℓ+1

+

(

N

ρ

)

(2ℓ+j0+1)2

(ℓ+1)(j0+ℓ)

‖ϕρ1,N∂
Nw0

}

(4.14)

≤
C27L

|α|−3

ρ(ℓ+1)(|α|−3)

(

N

ρ

)j0+1
[

(|α| − 3)!
](ℓ+1)

,

the last inequality following from (4.4) and (4.8). The proof is thus completed.

Step 6. Now we prepare to prove the inequality (4.7), the estimate on the
commutator of L with the differential operator ∂α. Direct verification yields

[

L, ∂α
]

w = −
∑

0<β≤α

(

α

β

)

(

∂t∂
β k̃

)

(

∂t∂
α−βw

)

−
∑

0<β≤α

(

α

β

)

(

∂βk̃
)

(

∂tt∂
α−βw

)

.

So

(4.15)
∑

|α|=N

∥

∥ϕρ,N

[

L, ∂α
]

w
∥

∥

2+
j0−1
ℓ+1

≤ S1 + S2

with S1,S2 given by

S1 =
∑

|α|=N

∑

0<β≤α

(

α

β

)

∥

∥

∥
ϕρ,N

(

∂t∂
βk̃

)

(

∂t∂
α−βw

)

∥

∥

∥

2+
j0−1
ℓ+1

and

S2 =
∑

|α|=N

∑

0<β≤α

(

α

β

)

∥

∥

∥
ϕρ,N

(

∂β k̃
)

(

∂tt∂
α−βw

)

∥

∥

∥

2+
j0−1
ℓ+1

.

For S1, we have treated the term of β = α by (4.12), and the terms of 0 < β < α

can be deduced similarly to (4.13); this gives

S1 ≤
C28LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
](ℓ+1)

.

For S2, we have treated the term of |β| = 1 by (4.14), and the terms of 2 ≤ |β| ≤ |α|
can be deduced similarly to (4.13); this gives also

S2 ≤
C29LN−3

ρ(ℓ+1)(N−3)

(

N

ρ

)j0+1
[

(N − 3)!
](ℓ+1)

.

This complete the proof of Lemma 2.8. �
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