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UNIQUENESS OF SOLUTIONS
FOR THE NON-CUTOFF BOLTZMANN EQUATION
WITH SOFT POTENTIAL

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

ABSTRACT. In this paper, we consider the Cauchy problem for the non-cutoff
Boltzmann equation in the soft potential case. By using a singular change of
velocity variables before and after collision, we prove the uniqueness of weak
solutions to the Cauchy problem in the space of functions with polynomial
decay in the velocity variable.

1. INTRODUCTION

Consider the Cauchy problem for the spatially inhomogeneous Boltzmann equa-
tion,

(1'1) atf+v'vzf:Q(faf)’ f(O,x,v):fo(x,v),

where f = f(t,x,v) is the density distribution function of particles with position
x € R3 and velocity v € R? at time ¢. The right hand side of (1.1) is given by the
Boltzmann bilinear collision operator

Qot) = [ | [ Blo=veo) (g f0) = g(0.) ()} o

which is well-defined for suitable functions f and g specified later. Notice that the
collision operator Q(-, -) acts only on the velocity variable v € R3. In the following
discussion, we will use the o—representation, that is, for o € S2,

P S [Tt p_vFue Ju—u

- ’ * a,
2 2 2 2
which give the relations between pre- and post- collisional velocities. The non-

negative cross section B(z,0) depends only on |z| and the scalar product Bl

- 0.

As in our previous works, we assume that it takes the form

B(|jv — v.],co80) = ®(Jv — v.|)b(cosh), cosf=—— .5, 0<0<

7r
[v — vyl 2’

where
(1.2) d(|z]) = @,(|2]) = |27, b(cos0)6?T** — K when 6 — 0+,

for some v > —3,0 < s < 1 and K > 0. The angle 6 is the deviation angle, i.e.,
the angle between pre- and post- collisional velocities. The range of 8 is a full
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interval [0, 7], but it is customary [20] to restrict it to [0, 7/2], replacing b(cos ) by
its “symmetrized” version
[b(cos ) + b(cos(m — 0))|Lo<g<r/2,
!/

which is possible due to the invariance of the product f(v’)f(v}) in the collision
operator Q(f, f) under the change of variables o — —o.
We will use the following weighted function spaces: For p > 1 and 5 € R, we set

i1 = ([ 1w spar) ™,

gy = ([ 1™ (01 s Pae) ™,

where (v) = (1 + [v[?)"/? and (D,) = (1 — A,)Y/2.
f(t,z,v) is called a weak solution of the Cauchy problem (1.1), if

f € CRFS'(RE ) NLH([0,T]; L= (R3, Ly 4 (R))),

24+

and for m € R

and it satisfies (1.1) in the following weak sense:

[ #ttsomlt,zo)dado ~ [ ol v)n(0,0,v)dado

RS R6

(1.3) — / ar [ flr,z,0)(0r +v-Vao)n(r,z,v)dedv
0 RS

:/t dT/ Q(f, f)(r,z,v)n(r, x,v)dxdv,
0 R6

where 7 € C1(R; C§°(R®)). Here, the right hand side of the last integral can be
defined by

/}R3 Q(f,9)(v)n(v)dv = /]RG/S?B Fv)gw)(n(') — n(v))dvdv,do.

For the uniqueness of weak solutions, we consider the function space with poly-
nomial decay in the velocity variable. More precisely, for m € R, £ > 0 and T > 0,
set

P(0,T] xRE,) = {fec(0,7];:8'®E,));
s.t. f € Lo(0,T] x R3; H}”(Ri))}.

Our theorem is concerned with the uniqueness of solutions for the case when v < 0
in the cross-section that includes the soft potential and Maxwell molecule for the
inverse power law.

Theorem 1.1. For 0 < s < 1 and max{—3, —3/2—2s} <~ < 0, suppose that the
Cauchy problem (1.1) admits two weak solutions fi(t), fa(t) € Pz*([0, TIxRS ) with
0 <T < o0 and Ly > 14 having the same initial datum fo € L>=(R3; H;*(R2)). If
one solution is non-negative, then fi(t) = fa(t).

Remark 1.2. The above result holds true for the spatially homogeneous Boltzmann
equation. Moreover, according to the proof of the above theorem, the uniqueness
holds also true for the cutoff Boltzmann equation in the function space ’Pgo([O, T] x
R .)-
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Let us now review the previous results on the cutoff spatially inhomogeneous
Boltzmann equation. First of all, there is an extensive literature on the existence
of classical and weak solutions, which is verified basically in two settings, that is,
as a small perturbation of a profile or a global Maxwellian and as a large per-
turbation of vacuum. For the small perturbation problem, the uniqueness usually
follows from the construction of the solutions, cf. [12, 15, 18] and references therein.
Here, we would like to mention that the weak perturbation solution in L7 N L?
around a global Maxwellian was proved to be unique by the fixed point theorem,
[19]. However, for large perturbation solutions, even though the uniqueness of clas-
sical solution can be well justified, the uniqueness for weak solutions, such as the
renormalized solutions introduced by [11], remains unsolved as a challenging open
problem in this area. A preliminary result is found in [14, 16] that if the Cauchy
problem (1.1) has one renormalized solution and one classical solution, then they
should coincide.

On the other hand, for the Boltzmann equation without angular cutoff, the
uniqueness problem was studied in our joint works [3, 4, 7] for solutions with ex-
ponential decay in the velocity variable. Therefore, the uniqueness result proved
in this paper for solutions with polynomial decay in the velocity variable can be
viewed as one step forward in the study on the uniqueness for the weak solutions.
Finally, we would like to mention that there are also some interesting results on the
uniqueness for the spatially homogeneous Boltzmann equation, for example, for the
Maxweillian case in [17] for entropy solution; and for the mild singularity, that is,
0 < s <1, in [10] in the function space Wel’l.

Throughout this paper, we will use the following notation: f < g means that
there exists a generic positive constant C such that f < C' g.

The rest of the paper will be arranged as follows. In the next section, we will
give the strategy in the proof. Some basic properties of the weight function in (z,v)
will be given in Section 3. The two main estimates, one on the commutator of the
weight function between the collision operator and another one on the upper bound
of the collision operator with weight, will be given in the last section. These two
main estimates lead to the completion of the proof of our uniqueness Theorem 1.1.

2. OUTLINE OF THE PROOF OF THEOREM 1.1
Set F' = f1 — f2. Then it follows from (1.1), in the weak sense of (1.3), that

(2.1) { ﬁ;v;vofF = Q(f1. F) +Q(F, f2).

which is equivalent to, for any ¢,¢ € [0,7],

/ F(t,z,v)n(xz,v)dzdv —/ F(t',xz,v)n(z,v)drdy

R6 R6
t
(2.2) - / dr | F(r,z,0)(v-Vg)n(z,v)dedv
# RO
t
= [Lar [ (@t F)+ QP 1) (om0t o)dado,
v RS

where the test function 7 is chosen to be independent of t.
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Now we choose a mollification of the function F' and take it as a test function.
Let S(7) € C§°(R) satisfy 0 < S <1 and
S(r)y=1, |7|<1; S(r)=0, |7| > 2.
Then, for any N € N and any m € R, we have
Sn(D,) = S22 2|D,?):  H™R?) — H®(R?),
and for any f € H™,
lim [|Sy(Dz)f = fllam = 0.
N —o00
For £ € R, we set also p(v,r) = 1+ |v|* + |2|? and
We(v) _ (L+[o)"?
Wi(v) = (v)¥, Wee = = .
=0 Wt =0 T TR 1 P
Then for F' = f; — fo, with f; and f; given as in the statement of Theorem 1.1, we
have

n(t, z,v) = WSy (Da)* W o F € L([0,T]; H*(R3; Hp_5,(R3))).

Similarly to Lemma 4.3 of [9], by taking n(f, x,v), for a fixed ¢, as a test function
in (2.2), we can prove that

SN (D)W F € Lip([0,T); H¥(R3; L, _2,(R7))) -
Hence, for any 0 < t < T, we have
1SN (D)W, e F ()17 (rs)
t
=2 [ {0 Ve WP (@), DIV P) e

+ (Wot QUAGT), F(7) + W QUE(7), f2(7), S(Da) Wy F(7)

because

)

LZ(Rﬁ)}

(1} -V, (SN(DI)WL,@,EF(T»v SN(DI)W%EF(T))LQ(RG) =0

Taking the limit N — oo, we get that, for any 0 <t < T,
t
23)  IWarF @l =2 [ {0 Vale™ WP W F(r)s2er

+ (Wot QUA(T), F(7) + Wit QUE(T), f2(7)), Wit F(7)) g pr
The first term on the right hand side is estimated by HW%gFH%Q(RG) because
o Vale ) S
If we admit the following two estimates
(24)  (WeuQUfr, F), W oF)
and
25)  (WoirQUE, f2), WouF) |

we can obtain

t
(2.6) [We e F(£)][72ze) < B/O W e F ()17 o7

L2(RS) 5 Hfl||LOO(R§2’H§1?+3/2+E(R%))”W‘/’aZFH%Q(]RG)a

< HfQHL‘X’(]Rg,Hl?jZS(Rg))”W«P,ZF(t)”QL?(]RG) :

2(]R6)
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with
B = C(”leLDO([O,T]ng,H§;+3/2+E(R§)) + Hf2||L°°([O,T]ng,HﬁzS(Rg)))7

which concludes the proof of Theorem 1.1.
It remains to prove the two estimates (2.4) and (2.5). Set

D(f, h) = ///B(v — vy, 0) fu(h — B dvdv, do .

From here and now on, we will use the notations f = f(v), f« = f(vs), f/ =
f(@) and f. = f(v)). The estimate (2.4) is a consequence of the following two
propositions.

Proposition 2.1. Let 0 < s <1 and 0 > v > max{—3, —2s —3/2}. Then we have
1
(Q(f, h)’h)Lz(Rs) S-3 /D(f, h)dz + C||f||Lw(Rg,H§j;+€(Rg))HhH%%RG)’
where s' > 0 satisfies v +2s' > —3/2 and s’ < min{s, 3}.
Proof. Regarding x as a parameter we have

(Q(f, h), h)LZ(R%) - %(f D(f,h) + /// Bf. (W? - h2)dvdv*d0)

= %(—D(f,h)—i—R(f,h)).

It follows from the cancellation lemma [2] that

IR(f.h) < / / / (v — v fol |2 dvdos
& /// | fil Ih|2dvdu, + // v — v Y| £l [h|*dvd,
{lv—vs|>1} {lv—v.|<1}

S Il @) 1Rl 72 es)

, 1/2 |2 1/2
" / (/ o= 0, 20420, ) Lwd“*) 1l dv
{Jo—v.|<1} v — vy |18

S ||f||L§/2+E(R§,)HhH%Z(Rﬁ) 1l prer oy 1] 2 gy
where we have used Hardy inequality. O

Remark that if 0 > v > —3/2, then we can get

1
1) (@), <=5 [ DR+ Ol 22, ot e

13 /24

The next result takes care of commutator’s estimates.

Proposition 2.2. Let ¢ > 6. If max{—3,—2s—3/2} <7y <0 and 0 < s <1, then

(e QU )= QU Wi 9)), 1)

5 |‘fHLDo(R§"H§3‘;1i)+ (R%)) ||h||L2(R6) HW‘Pvé gHLZ(RG)

(2.8)

L2(RS)

1/2 1/2
([ 000) N s, o W9l

20+43/2
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Remark 2.3. If0 < s < 1/2, we have

‘((Ww Q(f 9) — Q(fs Wor 9)), h)

L2(R9)

S (||f||Lw(Rg;L2 @) [|We,egll L2 (ro)

343/24¢
+ ||f||L°°(1Rg;L§(1Rg))||W¢,3/2+59HL2(R6)) 12l 2 (Rs) -

When f; is non-negative, the combination of (2.7) and (2.8) gives (2.4) by using
the Cauchy-Schwarz inequality.

Together with the last result, the estimate (2.5) will be a consequence of the
following proposition.

Proposition 2.4. If max{—3,—2s—3/2} <y <0 and 0 < s < 1, then for { > 6,
we have

(WeuQ(f.9). 1) < Nl

L) 20, @) [WeefllL2@s) 17l L2es) -
Thus we obtain (2.6) with ¢ = 6 if
fio fo € L([0,T] x RG; HEE(RY)).
The rest of this paper is devoted to the proof of the above two Propositions 2.2
and 2.4.
3. PRELIMINARY LEMMAS

For the estimation on the commutator between the collision operator and the
weight function W, ¢, we prepare some technical lemmas.

Lemma 3.1. For ¢ > 4, we have

(3.1) [We,e(v) = Woe(v')] < sin (g)

and
[We,e(v) = Wee(v')] < C'sin(6/2) (Wf(v) +%;3§)W3(U*)

(3.2) S (0 We(v)We 3(vi) + 072 Wy o(vs)) -

Wg(v) + Wg(v*)

(v, ) S0 Woo(v)We(vs),

+ sineg(H/Q)W%g(v*))

Remark 3.2. Remark that we can improve (3.2) to

<0 We(v)Ws(vs) + 072 Wi(vy)
T TP A o 4 faf?

(3.3) (Wt (v) = Wep e (V)]

Proof. For k> 0,a > 0, set
)\k

Fk(A)Z}\+a,

A€ [1,00].

Then, for j = 1,2, we have %Fk()\) > 0if k > j. Thus if k > 2, it follows from
the mean value theorem that for A\, \’ > 1

IF(\) — Fp(\)] < (%Fk) A+ A= X)) A =N,



UNIQUENESS OF SOLUTIONS FOR BOLTZMANN EQUATION 7

because - F,(\) is positive and increasing on [1,00[ for k > 2. Setting A =
(v)2, X = (v')2, then

(V)2 — ()2 < 2lv = V||| + [v = V' |2 < |u]2 + 2Jv — V|2,
So that we have
d
A~ Al < (355 ) (2002 + o= ) @lol + o= o Plo - v
< 2Fy 1 (2((0)? + o — o) Jo— o],

because \/Xd%Fk(/\) < kFy_1/2(X). Therefore, choosing a = |z|> and k = L>2
we get

il S NSRS

WP+ o= +1aP P + o= P+ [P
o v

(WP + [v— o+ aP

maawwaauns<

(34) S lo =o' [(W) PR ((0)%) +
= By + Bs.

Note that (v)? < 2(v,)? + 2|v — v,|%. Then the increasing property of F; implies

(0)2 4 v = v, 2
Slo vl <> oo+ 2P

<Q v) + Wi_s(v)Ws(vs)
2 |U|2 + (v, 7) ’
where we have used |[v — v,|? > 1|v]? — |v,|? and

0
|v — v'|? = sin? (5) v — v.)?.

L < [v — v.|*sin’ (%)
~ 14 (1 —sin® (£) ) o2 + Lsin® (§) [v.]? + |22
< sinf2 (g) et Woor .
~ 2) o]+ o(ve, )
Hence, we get the desired estimate (3.1), (3.2) and (3.3) . O

This implies also

When the change of variables is singular (see below), we need also a high order
moment estimate.

Lemma 3.3. Forl > 6, we have
Wit @) = Wopst') = (Vo W) ) - (0 = v')

= /01(1 —T)V2W, (U/ +7(v— v'))dT(v —/)?

(3.5) §$§<9)WWW*LW4WWW@*
2 SD(/U*,-T)
S OPWo(0)Wea(ve) + 0“2 W 0(v.),

) + sin 2 <g> W .e(v.)
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and
H (VU W“M) (v) - (v” le) (U')} (v =)

5 92Wz(v)W%4(v*) + 9672W%4(1}*).

We also have

Wei(v') = W e(v) — (VU W%g) (v)- (v — v)‘

0

B0 st (§) el {0l + Wil )T

+ (Weea(0) + Wea(©)[0 = 0L o<1y |
S CWe(w)Wee(v) (Lju—v.jz1y + 10 = 0L <1y) -
Proof. As for (3.5), we use the Taylor expansion of second order
Woe(v)=Wo e (v') = (VW) (v') - (v = ')
= /1(1 — ) (V2W, o) (v + (v —v'))dr(v —v')?
= Igo(v, v').

We have with v, = v' 4+ 7(v — ')

Uﬂwﬁﬂﬁwfﬁfé (Fija(@r)?) + (wr) Fjy(or)) ) dr
S lo = V'PFys 1 () + 1o = vl?)

<,U>272|U/ _ v|2 4 |v’ o U|é

o ST o+ P

3

because F}(X), F}/(\) are positive in [1,00), and

Fi, < CFypq, F! <CFy_»

and Fj_; is increasing there, if k = ¢/2 > 3. Here we have used the fact that
(v:)% < 2(v) + 2|v" — v|?. Noticing again that (v)? < 2(v,)? + 2|v — v|? and F} is

increasing, we have

[I2(0,0")| S [0 — v sin®(8/2) (0) " F1 ((0)?) + Bo

Wi(v) + Wi—a(v)Wa(vs)
o(vx, @)

< sin?(6/2)

+ sin872(9/2)W%¢(1}*) ,

which yields (3.5). The proof of (3.6) is similar. The last inequality (3.7) follows

easily from (3.8).

4. PROOFS OF PROPOSITIONS 2.2 AND 2.4

In this section, we regard (¢, ) as a parameter.
Proof of Proposition 2.2 :
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First of all, we have

(Wer QU 9) = QU Wt 9)), 1)
/B (W;,e — W) fegh'dvdu.do
:/B(VV/7 Lpé)f* ( )d’l)d’l)*dO'

+ /B (VU W%g) (v) - (v — ) faghdvdv.do

L2(R3)

+ /B ( :a,e — Wy — (VU W%g)(v) (v — v))f*ghdvdv*da
= D1+ D5+ Ds.

By the Cauchy-Schwarz inequality, we get in view of (3.1),

1/2
Dul S (BUs) ([ [ [ WL~ Weal Al oo

< (D011 NI IW a8 e
< (pusm) i,

Using (3.7) gives

|Ds| < ///B@QWL*WWI (l‘v_v*|21 +|v— v*|21‘v_v*‘<1) | f«gh| dvdv.do

/‘nwf W, 0g)h] dvdo, + //MUMQW—WW“WWﬁ( W,.09)h] dvdo,
S HfHLll Rg)||Wgo,eg||L2(]R3)HhHLZ(Rg)

1/2
([ e ) W) Wl do
[v—v,|<1 e

S fllze ®3) W ,ellL2rs) [Pl L2rs) -

£43/2+€

W, .
oy W9l L2(r3)

We now consider the estimate of the term Dy by first noticing that

v —wv= 5(0*fv)(l—k~0)+%|v*fv|(of(k~0)0),

where k = (v — v,)/|v — vi|. Tt follows from the symmetry on o that

/S2 bk-o)(oc— (k-0o)o)do = 0.

Hence, (1 — k- o) = 2sin?(0/2) implies
1
|Dsy| = 3 ‘/B (VU W%g) (v) - (ve —v)(1 =k -0)feghdvdv.do

§/b92 ‘vu W

(V) |vx — 0" f. g b| dvdv.do .
Since

’vu W

+1 1
[vs =0T S W oW1 i Lfju—w. z13 + Woe—t]ve — 7 100, <13,



10 R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG
we get
D21 S [ [ 1070110, )] v,

Jr//l{\v vl <1}V = v VT (We f ) (Wo 09) | dvdu.
S Iz sy (W egll L2 @s) 12l 2 (rs

s 1/2 (Weof)? 2 1/2
* / (/vv [<1 |U N U*|2(7+2 / |U — Ux |2(25 1 oo e ) |(W¢14g)h| dv

Sfllze
+ ||f||Hé2s—1)+(R3)||W<p,lgHL2(]R§;)HhHLZ(Rg) :

(R3) HW%59”L2(]R§) ||h||L2(]Rg)

043/2+¢

By summing up the above estimates and integrating with respect to z, we finish
the proof of Proposition 2.2.

We now turn to
Proof of Proposition 2.4 :

Here we need to use the mollification of the function. In the estimate stated in
Proposition 2.4, we put the weight on the first function in the collision operator.
To estimate this, we need a singular change of the variables between the pre and
post collision velocities as follows:

vt vl v — vy

Ve v = 5 + 5 o,
where the Jacobian is
0v, 8 8 4
| = = = , 0€]0,7/2],
1 ] e <0

where again k = (v — v,)/|v — vi|. Note that this change of variables is singular
when 6 = 0. After this change of variables, k = (v — v.)/|v — v.| is a function
of v,v’, 0, so that 6 no longer plays the role as the polar angle. In fact, “pole k”
moves with ¢ and hence the measure do is no longer given by sin 0dfd¢. Hence, we
need to choose a new pole which is independent of o. Choose k” = (v/ —v)/|[v/ — v,
then the polar angle ¢ defined by cosvy = k' - o satisfies,

T 6 m

1/,72 2 do = sinydipde, 1/)6[4 2]

Note that now the angular singularity in b(cos@)do becomes §~272725 which is
stronger than (1.2) where it is of order 61725,

On the other hand, there is another singularity in the kinetic factor of the cross
section for soft potential. To study this, we decompose the kinetic factor of collision
operator &, (v —v,) = |v — v,|” in two part by using a cutoff function. Let 0 <
¢(z) <1 be a smooth radial function with value 1 for z close to 0, and 0 for large
values of z. Set

D (2) = 04 (2)9(2) + 4(2)(1 = ¢(2)) = Psing(2) + Preg(2).
Then we write

Q(fa g) = Qsing(fag) + Qreg(fa g)a

where the kinetic factor in the collision operator is defined according to the decom-
position respectively. We consider firstly the regular part.
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Since ®,cy(2) is smooth, and ®,e.(2) < B,(2) = (1 + [2[2)7/2, Qpeg(f,9) has
similar upper bound and commutator estimates as for Q(i)’y (f,9)-

Let us recall several propositions obtained in [3]. For 0 < s < 1, v € R, we
proved the following upper bound estimate (Theorem 2.1 of [3])

(4.1) Qs (f;9), M S 1AL gl

at(v42s)t+ ‘hHHi;m ’

+2s)t |

for any m,« € R, and the estimate of commutators with weight (Lemma 2.4 of [3])
(4.2)

(W2 Qs (7:9) — Qs (£, Weg), 1) S Il P —— T

GH@Es=DF 4yt e+(2s—1)F 4ot

It also follows from Lemma 2.8 of [4] that

(4.3) / / / b 1L (9 — g)dodvdv. < | FllL loll3: -

We now study the estimate of Proposition 2.4 for the regular part.

Proposition 4.1. Let ¢ > 6. If max{—3,—2s—3/2} <7y <0 and 0 < s <1, then

(WesQreg(f, 9), 1) pocasy S N9z, G [ Wl oy Dl

Proof. Write
(W @ueald 01, 1) = (@ueolds W) )

+ ((W‘Pvé QT@g(fa g) - QTEQ(fa W:,a,é g)), h)LZ(]R3) = A +B

LQ(RS

By using the upper bound estimate (4.1) with m = s, « = 0, we have

LSz, el Wl e IAlioes)

¢ f x)?
S WE||L§S+S/2+E(]R§) ”7W29||H(2j+28)+(R%)HhHLz(Rg)
S |‘W¢,2s+7/2+sf|\L2(Rg)Hg||Hﬁ25(Rg)HhHLZ(RB)-

Here we have used 55 < (v)2.

For the term B, we have
B = (ng,é Qreg(fv g) - Qreg(fv th,é g)a h)Lz(]Rg)
— ///b @Teg((ww)’ - (W%g))f*gh’ dvdv, do
- ///b @Teg((vvww)(u’) e —v))f*gh’ dvdv,do

+///b Dreg(Wes) = (We) = (VoW (v)) - () = 0)) fu g dudv.do
=B, + B,.
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By using (3.5), we have

| B | S///b 02| (Woaf), || (Weg)||W |dvdo. do
(4.4) +///b 02| (We.ef), |lgh'|dvdv, do

:Ml + M2 9
where we have used the fact that v < 0. By the Cauchy-Schwarz inequality, we get

< ([ vl v,
x (///b@ﬂ(W%4f)*\(h’)2dvdv*do)

< [[W. ,4f|\%1(R3)||9H%g(mg)”h”%2(uag) .

(ng) QdUdU* do)

Here we have used the regular change of variables

vt v, v — o
o

v = ,
2 2
whose Jacobian is given by
% i S 4)cos2(0/2) <38.

- ‘I—l—k@o‘ ~ [l+k-of

On the other hand, by the Cauchy-Schwarz inequality again, we have

M3 S (///b 9“7/2|g|\Wwfﬁdv*dvdo)

x (///b94—1/2|g||h'|2dv*dvdo),
if we choose ¢ so that

0—=T7/2—(1+28)=0—1/2—(2+25+2) > —1.

Then a direct calculation reduces the first integral to

_9_ 2
[ vor21gl|Wea v, dvdo < gl ) Wesf ey

For the second integral, we now use the singular change of variables v, — v’ whose
Jacobian is

Ov,
ov’

B 4
N sin2(9/2)'

/// b(cosB) 0°"12|g| |h'[2dv,dvdo
RS xR3_xS§2

/2
5 // / 9@—1/2—(2+25+2)|g| |h/|2d’l)ld’l)d9
R3xR3, JO

N H9||L1(R3)||h||2L2(R3) .

Then, we have

Thus,
M S lgllnee) (We,e f | L2rs) | 2]l L2 rs) -
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For the term Bj, we decompose it further into

By = /// Pregb { (VU WM) (v") - (VU WM) (v)} (v — V) foghdvdv.do
][ s { (70 We) 0190~ (V0 W) )0} - (0 = ) £ v do
+ / / / Pregh [ (gh V, Wg,,e) @) - (v —v")dvdv.do

=BW 4+ B® 4 B®

It follows from the symmetry of o variable that B§3) vanishes, see the Figure 1
below.

Yo, (V')

a1

T.f"Uz (?‘"r)

FIGURE 1. Symmetry of o1 and o3, v/ — v = 9, (V')

Since |[v—v'| = |v—vy|sin(6/2) and |D,c4| S 1 for v < 0, by the Cauchy-Schwarz
inequality, we have

(2)2 ) | .
|B7 " < /// bl fellv — 4] ‘(VU Ww,f)(v)g(v) - (Vu W%g)(v )g(v )‘ dvdv, do
X ///bSln2(9/2)|f*||h/|2dvd’U*dg — B;?,l) % B§2’2) .

Using the regular change of variables v — v/, we get

2,2
BE? Sl )3y < 1122

2
3/2+5(R%)Hh’HL2(R%) .

Putting G = (VU Wkpﬁg)g, in view of [v — v.| < |V — vi] < (Vi) + (V') we have

35271) 5///b|<v*>2f*|
N ///b|f*| ()G(v) — ()GW)

[ - e

2
G(v) — G(')| dvdv.do

2
dvdv.do
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We apply (4.3) to the first two terms. Note that
[(v) = (V)] < v =] S (vs){v) sin(0/2),
in the last term. Then we get
2,1
BEY S FllnallWeeg s @) -

On account of (3.6), we have

BY| < / / / bO%| (Woaf).|| (Wag) ||| dvdo. do
+ ///bb‘e_Q‘(W%gf)*‘|gh'|dvdv*da,

which is the same as for By in (4.4). We have proved Proposition 4.1. O

We finally turn to the singular part Qging(f, ¢). As shown in [7], the singular part
Qsing Tequires fairly long computations. For our use, we now recall some estimates
in [7]. The following upper bound estimate is a consequence of Proposition 2.1 from
[7]: for 0 < s < 1,y > max{—3,—-2s—3/2} and m € [s —1, 5],

(4.5) [(Qsing (f5 9), P2l S [IflL2@s) 19l s sy |2l o= (o) -

And the following commutator estimate is implied by Proposition 2.5 of [7]:

letting 0 < s < 1,7 > max{—3,—2s — 3/2}, for any ¢, 3,0 € R,

(46)  |(We Quing(f.9) = Quing (£, Weg), h)| S £ 23

21opos 9l e 1Pll2z-

For the estimate of singular part with weight introduced in this paper, we now
want to prove

Proposition 4.2. Let ¢ > 2. If max{—3,—2s—3/2} <y <0 and 0 < s <1, then
(47) (th,é Qsing (fv g) ) h) L2(R3)
Proof. Write

(ng,é Qsing(fv g)v h)

S 9l m2s sy [We e f (| L2®e) [l L2(rs) -

L2(R3)

= (Qsmg(#’ Weg) " o(v,x) h)LQ(lRB')

f f (x
+ (We Qsing(Wv g) - Qsing(Wa Weg) )
= A + As.
It follows from (4.5) that with m = s,

p(v,z)  f (z)*
Ayl < _— W, s ——h
|[A1] < D p(0.2) z2®s) I Wegll 2 (R%)H(‘D(U,x) | L2(r2)
S gl zze ey W 2 f | 2R |2l 2 m2),
because (x)? < ¢(v,z) < (2)%(v)?.
Using (4.6) with 8 =¢—1,§ =0, we have

pv,z) f (z)*
|A2| S (z)2 m||L2(R%)|\9||H§35171+a>+(R%)HthLz(Rg)

S gl zrze ey [[Wo 2 f || 2w |2l 2 r2) -



UNIQUENESS OF SOLUTIONS FOR BOLTZMANN EQUATION 15

The above two estimates complete the proof of Proposition 2.4. O
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