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Data-based continuous-time modelling of dynamic systems

Hugues Garnier

Abstract— Data-based continuous-time model identification
of continuous-time dynamic systems is a mature subject. In this
contribution, we focus first on a refined instrumental variable
method that yields parameter estimates with optimal statistical
properties for hybrid continuous-time Box-Jenkins transfer
function models. The second part of the paper describes fur-
ther recent developments of this reliable estimation technique,
including its extension to handle non-uniformly sampled data
situation, closed-loop and nonlinear model identification. It also
discusses how the recently developed methods are implemented
in the CONTSID toolbox for Matlab and the advantages of
these direct schemes to continuous-time model identification.

I. INTRODUCTION

The identification of continuous-time (CT) models is a

problem of considerable importance that has applications in

virtually all disciplines of science. Early research on this

topic focussed on identification of CT models from CT data

(see e.g. [29], [30]). Subsequently, however, rapid develop-

ments in digital data acquisition and computers have resulted

in attention being shifted to the identification of discrete-

time (DT) models from sampled data, as documented in

many books (see e.g [34], [24] and [15]). Much less attention

has been devoted to CT modelling from DT data and many

practitioners appear unaware that such alternative methods

not only exist but may be better suited to their modelling

problems.

In order to identify a continuous-time model from time-

domain sampled data, two main time-domain approaches are

possible. In the first, ‘indirect’ approach, a DT model is

identified first using DT model identification methods, and

this is then converted into a CT model using a standard

algorithm for discrete to continuous-time conversion. In the

second, ‘direct’ approach the CT model is identified directly

from DT data. Direct data-based CT modelling is often

incorrectly presented as being too complicated but, as we

will see, the approaches are straightforward, reliable and

have proven useful in many practical applications. These

approaches have recently regained interest showing better

performance than indirect approaches for both linear and

nonlinear models, see e.g. [20], [21], [22], [12], [42]. The

main motivations for identifying CT models directly from

sampled data have been recently discussed in [7] (see also

the Conclusions Section in this paper). Exhaustive reviews of

direct estimation methods can be found in [33], [3], [5] and

[22]. Amongst the available identification approaches for CT

input-output models, the interest for instrumental variable

(IV) methods has been growing in the last years [23], [34],
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[42], [28]. The main reason of this increasing interest is

that IV methods offer similar performance as extended least

square (LS) methods or other prediction-error-minimization

(PEM) methods (see [21], [17]) and provide consistent results

even for an imperfect noise structure which is the case in

most practical applications. The IV schemes considered here

present the major advantages over PEM methods to be much

less sensitive to the initialisation stage (see [20], [21], [16]) .

These IV approaches lead to optimal estimates in the linear

time-invariant case if the system belongs to the model set

defined. This paper concentrates on a reliable Instrumental

Variable (IV)-based estimation method in particular, and

presents the latest developments, including its use for closed-

loop and nonlinear model identification.

II. RIVC FOR CT LINEAR MODELS

We focus on a statistically optimal method for the

identification of continuous-time hybrid Box–Jenkins (BJ)

transfer function models from discrete-time data [43]. Here,

the model of the dynamic system is estimated in continuous-

time, differential equation form, while the associated additive

noise model is estimated as a discrete-time, autoregressive

moving average (ARMA) process. This refined instrumental

variable method for continuous-time systems (RIVC) was

first developed in 1980 by Young and Jakeman [38] and its

simplest embodiment, the simplified RIVC (SRIVC) method,

has been used successfully for many years, demonstrating the

advantages that this stochastic formulation of the continuous-

time estimation problem provides in practical applications

(see, e.g., some recent such examples in [35], [41]).

However, the ‘simplification’ that characterises the name

of the SRIVC method is the assumption, for the purposes

of simplicity and algorithmic development, that the additive

noise is purely white in form. Such an approach is optimal

under this assumption and the inherent instrumental variable

aspects of the resulting algorithm ensure that the parame-

ter estimates are consistent and asymptotically unbiased in

statistical terms, even if the noise happens to be coloured.

However, the SRIVC estimates are not, in general, statisti-

cally efficient (minimum variance) in this situation because

the prefilters are not designed to account for the colour in

the noise process.

The hybrid RIVC estimation procedure follows logically

from the refined instrumental variable (RIV) method for

discrete-time models, first developed within a maximum

likelihood (ML) context by Young in 1976 [32] and com-

prehensively evaluated by Young and Jakeman [37], [10],

[34].



The RIV algorithm involves concurrent DT noise model

estimation and uses this estimated noise model in the

iterative-adaptive design of statistically optimal prefilters that

effectively attenuate noise outside the passband of the system

and prewhiten the noise remaining within the bandpass. Sim-

ilarly motivated prefilters are utilised in the RIVC algorithm

but they also provide a very convenient way of generating

the prefiltered derivatives of the input and output variables,

as required for CT model estimation.

The alternative hybrid form of the continuous-time trans-

fer function model is considered here for two reasons. First,

the approach is simple and straightforward: the theoretical

and practical problems associated with the estimation of

purely stochastic, continuous-time CAR or CARMA models

are avoided by formulating the problem in this manner.

Second, as pointed out above, one of the main functions of

the noise estimation is to improve the statistical efficiency

of the parameter estimation by introducing appropriately

defined prefilters into the estimation procedure. And, as we

shall see, this can be achieved adequately on the basis of

hybrid prefilters defined by reference to discrete-time AR or

ARMA noise models.

A. Problem Formulation

For simplicity of presentation, the formulation and so-

lution of the CT estimation problem will be restricted to

the case of a linear, single-input, single-output system. It is

assumed that the input u(t) and the noise-free output x(t)
are related by the following constant coefficient, differential-

delay equation,

x(n)(t) + ao
1x

(n−1)(t) + · · · + ao
nx(t) =

bo
0u

(m)(t − τ) + · · · + bo
mu(t − τ) (1)

where x(i)(t) denotes the ith time derivative of the

continuous-time signal x(t) and τ is a pure time delay in

time units. This is often assumed to be an integer number

related to the sampling time: i.e., τ = nkTs but this is not

essential: in this CT environment, ‘fractional’ time delays can

be introduced if required (e.g., see [19], [40]). For simplicity,

the time delay will not be considered in the following

analysis but it can be accommodated straightforwardly if

identified from the data. Equation (1) can also be written

in the following compact transfer function (TF) form,

x(t) = Go(p)u(t) =
Bo(p)

Ao(p)
u(t) (2)

with

Bo(p) =bo
0p

m + bo
1p

m−1 + · · · + bo
m, (2a)

Ao(p) =pn + ao
1p

n−1 + · · · + ao
n, n ≥ m (2b)

where x(t) is the deterministic output of the system; p is the

differential operator, i.e., pix(t) = dix(t)
dti ; Bo(p) and Ao(p)

are assumed to be coprime; and the system is asymptotically

stable. It is assumed that the input signal {u(t), t1 < t < tN}
is applied to the system and this gives rise to an output signal

{x(t), t1 < t < tN}.

In order to obtain high-quality statistical estimation re-

sults, it is vital to consider the inevitable errors that will

affect the measured output signal. It is assumed here that

x(t) is corrupted by an additive, coloured measurement noise

ξ(t), so that the complete equation for the data-generating

system, denoted by S, can be written in the form,

S : y(t) = Go(p)u(t) + Ho(p)eo(t) (3)

or, in the alternative decomposed form that is more appro-

priate in the present context

S











x(t) = Go(p)u(t)

ξ(t) = Ho(p)eo(t)

y(t) = x(t) + ξ(t)

(4)

where Ho(p) is stable and invertible, while eo(t) is a zero-

mean, continuous-time white noise source, which is assumed

to be uncorrelated with the input u(t). Finally, if the additive

coloured noise ξ(t) has rational spectral density, then a suit-

able parametric representation is the following continuous-

time, autoregressive moving average (CARMA) model

ξ(t) = Ho(p)eo(t) =
Co(p)

Do(p)
eo(t) (5)

where Co(p) and Do(p) are suitably defined polynomials in

the p operator.

Of course, in most practical situations, the input and

output signals u(t) and y(t) will be sampled in discrete

time. In the case of uniform sampling, at a constant sampling

interval Ts, these sampled signals will be denoted by u(tk)
and y(tk) and the output observation equation then takes the

form,

y(tk) = x(tk) + ξ(tk) k = 1, · · ·N (6)

where x(tk) is the sampled value of the unobserved, noise-

free output x(t). The objective is then to identify a suitable

model structure for (4) and estimate the parameters that

characterise this structure, based on these sampled input and

output data ZN = {u(tk); y(tk)}N
k=1.

Given the discrete-time, sampled nature of the data, an

obvious assumption is that the discrete-time, coloured noise

associated with the sampled output measurement y(tk) has

rational spectral density and so can be represented by a

discrete-time ARMA model. The model set to be identified

and estimated, as denoted by M with system (G) and

noise (H) models parameterised independently, then takes

the form,

M : {G(p,ρ), H(q,η)} (7)

where ρ and η are parameter vectors that characterise the

system and noise models, respectively. In particular, the

system model is formulated in continuous-time terms

G : G(p,ρ) =
B(p,ρ)

A(p,ρ)
=

b0p
m + b1p

m−1 + · · · + bm

pn + a1pn−1 · · · + an

(8)

and the associated model parameters are stacked columnwise

in the parameter vector,

ρ =
[

a1 · · · an b0 · · · bm

]T
∈ R

n+m+1 (9)



while the noise model is in discrete-time form

H : H(q,η) =
C(q−1,η)

D(q−1,η)
=

1 + c1q
−1 + · · · + cqq

−q

1 + d1q−1 + · · · + dpq−p

(10)

where q−r is the backward shift operator, i.e., q−ry(tk) =
y(tk−r) and the associated model parameters are stacked

columnwise in the parameter vector,

η =
[

c1 · · · cq d1 · · · dp

]T
∈ R

p+q (11)

Consequently, the noise TF takes the usual ARMA model

form

ξ(tk) =
C(q−1,η)

D(q−1,η)
e(tk) e(tk) ∼ N (0, σ2) (12)

where, as shown, e(tk) is a zero-mean, normally distributed,

discrete-time white noise sequence.

The structure S does not specify any common factors

in the plant (Go) and noise (Ho) components, so that these

models can be parameterised independently. More formally,

there exists the following decomposition of the parameter

vector θ for the whole hybrid model,

θ =

(

ρ

η

)

(13)

such that the model equations can be written in the form

M











x(t) = G(p,ρ)u(t)

ξ(tk) = H(q,η)e(tk)

y(tk) = x(tk) + ξ(tk)

(14)

This model is considered as a hybrid Box–Jenkins model

because of its close relationship to the DT model considered

in great detail by Box and Jenkins in their seminal book on

time-series analysis, forecasting and control [1] and used as

the basis for the development of the original RIVC algorithm

[38]. Alternatively, the model can be written in the following

vector terms

M











x(n)(t) = ϕT (t)ρ

ξ(tk) = ψT (tk)η + e(tk)

y(tk) = x(tk) + ξ(tk)

(15)

where,

ϕT (t) =
[

−x(n−1)(t) · · · − x(t) u(m)(t) · · ·u(t)
]

(15a)

ψT (tk) = [−ξ(tk−1) · · · − ξ(tk−p) e(tk−1) · · · e(tk−q)]
(15b)

For the purposes of identification, the order of this single-

input model (with the pure time delay τ now added for

completeness) is denoted by [n m τ p q] and the complete

identification problem can now be stated as follows:

Based on N uniformly sampled measurements of the input

and output, ZN = {u(tk); y(tk)}N
k=1, identify the orders n,

m, p and q of the polynomials in the system and noise TF

models, as well as any pure time delay τ , and estimate the

parameter vector θ in (13) whose parameters characterise

these polynomials.

B. Optimal RIVC Estimation: Theoretical Motivation

The RIVC algorithm derives from the RIV algorithm for

DT systems. This was evolved by converting the maximum

likelihood (ML) estimation equations to a pseudo-linear form

[25] involving optimal prefilters [32], [38], [34]. A similar

analysis can be utilised in the present situation because the

problem is very similar, in both algebraic and statistical

terms. However, to conserve space, the discussion here will

be restricted to a simpler development of the RIVC algorithm

and we leave the interested reader to consult with these

earlier references for details of the ML analysis.

1) The Hybrid Box–Jenkins Estimation Model: Follow-

ing the usual prediction error minimisation (PEM) approach

in the present hybrid situation (which is ML estimation

because of the Gaussian assumptions on e(tk)), a suitable

error function ε(tk), at the kth sampling instant, is given by,

ε(tk) =
D(q−1,η)

C(q−1,η)

{

y(tk) −
B(p,ρ)

A(p,ρ)
u(tk)

}

which can be written as,

ε(tk) =
D(q−1,η)

C(q−1,η)



1

A(p,ρ)
[A(p,ρ)y(tk) − B(p,ρ)u(tk)]

ff

(16)

where the discrete-time prefilter D(q−1,η)/C(q−1,η) will

be recognised as the inverse of the ARMA(p,q) noise model.

Note that in these equations, we are mixing discrete and

continuous-time operators somewhat informally in order to

indicate the hydrid computational nature of the estimation

problem being considered here. Thus, operations such as,

B(p,ρ)

A(p,ρ)
u(tk)

imply that the input variable u(tk) is interpolated in some

manner. This is to allow for the inter-sample behaviour that

is not available from the sampled data and so has to be

inferred in order to allow for the continuous-time numerical

integration of the associated differential equations.

Minimisation of a least squares criterion function in

ε(tk), measured at the sampling instants, provides the basis

for stochastic estimation. However, since the polynomial

operators commute in this linear case, (16) can be considered

in the alternative form,

ε(tk) = A(p,ρ)yf(tk) − B(p,ρ)uf(tk) (17)

where yf(tk) and uf(tk) represent the sampled outputs of

the complete hybrid prefiltering operation involving the

continuous-time filtering operations using the filter

fc(p,ρ) =
1

A(p,ρ)
(18)

as well as discrete-time filtering operations, using the inverse

noise model filter

fd(q
−1,η) =

D(q−1,η)

C(q−1,η)
(19)

The associated, linear-in-the-parameters estimation model

then takes the form

y
(n)
f (tk) = ϕT

f (tk)ρ+ η(tk) (20)



where,

ϕT
f (tk) = [−y

(n−1)
f (tk) · · · − yf(t) u

(m)
f (tk) · · ·uf(tk)]

(21)

and η(tk) is the continuous-time noise signal η(t) =
A(p,ρ)ξ(t) sampled at the kth sampling instant.

2) RIVC Estimation: Optimal methods of IV estimation

(see, e.g., [32], [23]) normally involve an iterative (or re-

laxation) algorithm in which, at each iteration, the ‘auxiliary

model’ used to generate the instrumental variables, as well as

the associated prefilters, are updated, based on the parameter

estimates obtained at the previous iteration. Let us consider,

therefore, the jth iteration where we have access to the

estimate,

θ̂
j−1

=

(

ρ̂
j−1

η̂
j−1

)

(22)

obtained previously at iteration j − 1. The most important

aspect of optimal IV estimation is the definition of an optimal

instrumental variable. In the present context, this is generated

from the output of the continuous-time auxiliary model,

x̂(t, ρ̂j−1) = G(p, ρ̂j−1)u(t) (23)

which is prefiltered in the same hybrid manner as the other

variables. The associated optimal IV vector ϕ̂f(tk), is then

an estimate of the noise-free version of the vector ϕf(tk) in

(21) and is defined as follows

ϕ̂f(tk) =
[

−x̂
(n−1)
f (tk) · · · − x̂f(tk) u

(m)
f (tk) · · · uf(tk)

]T

(24)

where it should be noted that

ϕ̂f(tk) = ϕ̂f(tk, ρ̂j−1, η̂j) (25)

because the instrumental variables are now prefiltered and

so are a function of both the system parameter estimates

at the previous iteration and the most recent noise model

parameter estimates. For simplicity, however, these additional

arguments will be omitted in the subsequent analysis. Note

also that the noise-free version of the vector ϕf(tk) in (21),

which we will define as follows,

ϕ̊
T
f (tk) =

[

−x
(n−1)
f (tk) · · · − xf(tk) u

(m)
f (tk) · · · uf(tk)

]

(26)

where x(t) = Go(p)u(t), is referred to in Section II-D

when considering the statistical properties of the optimal IV

parameter estimates.

The IV optimisation problem can now be stated in the

form

ρ̂
j(N) = arg min

ρ

∥

∥

∥

∥

∥

[

1

N

N
∑

k=1

ϕ̂f(tk)ϕT
f (tk)

]

ρ

−

[

1

N

N
∑

k=1

ϕ̂f(tk)y
(n)
f (tk)

]2

Q

(27)

where ‖x‖2 = xTQx and Q = I. This results in the well-

known solution of the IV estimation (IV normal) equations

ρ̂
j(N) =

[

N
∑

k=1

ϕ̂f(tk)ϕT
f (tk)

]−1
N

∑

k=1

ϕ̂f(tk)y
(n)
f (tk) (28)

where the ρ̂
j(N) is the IV estimate of the system model pa-

rameter vector at the jth iteration based on the appropriately

prefiltered input/output data ZN = {u(tk); y(tk)}N
k=1.

As regards the hybrid prefiltering, it will be noted from

(25) that this involves the inverse noise model parameters η̂
j

obtained at the current jth iteration. This is because, given

ρ̂
j−1

, an estimate of the sampled noise signal ξ(tk), at the

jth iteration, is obtained by subtracting the sampled output of

the auxiliary model equation (23) from the measured output

y(tk), i.e.,

ξ̂(tk) = y(tk) − x̂(t, ρ̂j−1) (29)

This estimate provides the basis for the estimation of the

noise model parameter vector ηj , using whatever ARMA

model estimation algorithm is selected for this task.

C. The RIVC and SRIVC Algorithms

The iterative RIVC and SRIVC algorithms follow directly

from the RIV and SRIV algorithms for DT systems (e.g.,

[34]). This section summarises both algorithms.

1) The RIVC Algorithm: Bearing the analysis of the

previous subsection II-B.2 in mind, the main steps in the

RIVC algorithm are as follows:

Step 1. Initialisation: generate an initial estimate of the

TF model parameter vector ρ̂
o

using the simpli-

fied RIVC (SRIVC) algorithm (see subsection II-

C.2) and use this to define the initial CT prefilter

fc(p, ρ̂o).
Step 2. Iterative estimation.

for j = 1 : convergence
(i) Generate the IV series x̂(t, ρ̂j−1) using the auxil-

iary model built up from the estimated polynomials
A(p, ρ̂j−1) and B(p, ρ̂j−1) based on ρ̂j−1 at the
previous (j − 1)th iteration.

(ii) Prefilter the input u(tk), output y(tk) and instru-

mental variable x̂(t, ρ̂j−1) by the continuous-time

filter fc(p, ρ̂j−1) in order to generate the filtered
derivatives of these variables.

(iii) Obtain an optimal estimate of the noise model
parameter vector η̂j based on the estimated noise

sequence ξ̂(tk) from (29), using a selected ARMA
estimation algorithm.

(iv) Sample the filtered derivative signals at the discrete-
time sampling interval Ts and prefilter these by the
discrete-time filter fd(q

−1, η̂j), in order to define
all the required elements in the data vector ϕf(tk),

the IV vector ϕ̂f(tk) and the nth-order filtered

derivative y
(n)
f (tk).

(v) Based on these prefiltered data, generate the latest

estimate ρ̂j of the system model parameter vector

using the en bloc IV solution (28), or its recur-

sive equivalent. Together with the estimate η̂j of

the noise model parameter estimate from (iii), this

provides the estimate θ̂
j

of the composite parameter

vector at the jth iteration.

end

Step 3. After the convergence of the iterations is complete,

compute the estimated parametric error covariance

matrix P̂ρ, associated with the converged estimate



ρ̂ of the system model parameter vector, from the

expression (see Section II-D),

P̂ρ = σ̂2

[

N
∑

k=1

ϕ̂f(tk)ϕ̂T
f (tk)

]−1

(30)

where ϕ̂f(tk) is the IV vector obtained at conver-

gence and σ̂2 is the estimated residual variance.

2) The SRIVC Algorithm: It will be noted that the above

formulation of the RIVC estimation problem is considerably

simplified if it is assumed that the additive noise is white,

i.e., C(q−1,η) = D(q−1,η) = 1. In this case, simplified

RIVC (SRIVC) estimation involves only the parameters in

the A(p,ρ) and B(p,ρ) polynomials and the prefiltering only

involves the continuous-time prefilter fc(p,ρ) = 1/A(p,ρ).
Consequently, the main steps in the SRIVC algorithm are the

same as those in the RIVC algorithm, except that the noise

model estimation and subsequent discrete-time prefiltering in

steps (ii) and (iii) of the iterative procedure are no longer

required and are omitted.

It is worth noting that the RIVC algorithm has a much

longer computation time than the SRIVC algorithm. As a

result, it is advantageous to use the SRIVC algorithm for

initial model order identification and only employ the full

RIVC algorithm in those situations where the theoretical

assumptions are satisfied and it is essential to have the

most efficient parameter estimates and better estimates of

the uncertainty on the parameters. For day-to-day usage, the

SRIVC algorithm provides a quick and reliable approach to

continuous-time model identification and estimation.

D. Theoretical Background and Statistical Properties of the

RIVC Estimates

The motivational arguments presented in Section II-

B suggest that, upon convergence, the RIVC parameter

estimates will possess the optimal statistical properties of

consistency and asymptotic efficiency when the additive

noise has a Gaussian normal probability distribution and

rational spectral density. This section presents more formal

analysis to verify further the optimality of the estimates and

confirm the asymptotic independence of the system and noise

model parameter estimates.
1) Optimality of RIVC Estimation: In the control and

systems literature, optimal IV estimation is usually consid-
ered in relation to the so-called ‘extended IV’ approach to
estimation, as developed for the DT case [23]. A similar
approach can be applied in the present CT case by re-writing
the IV optimisation equation (27) in the following alternative
form that explicitly reveals a continuous-time prefilter f(p)

ρ̂(N) = arg min
ρ

‖[
1

N

N
X

k=1

ζ f(tk)f(p)ϕT (tk)ρ̂

−

"

1

N

N
X

k=1

ζ f(tk)f(p)y(n)(tk)

#2

Q

(31)

where f(p) is the stable prefilter, ζf(tk) is the prefiltered

instrumental vector ζf(tk) = f(p)ζ(tk) and Q is a positive-

definite matrix. By definition, when Go ∈ G, the extended IV

estimate provides a consistent estimate under the following

two conditions
{

Ē{ζf(tk)f(p)ϕT (tk)} is non-singular,

Ē{ζf(tk)f(p)ξ(tk)} = 0
(32)

Clearly, the selection of the instrumental variable vector

ζf(tk), the weighting matrix Q and the prefilter f(p) may

have a considerable effect on the covariance matrix Pθ

produced by the IV estimation algorithm.

In the open-loop situation, the Cramér–Rao lower bound

on Pθ for any unbiased identification method (e.g., [23], [15])

defines the optimal solution. In this regard, it has been shown

that the minimum value of the covariance matrix Pθ, as a

function of the design variables ζf(tk), f(p) and Q, exists

and is given by

Pθ ≥ P
opt
θ

with

P
opt
θ = [Ē{̊ζf(tk )̊ζ

T

f (tk)}]−1 (33)

where ζ̊f(tk) is the optimally prefiltered IV vector, with the

associated design variables defined as

Q = I, (34a)

f(p) =
1

Ho(p)Ao(p)
=

Do(p)

Co(p)Ao(p)
, (34b)

ζ̊(tk) =
[

−x(n−1)(tk) · · · − x(tk) u(m)(tk) · · · u(tk)
]T

(34c)

so that,

ζ̊f(tk) = f(p)̊ζ(tk) (35)

which will be recognised as the noise-free, prefiltered vector

ϕ̊
T
f (tk) defined earlier in (26).

2) Comments:

• Not surprisingly, the above analysis justifies the RIVC

algorithmic design that iteratively updates those aspects

of the theoretical solution that are not known a priori:

in this case, the unknown model polynomials and the

noise-free output of the system that is, of course, the

source of the instrumental variables. If it is assumed

that, in all identifiable situations, the RIVC algorithm

converges in the sense that ρ̂⇒ ρ and η̂ ⇒ η, then the

RIVC estimates will be consistent and asymptotically

efficient.

• The optimal filter f(p) in (34b) is formulated in CT

terms. In the proposed RIVC algorithm, this filter takes

a hybrid form, as discussed in the previous sections.

One very important aspect of TF modelling is the

identification of the model structure: i.e., the degrees

n, m, p, and q of the model polynomials and any

associated pure time delay τ . A model order selection

method associated to the SRIVC model estimation

method allows the user to automatically search over a

whole range of different model orders. Two statistical

measures are then used to help to user choose the best

model structure (see Subsection II.E and [43].



• Both RIVC/SRIVC routines are avalaible in the CON-

TSID (see Section IV below) and CAPTAIN1 Toolboxes

for MATLABr.

E. Model Order Identification

One very important aspect of TF modelling is the identi-

fication of the model structure: i.e., the degrees n, m, p, and

q of the model polynomials and any associated pure time

delay τ . One statistical measure that is useful in this regard

is the coefficient of determination R2
T , defined as follows

R2
T = 1 −

σ2
ξ̂

σ2
y

(36)

where σ2
ξ̂

is the variance of the estimated noise ξ̂(tk) and σ2
y

is the variance of the measured output y(tk). R2
T is clearly

a normalised measure of how much of the output variance is

explained by the deterministic system part of the estimated

model. However, it is well known that this measure, on

its own, is not sufficient to avoid over-parametrisation and

identify a parsimonious model, so that other model order

identification statistics are required. In this regard, because

the SRIVC and RIVC methods exploit optimal instrumental

variable methodology, they are able to utilise the special

properties of the instrumental product matrix (IPM) [39]; in

particular, the YIC statistic [34] which is defined as follows

YIC = loge

σ̂2

σ2
y

+ loge{NEVN}; NEVN =
1

nθ

nθ
∑

i=1

p̂ii

θ̂2
i

(37)

Here, nθ = n + m + p + q + 1 is the number of estimated

parameters; p̂ii is the ith diagonal element of the block-

diagonal covariance matrix Pθ, where,

Pθ =

(

Pρ 0

0 Pη

)

(38)

and so is an estimate of the variance of the estimated

uncertainty on the ith parameter estimate. θ̂2
i is the square

of the ith parameter estimate in the θ vector, so that ratio

p̂ii/θ̂2
i is a normalised measure of the uncertainty on the ith

parameter estimate.

From the definition of R2
T , we see that the first term in

the YIC is simply a relative measure of how well the model

explains the data: the smaller the model residuals the more

negative the term becomes. The normalised error variance

norm (NEVN) term, on the other hand, provides a measure

of the conditioning of the IPM, which needs to be inverted

when the IV normal equations are solved (see, e.g., [34]):

if the model is overparameterised, then it can be shown

that the IPM will tend to singularity and, because of its ill-

conditioning, the elements of its inverse (in the form here of

the covariance matrix Pθ) will increase in value, often by

several orders of magnitude. When this happens, the second

term in the YIC tends to dominate the criterion function,

indicating over-parametrisation.

1http://www.es.lancs.ac.uk/cres/captain/

It is important to note that, based on practical experience,

the YIC is normally best considered during SRIVC identi-

fication, which is much less computationally intensive than

RIVC identification, so allowing for much faster investiga-

tion of the model order range selected by the user. In this

situation, nθ is replaced by nρ = n + m + 1 the p̂ii are

obtained by reference to the covariance matrix Pρ.

Although heuristic, the YIC has proven very useful in

practical identification terms. It should not, however, be used

as a sole arbiter of model order: rather the combination of

R2
T and YIC provides an indication of the best parsimonious

models that can be evaluated by other standard statistical

measures (e.g., the auto and partial autocorrelation of the

model residuals, the cross-correlation of the residuals with

the input signal u(tk), etc.). Also, the physical interpretation

of the model can often provide valuable information on

the model adequacy: for instance, a model with complex

eigenvalues caused by overparametrisation may prove incom-

patible with the non-oscillatory nature of the physical system

under study.

III. LATEST DEVELOPMENTS FOR THE RIVC METHOD

Recent developments aimed at extending the RIVC

method to handle wider practical situations in order to en-

hance the application field of direct CT model identification.

A. Multiple-input Systems

It is clearly straightforward to extend the RIVC/SRIVC

methods to the multiple-input situation if the TF denominator

is common to all input channels. The situation is not so

straightforward in the case where there are different denom-

inator polynomials for each input channel. However, follow-

ing the RIV approach for DT systems [9], the algorithms can

be extended to handle this situation [4]: indeed, the current

version of RIVC in the CONTSID Toolbox provides this

option.

B. Non-uniformly Sampled Data

One advantage of the SRIVC approach to continuous-

time modelling is that it can be based on irregularly sampled

data and can handle ‘fractional’ pure time delays. The current

implementation of the SRIVC algorithm in the CONTSID

Toolbox can handle irregularly sampled data. However, the

RIVC algorithm has not yet been upgraded in this regard

because it requires additional interpolation and re-sampling

in order to generate a regularly sampled series for the ARMA

noise model estimation parts of the algorithm.

C. Closed-loop Model Identification

Provided there is an external command input signal, the

identification and estimation of a system within a closed

automatic control loop has always been straightforward when

using IV estimation methodology [31], [8]. In the case of

the RIVC/SRIVC algorithms, a two-stage approach, such as

that used by Van den Hof [27] for discrete-time systems, is

the most effective, since it does not require prior knowledge

of the control system. Recent research [44] has shown



that a modification of this approach employing the SRIVC

algorithm (rather than the FIR model estimation used by Van

den Hof) for estimating the control input signal, followed by

full RIVC estimation of the system, based on this estimated

control input, works extremely well.

D. Hammerstein and LPV Model Identification

Direct identification of CT nonlinear models is still an un-

mature subject. This section discusses briefly the extension of

the RIVC method for the identification of Hammerstein and

LPV CT Box–Jenkins models. In the case of Hammerstein

hybrid BJ model, the nonlinear function f(.) is assumed to

be a sum of known basis functions γ1, γ2, . . . , γl given as:

ū(t) =

l
∑

i=1

αiγi(u(t)) with α1 = 1. (39)

The hybrid CT BJ Hammerstein model is described by the

following input-output relationship:










x(t) = G(p)ū(t)

ξ(tk) = H(q−1)e(tk),

y(tk) = x(tk) + ξ(tk),

(40)

where

G(p) =
B(p)

A(p)
. (41)

where the coloured noise associated with the sampled output

measurement y(tk) has rational spectral density and can be

represented by a discrete-time autoregressive moving average

ARMA model:

ξ(tk) = H(q−1)e(tk) =
C(q−1)

D(q−1)
e(tk) (42)

The RIVC method has very recently been extended to

estimate the parameters of such CT hybrid BJ Hammerstein

models [12], [13].

So called Linear Parameter Varying (LPV) models have

been the subject of recent interest. The RIVC approach has

recently been extended to estimate CT LPV input/output

models [14].

IV. SOFTWARE ASPECTS - THE CONTSID

TOOLBOX

The field of system identification is an extensive and

versatile area. It is easy to get confused by the vast number

of approaches and variants of methods available. We have

seen so far that direct continuous-time model identification

from sampled data is now a mature subject and it is important

to package the identification tools in a user-friendly way. An

attempt to do that was carried out with the CONTinuous-time

System IDentification (CONTSID) toolbox for MATLABr.

The CONTSID toolbox was first released in 1999 [2]. It

has gone through several updates. The key features of the

CONTSID toolbox are [6]:

• it supports most of the time-domain methods developed

over the last thirty years [3] for identifying linear

dynamic continuous-time parametric models from mea-

sured input/output sampled data;

• it provides transfer function and state-space model iden-

tification methods for single-input single-output (SISO)

and multiple-input multiple-output (MIMO) systems,

including both traditional and more recent approaches;

• it can handle mild irregularly sampled data in a straight-

forward way;

• it may be seen as an add-on to the system identification

(SID) toolbox for MATLABr. To facilitate its use, it

has been given a similar setup to the SID toolbox;

• it provides a flexible graphical user interface (GUI) that

lets the user analyse the experimental data, identify and

evaluate models in an easy way;

• It can be freely downloaded from

http://www.cran.uhp-nancy.fr/contsid/

The latest version of the CONTSID toolbox has the following

three major additions:

• it supports errors-in-variables CT transfer function

model identification [18], [26];

• it provides routines to estimate linear CT transfer func-

tion model in closed loop [8], [44];

• it includes methods to identify nonlinear CT Hammer-

stein models [12], [13].

V. CONCLUSIONS

This paper has first described the full RIVC algorithm for

identifying hybrid Box–Jenkins transfer function models for

linear, continuous-time systems from discrete-time, sampled

data. The latest developments of the RIVC approach for non-

uniformly sampled data, closed-loop identification as well

as for nonlinear Hammerstein and LPV model identification

have also been briefly discussed.

It is felt that continuous-time model identification, based

on a stochastic formulation of the transfer function estimation

problem, provides a theoretically elegant and practically

useful approach to the modelling of stochastic dynamic

systems from sampled data.

It is an approach that has many advantages in scientific

terms since it provides differential equation models that

conform with models used in most scientific research, where

conservation equations are normally formulated in terms of

differential equations. It is also a model defined by a unique

set of parameter values that are not dependent on the sam-

pling interval, so eliminating the need for conversion from

discrete to continuous time that is an essential element of in-

direct approaches to estimation based on discrete-time model

estimation. These direct continuous-time model identification

methods have proven to be particularly well suited in the case

of mild non-uniformly sampled data, dominant system modes

with widely different natural frequencies (stiff systems), fast

sampled data, or when the input does not respect the zero-

order hold assumption. Finally but not the least, these direct

data-based CT modelling methods have proven successful in

many practical applications and are available as user-friendly



and computationally efficient algorithms in the CONTSID

toolbox for MatlabTM.
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