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COMPACT IMBEDDINGS IN ELECTROMAGNETISM WITH
INTERFACES BETWEEN CLASSICAL MATERIALS AND

META-MATERIALS

LUCAS CHESNEL∗ AND PATRICK CIARLET JR.†

Abstract. In a meta-material, the electric permittivity and/or the magnetic permeability can
be negative in given frequency ranges. We investigate the solution of the time-harmonic Maxwell
equations in a composite material, made up of classical materials, and meta-materials with negative
electric permittivity, in a two-dimensional bounded domain Ω. We study the imbedding of the space
of electric fields into L2(Ω)2. In particular, we extend the famous result of Weber, proving that it is
compact. This result is obtained by studying the regularity of the fields. We first isolate their most
singular part, using a decomposition à la Birman-Solomyak. With the help of the Mellin transform,
we prove that this singular part belongs to Hs(Ω)2, for some s > 0. Finally, we show that the
compact imbedding result holds as soon as no ratio of permittivities between two adjacent materials
is equal to −1.

Key words. Maxwell’s equations, interface problem, meta-material, compact imbedding, regu-
larity of fields, Mellin transform.

AMS subject classifications.

1. Introduction. We consider the solution of the time-harmonic Maxwell equa-
tions in a composite material. A composite material is modelled by non constant
electric permittivity ε and magnetic permeability µ. The variations of ε and µ can
be smooth, or piecewise smooth. Recently, some new composites appeared, includ-
ing classical materials and meta-materials. A meta-material exhibits special prop-
erties. In given frequency ranges, it can behave like a material with negative elec-
tric permittivity or/and negative magnetic permeability. Examples of meta-materials
[25, 26, 27, 12] include superconductors, left-handed materials, etc. Due to the sign
change between a classical material and a meta-material, the usual mathematical ap-
proaches fail to resolve the corresponding electromagnetic models. In other words,
these composites raise challenging questions, both from the mathematical and numer-
ical points of view.

In this paper, we focus on an essential tool to study time-harmonic Maxwell equa-
tions in a bounded (connected) domain Ω of Rd (d is the space dimension), that is
the compact imbedding of the space of electric fields in L2(Ω)d. This result is indeed
a key ingredient to solve the two instances of time-harmonic equations, namely the
source problem (sustained vibrations) and the eigenvalue problem (free vibrations).

If the domain of interest is surrounded by a perfect conductor, the following
functional space for electric fields, XN (Ω, ε), appears. It is made up of vector fields v
that belong to L2(Ω)d, and such that curl v ∈ L2(Ω)d, div (εv) ∈ L2(Ω) and v×n = 0
on ∂Ω, where n is the unit outward normal vector to ∂Ω.

Our main objective is to find an extension of the Weber compact imbedding
theorem in the case of a composite material including classical and negative meta-
materials. In the landmark paper [28], Weber proved that XN (Ω, ε) is compactly
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imbedded into L2(Ω)d when ε is a real function, bounded above and below by strictly
positive constants, for d = 2, 3.

In [9], the second author and co-workers prove this result for d = 3, in the
following setting. The domain Ω is partitioned into two subdomains Ω1 and Ω2, with
a smooth interface (between the subdomains), and with ε exhibiting a sign-change at
the crossing of the interface. This new result is proved under the assumption that the
contrast κε (which is just κε = ε|Ω1

/ε|Ω2
when ε is constant in each subdomains) is

such that κε /∈
]
κiε; κ

s
ε

[
, with −1 ∈

]
κiε; κ

s
ε

[
. The proof is direct, in the sense that

the classical result stating that the imbeddings of Hs(Ω) into L2(Ω) are compact for
s > 0, is not used. Our method of proof, on the other hand, is to study the a priori
regularity of elements of XN (Ω, ε). In this respect, it follows what has been done
in proposition 3.7 of [1], or section 3 of [14], or in part 3.8 of [23], but it relies on
different mathematical tools. More precisely, we shall prove that the space of electric
field XN (Ω, ε) is (continuously) imbedded into spaces like Hs(Ω)d, with some ad
hoc s > 0 with the help of the Mellin transform, so that one can obtain the desired
compactness result by using the classical result mentioned above. Along the way, we
shall use several results of [16].

This compactness result is one of the two key ingredient result to prove that the
source problem is well-posed, within the Fredholm, or isomorphism+compact, frame-
work. The T -coercivity method (see [10]), or the three-field variational formulation
(see [9]), then help obtaining the second key ingredient, coerciveness, so well-posedness
follows. These two techniques provide some guidelines as to how the problem can be
discretized.

In this paper, we shall study the two-dimensional case (d = 2). To simplify the
proofs, we assume that the domain Ω has a connected boundary ∂Ω, and that ε is
piecewise constant. If that were not the case, the regularity results of elements of
XN (Ω, ε) should remain valid, under reasonable assumptions, such as a piecewise
smooth ε, with |ε| bounded above and below by strictly positive constants, or such
as a multiply-connected boundary, which adds a finite dimensional vector subspace
of curl-free and divergence-free elements of XN (Ω, ε), whose elements can be studied
separately.

We begin by the notations in section 2. We shall consider the case of a polygonal
domain Ω, partitioned into polygonal subdomains. In the next section, we prove a
continuous splitting result for elements of XN (Ω, ε), which allows us to isolate the
most singular part, expressed as a gradient of a scalar field. Then, in section 4,
we study the regularity of this singular part, which leads to the compact imbedding
result (§5). We generalize this result in section 6 by assuming that the domain and
subdomains are curvilinear polygons. We conclude by providing a counter-example
for a symmetric cavity composed of two materials whose permittivities are opposite.

2. Notations. Let Ω be a bounded, open, connected polygonal set of R2, with
connected boundary ∂Ω. The unit outward normal vector to ∂Ω is denoted by n,
whereas τ is a unit tangent vector to ∂Ω.

We assume that Ω is partitioned into N open, polygonal subsets Ωj :

Ω =

N⋃
j=1

Ωj with Ωi ∩ Ωj = ∅ if i 6= j.
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We call P the partition. The interface between subdomains Σ := ∪i 6=j(∂Ωi ∩ ∂Ωj) is
made up of straight edges. Without loss of generality, we consider convex polygons Ωj ,
as they can be further subdivided into convex polygons if necessary. Then, to avoid
unnecessary technical difficulties, we assume that the N polygons of the partition P
can be labelled so that Ωj and Ωj+1 share at least one common edge, for j = 1.. N−1.
For j = 1.. N , (∂Ωkj )k=1.. nj denote the set of edges of Ωj , and (nkj )k=1.. nj are the
corresponding unit outward normal vectors.
Let A denote the set of edges on the boundary ∂Ω (a side of ∂Ω can be divided
into two or more edges, due to the partition), or on the interface Σ: define Aext :=
{A ∈ A |A ⊂ ∂Ω} the set of exterior edges, and Aint := A\Aext the set of inte-
rior edges. Similarly, let S denote the set of vertices (new vertices can appear on
∂Ω, due to the partition), and Sext := {S ∈ S |S ∈ ∂Ω} the set of exterior vertices,
Sint := S\Sext the set of interior vertices.

In what follows, the characteristic quantities ε and µ defining the material, func-
tions, etc. are complex valued. Let us consider more precisely ε ∈ L∞(Ω), constant
over each subdomain Ωj , with εj := ε|Ωj 6= 0. As a particular case, ε can be real
valued and exhibit a sign-shift between two neighboring subdomains. For a < b, we
define the closed strip of the complex plane B(a; b) := {λ ∈ C | a ≤ <(λ) ≤ b}.

Using differentiation in the sense of distributions, one classically defines the oper-
ators curl and div acting over L2(Ω) := L2(Ω)×L2(Ω), and the operator curl acting
over L2(Ω). For v = (vx, vy) ∈ L2(Ω),

curlv =
∂vy

∂x
−
∂vx

∂y
∈ D′(Ω), divv =

∂vx

∂x
+
∂vy

∂y
∈ D′(Ω).

For v ∈ L2(Ω),

curl v =

(
∂v

∂y
,−

∂v

∂x

)
∈ D′(Ω)×D′(Ω).

Let us introduce the functional spaces

H(curl ; Ω) :=
{
u ∈ L2(Ω) | curlu ∈ L2(Ω)

}
,

H(div ; ξ ; Ω) :=
{
u ∈ L2(Ω) | div (ξu) ∈ L2(Ω)

}
,

where ξ belongs to L∞(Ω). Next, let

XN (Ω, ε) := {u ∈H(curl ; Ω) ∩H(div ; ε; Ω) |u · τ = 0 on ∂Ω} .

Endowed with the norm ‖u‖XN (Ω) :=
(
‖u‖2L2(Ω) + ‖curlu‖2L2(Ω) + ‖div (εu)‖2L2(Ω)

) 1
2

,

XN (Ω, ε) is a Hilbert space. Following Grisvard [18, 19], for any edge ∂Ωkj , we let
H̃

1
2 (∂Ωkj ) denote the set of elements of H

1
2 (∂Ωkj ) whose continuation by 0 to ∂Ωj

belongs to H
1
2 (∂Ωj).

For u ∈ L2(Ω) (respectively u ∈ L2(Ω)), we use the notation uj := u|Ωj (resp.
uj := u|Ωj ). To study the regularity of scalar fields, we consider

PHs(Ω,P) :=
{
u ∈ L2(Ω) |uj ∈ Hs(Ωj), j = 1.. N

}
for s > 0.
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On PHs(Ω,P), we introduce the broken norm ‖u‖PHs(Ω) :=
(∑N

j=1 ‖uj‖
2
Hs(Ωj)

) 1
2

.
We recall that, for s < 1/2, ‖u‖PHs(Ω) ' ‖u‖Hs(Ω). The vector valued counterpart is

PHs(Ω,P) := PHs(Ω,P)× PHs(Ω,P).

So, we can introduce the subspace of piecewise smooth elements of XN (Ω, ε), which
writes

HN (Ω, ε) := XN (Ω, ε) ∩ PH1(Ω,P).

Finally, we define families of weighted functional (Sobolev) spaces. For a 2-index
α = (α1, α2) ∈ N2, we let

|α| := α1 + α2 and ∂αx :=
∂|α|

∂α1x ∂α2y
.

Given O any open subset of R2, m ∈ N and γ ∈ R, we introduce

V mγ (O) :=
{
v ∈ L2

loc(O) | r|α|−m+γ∂αxv ∈ L2(O), ∀α ∈ N2, |α| ≤ m
}

where r is the distance to some given point of O, with norm

‖v‖Vmγ (O) :=

 ∑
|α|≤m

∥∥∥r|α|−m+γ∂αxv
∥∥∥2

L2(O)

 1
2

.

To conclude,
◦
V mγ (O) is the closure of D(O) in V mγ (O).

3. A continuous splitting of fields of XN (Ω, ε). Let us prove a continuous
splitting of fields that belong to XN (Ω, ε). This kind of result can be traced back
to the works of Birman-Solomyak [5, 4, 6, 7]. We give here a proof that follows the
lines of those of theorems 3.4 and 3.5 of [14]. By assumption, the partition P of Ω is
labelled so that Ωj and Ωj+1 share at least one common edge, for j = 1.. N − 1: we
call (Aj)j=1.. N−1 these edges.

Proposition 3.1. Let u ∈ XN (Ω, ε). There exist u1 ∈ HN (Ω, ε) and u2 ∈
XN (Ω, ε) with (curlu2, 1)L2(Ωj) = 0 for j = 1.. N , such that

u = u1 + u2.

In addition, one has the stability estimate

‖u1‖PH1(Ω) + ‖u2‖XN (Ω) ≤ C ‖u‖XN (Ω) (3.1)

where the constant C is independent of u.
Proof. For anyw ∈XN (Ω, ε), we definemj(w) := (curlw, 1)L2(Ωj), for j = 1.. N .

To prove our claim, let us build explicitly a family (f j)j=1.. N−1 of elements of
HN (Ω, ε), such that

u2 = u−
N−1∑
i=1

ci f i with ci =

i∑
k=1

mk(u), i = 1.. N − 1 (3.2)



Compact imbeddings in electromagnetism 5

automatically fulfills the conditions mj(u2) = 0, j = 1.. N .
For j = 1.. N − 1, let nj be the unit normal vector to Aj , going from Ωj to Ωj+1,
and τ j such that (τ j ,nj) is a direct, orthonormal basis. Let Mj be a given interior
point of Aj , and let rj be the distance to Mj . Next, define f j := Cjζj(rj)τ j , with
a positive-valued function ζj ∈ D(R+), equal to 1 in a neighborhood of 0, with
support such that supp f j ∩ S = ∅ and (supp f j ∩ A) ⊂ Aj . The constant Cj
is chosen so that (curlf j , 1)L2(Ωj) =

∫
Aj
f j · τ j = 1. Note that, by construction,

f j |Ωj · τ − f j |Ωj+1 · τ = 0 and εf j |Ωj ·nj − εf j |Ωj+1 ·nj = 0. Since f j is smooth on
Ωj and Ωj+1 (and supported in Ωj ∪ Ωj+1), we infer that f j ∈HN (Ω, ε).
Now, let u2 = u −

∑N−1
i=1 ci f i ∈ XN (Ω, ε) be defined as in (3.2), and let us check

that mj(u2) = 0, j = 1.. N . First, for 1 ≤ j ≤ N , 1 ≤ i ≤ N − 1, we remark that

mj(f i) =

 1 if j = i
−1 if j = i+ 1
0 else .

So, we have

m1(u2) = m1(u)−
N−1∑
i=1

cim1(f i) = m1(u)− c1 = 0,

and, for j = 2.. N − 1,

mj(u2) = mj(u)−
N−1∑
i=1

cimj(f i) = mj(u)− cj + cj−1 = 0.

On the other hand,

mN (u2) = mN (u) + cN−1 =

N∑
i=1

mi(u) = 0 because u · τ = 0 on ∂Ω.

Finally, let u1 :=
∑N−1
i=1 ci f i ∈ HN (Ω, ε). For i = 1.. N − 1, there holds |ci| ≤∑i

k=1 |mk(u)| ≤
∑i
k=1

√
|Ωk| ‖curlu‖L2(Ωk) ≤

∑i
k=1

√
|Ωk| ‖u‖XN (Ω). As a conse-

quence, ‖u1‖PH1(Ω) ≤ C1 ‖u‖XN (Ω). This leads to (3.1), as

‖u2‖XN (Ω) ≤ ‖u1‖XN (Ω) + ‖u‖XN (Ω) ≤ C2 ‖u1‖PH1(Ω) + ‖u‖XN (Ω) .

Theorem 3.2. Let u ∈ XN (Ω, ε). There exist u0 ∈ HN (Ω, ε) and ϕ ∈ H1
0 (Ω)

with div (ε∇ϕ) ∈ L2(Ω), such that

u = u0 +∇ϕ.

Furthermore, one has the stability estimate

‖u0‖PH1(Ω) + ‖∇ϕ‖L2(Ω) + ‖div (ε∇ϕ)‖L2(Ω) ≤ C ‖u‖XN (Ω)

where the constant C is independent of u.
Proof. Let u ∈ XN (Ω, ε). Thanks to proposition 3.1, there exist u1 ∈HN (Ω, ε)

and u2 ∈XN (Ω, ε) such that u = u1 + u2, with (curlu2, 1)L2(Ωj) = 0, for j = 1.. N .
In addition, we have the estimate

‖u1‖PH1(Ω) + ‖u2‖XN (Ω) ≤ C1 ‖u‖XN (Ω) .
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Let us begin by a study of u2. Thanks to the assumption (curlu2, 1)L2(Ωj) = 0, for
every j = 1.. N , there exist one, and only one up to a constant, φj in H1(Ωj) that
solves ∣∣∣∣∣∣

−∆φj = curl curl φj = curlu2 in Ωj
∂φj

∂nj
= 0 on ∂Ωj .

(3.3)

All polygons Ωj are convex, so φj ∈ H2(Ωj) (cf. theorem 2.4.3 of [19]). Next, we
define v ∈ L2(Ω) by v|Ωj = curl φj , for j = 1.. N : it belongs to PH1(Ω,P), and
‖v‖PH1(Ω) ≤ C2 ‖curlu2‖L2(Ω). In addition, for j = 1.. N , k = 1.. nj , there holds

v · τ kj =
∂φj

∂nkj
= 0 (3.4)

where τ kj is such that (τ kj ,n
k
j ) is a direct, orthonormal basis. Consequently, curlv

belongs to L2(Ω), and w := u2 − v ∈ H(curl ; Ω) is curl-free. According to theorem
2.9 of [17, chapter 1] and thanks to the connectedness of ∂Ω, there exists one, and
only one ϕ1 ∈ H1

0 (Ω) such that

w = ∇ϕ1.

So far, u has been split as

u = u1 + v +∇ϕ1

where u1 ∈ HN (Ω, ε), v ∈ PH1(Ω) and ϕ1 ∈ H1
0 (Ω). However, except when ε is

constant over Ω, div (εv) does not belong to L2(Ω). Using either theorem 1.5.2.8
of [18] or theorem 1 of [3], one can lift the normal trace of vj on ∂Ωj , resulting in
r ∈ PH2(Ω,P) ∩H1

0 (Ω) such that rj ∈ H2(Ωj) ∩H1
0 (Ωj) that fulfills

∂rj

∂nkj
|∂Ωkj

=
(
vj · nkj

)
|∂Ωkj

, k = 1.. nj , j = 1.. N

and ‖r‖PH2(Ω) ≤ C3 ‖v‖PH1(Ω) .

Note that this is possible as soon as
(
vj · nkj

)
|∂Ωkj

∈ H̃ 1
2 (∂Ωkj ): as a matter of fact,

there holds vj · nkj =
∂φj

∂τ kj
∈ H̃ 1

2 (∂Ωkj ), because
∂φj

∂nk
′
j

= 0 for all k′ = 1.. nj .

Define next u3 := v −∇r. This field is such that

i) u3 ∈ L2(Ω)

ii) u3|Ωj ∈H
1(Ωj)

iii) curlu3 = curlv = curlu2 ∈ L2(Ω)
iv) u3 · τ |∂Ω = v · τ |∂Ω −∇r · τ |∂Ω =

cf. (3.4)
−∇r · τ |∂Ω =

r∈H1
0 (Ω)

0.

Now, as
(
εj u3|Ωj · nkj

)
|∂Ωkj

= 0, k = 1.. nj , j = 1.. N , one obtains div (εu3) ∈ L2(Ω).
Combining those arguments allows us to conclude that u3 ∈HN (Ω, ε) = XN (Ω, ε)∩
PH1(Ω,P).
Let ϕ := ϕ1 + r ∈ H1

0 (Ω) and u0 := u1 + u3. By construction

u = u0 +∇ϕ
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with div (ε∇ϕ) = div (εu)− div (εu0) ∈ L2(Ω). Also

‖u0‖PH1(Ω) ≤ ‖u1‖PH1(Ω) + ‖v‖PH1(Ω) + ‖∇r‖PH1(Ω)

≤ ‖u1‖PH1(Ω) + (1 + C3) ‖v‖PH1(Ω)

≤ ‖u1‖PH1(Ω) + C2 (1 + C3) ‖curlu2‖L2(Ω)

≤ C1 (1 + C2 (1 + C3)) ‖u‖XN (Ω)

‖∇ϕ‖L2(Ω) ≤ ‖u− u0‖L2(Ω)

≤ ‖u‖XN (Ω) + ‖u0‖L2(Ω)

≤ (1 + C4) ‖u‖XN (Ω)

and ‖div (ε∇ϕ)‖L2(Ω) ≤ ‖div (εu)‖L2(Ω) + ‖div (εu0)‖L2(Ω)

≤ ‖div (εu)‖L2(Ω) + C5 ‖u0‖PH1(Ω)

≤ (1 + C4 C5) ‖u‖XN (Ω)

where C4 := C1 (1 + C2 (1 + C3)) et C5 := max
j
|εj |.

4. A study of the regularity. Recall that Ω is a bounded, open, connected
polygonal set of R2, with connected boundary ∂Ω. In this section, we show that, under
some assumptions that will be described later on, the scalar potential ϕ ∈ H1

0 (Ω)
that appears in the splitting of theorem 3.2 is actually “more regular than H1”. More
precisely, we prove that there exists σ0 > 1, which depends only on Ω, on the partition
and on ε, such that one has ϕ ∈ ∩s<σ0

Hs(Ω).
Let us consider the unbounded operator F in L2(Ω):{

D(F ) :=
{
u ∈ H1

0 (Ω) |div (ε∇u) ∈ L2(Ω)
}

Fu := div (ε∇u) .
(4.1)

Now, we study the regularity of an element u ∈ D(F ). From time to time, we shall
use the notation f := Fu = div (ε∇u) ∈ L2(Ω).

Let us begin by some well-known results. Classically (chapter 2, volume 1 of [22];
theorem 2.1.3 of [19], or [2]), the following interior regularity holds.

Theorem 4.1. Let O be an open subset of Ω such that O∩S = O∩A = ∅. Then
u belongs to H2(O), with estimate

‖u‖H2(O) ≤ C
(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

Furthermore, theorem 2.1.4 of [19] provides the following regularity result around
exterior edges.

Theorem 4.2. Let O be an open subset of Ω such that O ∩ S = O ∩ Aint = ∅.
Then u belongs to H2(O), with estimate

‖u‖H2(O) ≤ C
(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

4.1. Regularity at interior edges: preliminaries. Let M be an interior
point of A ∈ Aint. Assume that Ω1 and Ω2 are the two subdomains of P such that
Ω1∩Ω2 = A. Consider d small enough so that B(M,d)∩S = ∅ and (B(M,d)∩A) ⊂ A
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where B(M,d) denotes the open ball of centre M and radius d. Evidently, the fact
that the value of ε jumps at A prevents a priori u to belong toH2(B(M,d)). However,
using a technique based on partial Fourier transform alongside one direction, we shall
prove that uj ∈ H2(B(M,d) ∩ Ωj), j = 1, 2. The proof of this result can be found
in [16] (theorem 2.1). We will give a slightly different version using the T -coercivity
approach (see [10, 8] for more details concerning this technique).

Let us begin by some geometric notations. Let (r, θ) denote the polar coordinates
with respect to M . The angular coordinate θ is chosen arbitrarily. Let χ ∈ D(R+)
be such that 0 ≤ χ ≤ 1, equal to 1 on [0; d], with support contained in [0; dM ]. Here
dM > d is small enough so that B(M,dM )∩S = ∅ and (B(M,dM )∩A) ⊂ A. Define the
radial cutoff function χM : (r, θ) 7→ χ(r) and the infinite strips I := R×I, Ij := R×Ij ,
j = 1, 2, with respectively I := ]−dM ; dM [, I1 := ]−dM ; 0[ and I2 := ]0; dM [. Without
loss of generality, we suppose that A ⊂ R× {0}, (B(M,dM ) ∩ Ωj) ⊂ Ij , j = 1, 2.

Now, we localize the study of the regularity with the help of χM . Let f̃ be the
extension of f = Fu = div (ε∇u) by 0 to I. Consider u := χM u; u belongs to
H1

0 (B(M,dM )), so its extension w := ũ by 0 to I belongs to H1(I). Consider next

p := ε (ũ∆χM + 2∇ũ · ∇χM ) + f̃χM , (4.2)

which belongs to L2(I), with compact support. According to its definition, w is a
solution to the transmission problem in the infinite strip I

(Pstrip)

Find w ∈ H1(I) such that
εj∆wj = pj in Ij , j = 1, 2
wj = 0 on ∂Ij ∩ ∂I, j = 1, 2
w1 − w2 = 0 on ∂I1 ∩ ∂I2

ε1 ∂yw1 − ε2 ∂yw2 = 0 on ∂I1 ∩ ∂I2.

4.2. Regularity at interior edges: Fourier transform. Applying the Fourier
transform with respect to x to the equations of (Pstrip) for λ ∈ Ri, one finds that
y 7→ ŵ(λ, y) :=

∫ +∞
−∞ e−λxw(x, y) dx is a solution to

(P̂strip)

εj
(
∂2
y + λ2

)
ŵj(λ, y) = p̂j(λ, y) in Ij , j = 1, 2

ŵ1(λ,−dM ) = ŵ2(λ, dM ) = 0
ŵ1(λ, 0) = ŵ2(λ, 0)
ε1 ∂yŵ1(λ, 0) = ε2 ∂yŵ2(λ, 0).

Let us introduce the symbol related to (P̂strip)

Lstrip(λ) : D(Lstrip) −→ L2(I)
v 7−→ (ε λ2 + dy ε dy)v

where D(Lstrip) :=
{
v ∈ H1

0 (I) | vj ∈ H2(Ij), j = 1, 2, ε1 v
′
1(0) = ε2 v

′
2(0)

}
.

Lemma 4.3. Assume that ε1 + ε2 6= 0. Then Lstrip(λ) is an isomorphism from
D(Lstrip) to L2(I) for all λ ∈ Ri.

Proof. Denote respectively (·, ·), (·, ·)1, (·, ·)2 the scalar products of L2(I), L2(I1)
and L2(I2). Define τ := iλ ∈ R. If ψ is a measurable function on I, we will denote
ψj := ψ|Ij , j = 1, 2. Let us introduce the sesquilinear form associated with Lstrip(λ).
For v, ψ ∈ H1

0 (I), it is defined by

a(v, ψ) :=

2∑
j=1

(
εj(v

′
j , ψ
′
j)j + τ2εj(vj , ψj)j

)
.
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Let us distinguish two cases according to the value of the ratio ε2/ε1.
• If ε2/ε1 ∈ C\R−, then the form a is coercive on H1

0 (I).
Thus, for every g ∈ H−1(I), there exists a unique v ∈ H1

0 (I) such that (ε λ2 +
dy ε dy)v = g in I. If moreover g belongs to L2(I) then d2

yv1 ∈ L2(I1) so v1 ∈ H2(I1).
Similarly, v2 ∈ H2(I2). Since Lsym(λ) is continuous from D(Lstrip) to L2(I), one
can use the open mapping theorem to conclude that Lstrip is an isomorphism for all
λ ∈ Ri.
• If ε2/ε1 ∈ R−∗ , the form a is no more coercive on H1

0 (I). Note that, as ε1 +ε2 6= 0,we
know that ε2/ε1 6= −1.
To address this difficulty, we use the T -coercivity method, cf. [10, 8]. Introduce
the operators R1, R2 such that (R1v1)(y) = v1(−y), (R2v2)(y) = v2(−y) and the
isomorphisms (T1 ◦ T1 = T2 ◦ T2 = Id) of H1

0 (I) respectively defined by

T1v :=

{
v1 on I1
−v2 + 2R1v1 on I2

and T2v :=

{
v1 − 2R2v2 on I1
−v2 on I2

.

For all v ∈ H1
0 (I), one can write, using Young’s inequality, for all η > 0,

|ε−1
1 a(v, T1v)| = |(v′1, v′1)1 + τ2(v1, v1)1 + |ε2/ε1|((v′2, v′2)2 + τ2(v2, v2)2)

+2(ε2/ε1)((v′2, (R1v1)′)2 + τ2(v2, (R1v1))2)|
≥ (1− η−1|ε2/ε1|)((v′1, v′1)1 + τ2(v′1, v

′
1)1)

+|ε2/ε1|(1− η)((v′2, v
′
2)2 + τ2(v′2, v

′
2)2).

Thus, if |ε2/ε1| < 1, taking η such that |ε2/ε1| < η < 1, one infers the existence of a
constant C independent of τ such that

|a(v, T1v)| ≥ C((v′, v′) + τ2(v, v)), ∀v ∈ H1
0 (I). (4.3)

Since T1 is an isomorphism of H1
0 (I), this proves that for every g ∈ H−1(I), there

exists a unique v ∈ H1
0 (I) such that (ε λ2 + dy ε dy)v = g.

One proceeds similarly in the case |ε2/ε1| > 1, working with T2.
Finally, we conclude as in the case ε2/ε1 ∈ C\R−.

Remark 4.4. Notice that the T -coercivity method can not be used to deal with the
case ε2 + ε1 = 0, for which ε2/ε1 = −1. Now, let us study the norm of Lsym(λ)−1,
which is an operator from L2(I) to D(Lsym).

Lemma 4.5. Assume that ε1+ε2 6= 0. Then there exists a constant C independent
of λ ∈ Ri such that∑2

j=1 ‖vj‖H2(Ij) + |λ|2 ‖v‖L2(I) ≤ C ‖Lstrip(λ)v‖L2(I),

for all v ∈ D(Lstrip).
Proof. We prove this result in the case ε2/ε1 ∈ R−∗ \{−1}, the case ε2/ε1 ∈ C\R−

being easier to tackle. Consider v ∈ D(Lsym) and denote g = Lsym(λ)v. Suppose
|ε2/ε1| < 1. According to (4.3), one can write C |λ|2 (v, v) ≤ a(v, T1v) = −(g, T1v),
with C > 0 independent of λ. Noticing that T1 is a continuous operator from L2(I)
to L2(I), one obtains the estimation

|λ|2 ‖v‖L2(I) ≤ C ‖g‖L2(I) (4.4)

where C does not depend on λ. On the other hand, since εj (λ2 +d2
y)vj = gj , j = 1, 2,

one has ∥∥d2
yvj
∥∥
L2(Ij)

≤ C ‖g‖L2(I) , j = 1, 2. (4.5)



10 L. Chesnel and P. Ciarlet Jr.

From (4.3), one can also write C(v′, v′) ≤ a(v, T1v), hence

‖dyv‖L2(I) ≤ C ‖g‖L2(I) . (4.6)

Using (4.4), (4.5) and (4.6), we can finally assert the existence of C > 0 independent
of λ ∈ Ri such that

2∑
j=1

‖vj‖H2(Ij) + |λ|2 ‖v‖L2(I) ≤ C ‖g‖L2(I) , (4.7)

for all v ∈ D(Lsym).
Working with T2, the case |ε2/ε1| > 1 can be handled similarly.

Since Lstrip(λ)ŵ(λ, ·) = p(λ, ·), thanks to lemma 4.5, one obtains

2∑
j=1

‖ŵj(λ, ·)‖H2(Ij) + |λ|2 ‖ŵ(λ, ·)‖L2(I) ≤ C ‖p̂(λ, ·)‖L2(I), ∀λ ∈ Ri.

Above, C > 0 is independent of λ.
With the help of the Parseval identity (see the lemma 5.2.4 of [21]), one deduces that
wj ∈ H2(Ij), j = 1, 2. Besides, there holds the estimate

‖w1‖H2(I1) + ‖w2‖H2(I2) ≤ C ‖p‖L2(I) .

Using the expression (4.2) of p and noticing that χM = 1 over B(M,d), one concludes

2∑
j=1

‖uj‖H2(B(M,d)∩Ωj)
≤ C

(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
.

Let us summarize this result with the
Theorem 4.6. Let O be an open subset of Ω such that O∩S = ∅ and (O∩A) ⊂

A = Ωi∩Ωj. Under the assumption εi+εj 6= 0, ui belongs to H2(O ∩ Ωi), uj belongs
to H2(O ∩ Ωj), with estimate

‖ui‖H2(O∩Ωi)
+ ‖uj‖H2(O∩Ωj)

≤ C
(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

4.3. Regularity at boundary vertices: preliminaries. To carry out the
study in the neighborhood of boundary vertices, we shall follow the method of proof
given in [16], which relies itself on the founding paper of Kondrat’ev [20].

As in the study of the regularity at interior edges, let us begin by some geometric
notations. For S ∈ Sext, let (r, θ) denote the polar coordinates with respect to S. The
angular coordinate θ is chosen in such a way that, for d > 0 small enough, there holds

B(S, d) ∩ Ω = {(r cos θ, r sin θ) | (r, θ) ∈ [0; d]× [0; θmax]} .

One has always θmax ≤ 2π.
Next, let dS > 0 be small enough, so that B(S, dS)∩S = {S}. Let χ ∈ D(R+) be

such that 0 ≤ χ ≤ 1, equal to 1 on
[
0; dS2

]
, with support contained in [0; dS ]. Then,

the radial cutoff function χS : (r, θ) 7→ χ(r) is such that supp χS ∩ S = {S}, where
supp χS is the support of χS .
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Define Ω̃ := Ω ∩ B(S, dS). We number again the JS subdomains that have S
as one of their boundary vertices, from 1 to JS . Further, if we denote by Ω̃j :=

Ωj ∩ B(S, dS), j = 1.. JS , the new numbering is such that Ω̃j and Ω̃j+1 share one
edge, for j = 1.. (JS−1), whose angle θ grows with j. Then, for j = 1.. JS , δσj denotes
the interior opening of Ω̃j (with δσj ≤ π because Ω̃j is convex), and we set σ0 := 0,
and σj := σj−1 + δσj , j = 1.. JS . By definition, there holds

∑
j=1.. JS

δσj = θmax.
Finally, we define the intervals Gj := ]σj−1;σj [, j = 1.. JS , and G := ]0;σJS [, and the
unbounded angular sectors

Γ :=
{

(x, y) ∈ R2 | r > 0, θ ∈ G
}
,

Γj :=
{

(x, y) ∈ R2 | r > 0, θ ∈ Gj
}
, j = 1.. JS .

For v ∈ L2(Ω̃) (resp. v ∈ L2(Γ)), we write vj := v|Ω̃j (resp. vj := v|Γj ), j = 1.. JS .

We introduce Λε, S , the set of singular exponents related to the vertex S, which
we define as the set of complex numbers λ ∈ C such that there is a non-zero JS-tuple
(φλ, j)

JS
j=1 ∈

∏JS
j=1H

2(Gj) which fulfills the conditions below:(
∂2
θ + λ2

)
φλ, j = 0 in Gj , j = 1.. JS

φλ, 1(0) = φλ, JS (σJS ) = 0
φλ, j(σj) = φλ, j+1(σj) j = 1.. (JS − 1)
εj ∂θφλ, j(σj) = εj+1 ∂θφλ, j+1(σj) j = 1.. (JS − 1).

Next, we localize the study of the regularity, using χS . Let f̃ be the extension of
f by 0 to Γ. Next consider u := χS u: u belongs to H1

0 (Ω̃), so its extension w := ũ
by 0 to Γ belongs to H1(Γ). Consider next

p := ε (ũ∆χS + 2∇ũ · ∇χS) + f̃χS , (4.8)

which belongs to L2(Γ), with compact support. According to its definition, w is a
solution to the transmission problem

(Psector)

Find w ∈ H1(Γ) such that
εj∆wj = pj in Γj , j = 1.. JS
w1 = 0 on ∂Γ1 ∩ ∂Γ
wJS = 0 on ∂ΓJS ∩ ∂Γ
wj − wj+1 = 0 on ∂Γj ∩ ∂Γj+1, j = 1.. (JS − 1)
εj ∂θwj − εj+1 ∂θwj+1 = 0 on ∂Γj ∩ ∂Γj+1, j = 1.. (JS − 1).

4.4. Regularity at boundary vertices: Mellin transform. For the defini-
tion of the Mellin transform, let us recall a classical lemma (see §2, chapter 2 of [24],
or Annex AA of [15]).

Lemma 4.7. Let γ ∈ R and s ∈ N.
If v ∈ V sγ (Γ), then one can define its Mellin transform

v̂(λ, ·) :=Mv(λ, ·) =

∫ +∞

0

r−λv(r, ·)
dr

r

for λ ∈ C such that <(λ) = s − γ − 1. Moreover, one has η 7→ v̂(ξ + iη, ·) ∈
L2(R, Hs(G)), where ξ := s− γ − 1.
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In the problem of interest, w belongs to H1(Γ), with a compact support. So, it also
belongs to V 1

γ (Γ), for all γ > 0. As a consequence, one can define its Mellin transform
ŵ(λ, ·) on the complex lines {λ ∈ C | <(λ) = −γ}, for all γ > 0. It follows that ŵ(λ, ·)
is well-defined over the complex half-plane {λ ∈ C | <(λ) < 0}.
Next, we shall use h := r2p, where p is defined in (4.8). Since p ∈ L2(Γ) and moreover
p is compactly supported, h belongs to V 0

−2+γ(Γ), for all γ ≥ 0. In this case, its Mellin
transform θ 7→ ĥ(λ, θ) is well-defined over the complex half-plane {λ ∈ C | <(λ) < 1}.

Multiplying by r2 the volume PDEs in (Psector), and then carrying out the Mellin
transform for λ ∈ C such that <(λ) < 0, one finds that θ 7→ ŵ(λ, θ) is a solution to

(P̂sector)

εj
(
∂2
θ + λ2

)
ŵj(λ, θ) = ĥj(λ, θ) in Gj , j = 1.. JS

ŵ1(λ, 0) = ŵJS (λ, σJS ) = 0
ŵj(λ, σj) = ŵj+1(λ, σj) j = 1.. (JS − 1)
εj ∂θŵj(λ, σj) = εj+1 ∂θŵj+1(λ, σj) j = 1.. (JS − 1).

Next, consider the Mellin symbol related to (P̂sector)

L(λ) : D(L) −→
JS∏
j=1

L2(Gj)

v 7−→
(
εj
(
d2
θ + λ2

)
vj
)JS
j=1

whereD(L) :=
{
v ∈ H1

0 (G) | vj ∈ H2(Gj), εj v
′
j(σj) = εj+1 v

′
j+1(σj), j = 1.. (JS − 1)

}
.

Lemma 4.8. Let λ ∈ B(−1; 1). Then, L(λ) is a bijective map from D(L) to∏JS
j=1 L

2(Gj) if, and only if, there holds λ /∈ Λε, S.

Proof. • If λ ∈ Λε, S , then L(λ) is not one-to-one, so it is not bijective.

• If λ /∈ Λε, S , then L(λ) is one-to-one. Let us prove that L(λ) is also onto in this
case. Let q = (qj)

JS
j=1 ∈

∏JS
j=1 L

2(Gj), and let us build a preimage v ∈ D(L) of q by
L(λ).
Consider first the problems, set in Gj

(Paj )
Find vaj ∈ H1

0 (Gj) such that:
εj
(
d2
θ + λ2

)
vaj = qj in L2(Gj),

j = 1.. JS . For a given index j, the problem (Paj ) is well-posed within the Fredholm
framework. But, the operator Tj := −d2

θ of L
2(Gj) , with domain H1

0 (Gj)∩H2(Gj), is
self-adjoint with compact resolvent. Its spectrum is equal to

{
k2π2/(σj − σj−1)2, k ∈ N∗

}
.

The first (smallest) eigenvalue of Tj , π2/(σj − σj−1)2, is therefore larger than or equal
to 1 because σj − σj−1 ≤ π. Then, for λ ∈ B(−1; 1), λ2 does not belong to the spec-
trum of Tj . For the solution of problem (Paj ) (for j = 1.. JS), uniqueness follows.
Within the Fredholm framework, this shows that, for all λ ∈ B(−1; 1), problem (Paj )
has one, and only one, soution vaj , j = 1.. JS . Moreover, results on the regularity of
solutions to elliptic PDEs indicate that vaj ∈ H2(Gj) ⊂ C1(Gj), j = 1.. JS .
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Next, let us consider the problem

(Pb)

Find (vbj)
JS
j=1 ∈

JS∏
j=1

H1(Gj) such that:

εj
(
d2
θ + λ2

)
vbj = 0 in Gj , j = 1.. JS

vb1(0) = vbJS (σJS ) = 0

vbj(σj) = vbj+1(σj) j = 1.. (JS − 1)

εj v
b
j
′(σj)− εj+1 v

b
j+1

′(σj) = −αj j = 1.. (JS − 1)

where the right-hand side αj is equal to εj vaj ′(σj)− εj+1 v
a
j+1

′(σj), j = 1.. (JS − 1).
If (vbj)

JS
j=1 solves (Pb), then the volume PDEs imply that vbj(θ) = Aj e

i λθ + Bj e
−i λθ

(resp. vbj(θ) = Aj θ+Bj) for λ 6= 0 (resp. λ = 0). Writing the transmission conditions
(there are 2 (JS−1) of them), together with the two Dirichlet boundary conditions at
0 and at σJS , one builds an algebraic set of 2 JS linear equations, with 2 JS unknowns.
Since L(λ) is one-to-one, it follows that (Pb) has one, and only one, solution.
Finally, define v by v|Gj = vaj + vbj , j = 1.. JS . It belongs to D(L), and moreover
L(λ)v = q. This proves that the operator L(λ) is onto.

Next, we state a result on the norm of L(λ)−1.
Lemma 4.9. Assume that εj + εj+1 6= 0, j = 1.. (JS − 1). Consider two real

numbers α, β with α < β. Then there exist η0 > 0 and C > 0 independent of λ such
that,

JS∑
j=1

‖d2
θvj‖L2(Gj) + |λ| ‖dθv‖L2(G) + |λ|2 ‖v‖L2(G) ≤ C ‖L(λ)v‖L2(G),

for all v ∈ D(L) and all λ ∈ C such that |=(λ)| > η0 and α < <(λ) < β.
Proof. This nice result is proved in [16] (lemma 3.6). For the sake of clarity, we

reformulate the (slightly modified) proof. Below, C > 0 designate constant numbers
independent of the functions and of λ. Define the two rectangles R1 := {(s, θ) ∈
R2 | 1/2 < s < 2 and θ ∈ G} and R2 := {(s, θ) ∈ R2 | 1/4 < s < 4 and θ ∈ G}. One
has R1 ⊂ R2. Consider ζ a smooth cutoff function which only depends on s such that
ζ = 1 on R1 and supp ζ ⊂ R2. For v ∈ D(L), define w : (s, θ) 7→ ζ(s)eλsv(θ). Using
the proof of the theorem 4.6 (cf. §4.2), one can first write

JS∑
j=1

‖wj‖H2(R1∩Γj) ≤ C (

JS∑
j=1

‖εj∆wj‖L2(R2∩Γj) + ‖∇w‖L2(R2)
). (4.9)

On the one hand, in the cartesian coordinate system (s, θ), one has ∇w(s, θ) =
((dsζ(s)+λζ(s))eλsv(θ), ζ(s)eλsdθv(θ)) and ∆(ζ(s)eλsv(θ))(s, θ) = ζ(s)(d2

θ+λ
2)eλsv(θ)+

2λdsζ(s)eλsv(θ) + d2
sζ(s)eλsv(θ). Therefore, one obtains for |λ| 6= 0

JS∑
j=1

‖εj∆wj‖L2(R2∩Γj) + ‖∇w‖L2(R2)

≤ C (‖L(λ)v‖L2(G) + ‖dθv‖L2(G) + |λ| ‖v‖L2(G)).

(4.10)

Since ds(eλsv(θ)) = λeλsv(θ); dθ(e
λsv(θ)) = eλsdθv(θ); d2

s(e
λsv(θ)) = λ2eλsv(θ);

d2
θ(e

λsv(θ)) = eλsd2
θv(θ); d2

s,θ(e
λsv(θ)) = λeλsdθv(θ), one has on the other hand

JS∑
j=1

‖wj‖H2(R1∩Γj) ≥ C (

JS∑
j=1

‖d2
θvj‖L2(Gj) + |λ| ‖dθv‖L2(G) + |λ|2 ‖v‖L2(G)). (4.11)
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Plugging (4.10) and (4.11) in (4.9), one finds
∑JS
j=1 ‖d2

θvj‖L2(Gj) + |λ| ‖dθv‖L2(G) +

|λ|2 ‖v‖L2(G) ≤ C (‖L(λ)v‖L2(G) + ‖dθv‖L2(G) + |λ| ‖v‖L2(G)). That is equivalent to

JS∑
j=1

‖d2
θvj‖L2(Gj) + (|λ| − C) ‖dθv‖L2(G) + |λ| (|λ| − C) ‖v‖L2(G) ≤ C ‖L(λ)v‖L2(G).

Taking η0 = 2C, one obtains the result of the lemma.
With the help of the analytic Fredholm theorem, one deduces the
Corollary 4.10. Assume that εj + εj+1 6= 0, j = 1.. (JS − 1). Then there exist

two real numbers αS, βS with 0 < αS < 1, 0 < βS < 1 such that (B(−αS ; βS) ∩
Λε, S) ⊂ Ri. In addition, the cardinality of B(−αS ; βS) ∩ Λε, S is finite.

Using the Parseval identity (see the lemma 6.1.4 of [21]), one can now state an
isomorphism result between weighted spaces (theorem 3.7 of [16]).

Theorem 4.11. Assume that εj + εj+1 6= 0, j = 1.. (JS − 1). Let γ ∈ R be such
that {λ ∈ C | <(λ) = 1− γ} ∩ Λε, S = ∅. Then, for all P ∈ V 0

γ (Γ), there exists one,
and only one, solution W ∈

◦
V 1
γ−1(Γ) to the transmission problem

(Pγsector)

Find W ∈ V 1
γ−1(Γ) such that:

εj∆Wj = Pj in Γj , j = 1.. JS
W1 = 0 on ∂Γ1 ∩ ∂Γ
WJS = 0 on ∂ΓJS ∩ ∂Γ
Wj −Wj+1 = 0 on ∂Γj ∩ ∂Γj+1, j = 1.. (JS − 1)
εj ∂θWj − εj+1 ∂θWj+1 = 0 on ∂Γj ∩ ∂Γj+1, j = 1.. (JS − 1).

This solution can be expressed as

W : (r, θ) 7→W (r, θ) =M−1
(
L(λ)−1Ĥ

)
(r, θ) =

1

2iπ
↑
∫
<(λ)=1−γ

rλL(λ)−1Ĥ(λ, θ)dλ

with H := r2P .
Moreover, Wj ∈ V 2

γ (Γj), j = 1.. JS, with the continuity estimate

‖W‖V 1
γ−1(Γ) +

JS∑
j=1

‖Wj‖V 2
γ (Γj)

≤ C ‖P‖V 0
γ (Γ) .

We already noticed that the right-hand side p that appears in (Psector) belongs to
L2(Γ) with compact support, so p ∈ V 0

γ (Γ) for all γ ≥ 0.
Definition 4.12. Assume that εj + εj+1 6= 0, j = 1.. (JS − 1). Let γ ≥ 0 such

that {λ ∈ C | <(λ) = 1− γ} ∩ Λε, S = ∅. We denote by w1−γ the solution to (Pγsector)
with right-hand side equal to p.
According to previous results, we know that w1−γ can be expressed as

w1−γ : (r, θ) 7→ w1−γ(r, θ) =M−1
(
L(λ)−1ĥ

)
(r, θ) =

1

2iπ
↑
∫
<(λ)=1−γ

rλL(λ)−1ĥ(λ, θ)dλ .

Moreover, w1−γ belongs to
◦
V 1
γ−1(Γ), and w1−γ

j ∈ V 2
γ (Γj), j = 1.. JS .

It turns out that, if εj +εj+1 6= 0, j = 1.. (JS−1), then wβS (where βS appears in
corollary 4.10) is well-defined, and moreover it is more regular than H1. As a matter
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of fact, one has wβS ∈
◦
V 1
−βS (Γ), with wβSj ∈ V 2

1−βS (Γj), j = 1.. JS .
The next step is to prove that w is equal to wβS . With this result, the extra regularity
result will hold, for S ∈ Sext. From now on, let us assume that εj + εj+1 6= 0,
j = 1.. (JS − 1).

Lemma 4.13. Let λ ∈ B(−1; 0) \ Λε, S. Then ŵ(λ, ·) belongs to D(L), and

ŵ(λ, ·) = L(λ)−1ĥ(λ, ·) .

Proof. As <(λ) ≤ 0, ŵ(λ, ·) is well-defined, and it belongs to H1(G), according
to lemma 4.7. But, as ŵ(λ, ·) ∈ H1(G) is a solution to (P̂sector), it is also an element
of D(L). Thanks to lemma 4.8 , there holds ŵ(λ, ·) = L(λ)−1ĥ(λ, ·).
According to theorem 4.11, this proves that

w = w−αS =
1

2iπ
↑
∫
<(λ)=−αS

rλL(λ)−1ĥ(λ, ·)dλ .

Lemma 4.14. The mapping λ 7→ L(λ)−1ĥ(λ, ·), with values in D(L), defines a
meromorphic extension of ŵ(λ, ·) over int(B(−α; 1)), for all α > 0.

Proof. According to the analytic Fredholm theorem, the mapping λ 7→ L(λ)−1 is
a meromorphic function over C, with values into the set of continuous mappings from
L2(G) to D(L). On the other hand, one can prove (see lemma 3.11 of [16]) that ĥ is
holomorphic with values in L2(G), in int(B(−α; 1)), for all α > 0. Combining these
two results leads to the conclusion.

Consider next the contour integral

CR := [−R+ iβS ;R+ iβS ]∪[R+ iβS ;R− iαS ]∪[R− iαS ;−R− iαS ]∪[−R− iαS ;−R+ iβS ]

in the complex plane with R > 0. As λ 7→ rλL(λ)−1ĥ is meromorphic in the strip
B(−αS ; βS), Cauchy’s theorem indicates that

wβS − w =
1

2iπ
↑
∫
<(λ)=βS

rλL(λ)−1ĥ(λ, ·)dλ−
1

2iπ
↑
∫
<(λ)=−αS

rλL(λ)−1ĥ(λ, ·)dλ

= limR→+∞

∫
CR
rλL(λ)−1ĥ(λ, ·)dλ

=
∑

λ∈Λε, S ∩B(−αS ; βS)

Res
λ

rλL(λ)−1ĥ(λ, ·) .

Let λ ∈ Λε, S ∩ B(−αS ; βS). One can prove (see lemma 5.1.4, theorems 5.4.1 and
6.1.4 of [21], or alternately [11]), that the residual Res

λ
rλL(λ)−1ĥ(λ, ·) can be de-

composed on a finite set of functions like rλ
∑K
k=0(log r)kϕk(θ)/k!, with ϕk ∈ H1

0 (G),
for k = 0..K. Now, according to corollary 4.10, one has (Λε, S ∩ B(−αS ; βS)) ⊂ Ri.
As a consequence, for λ ∈ (Λε, S ∩ B(−αS ; βS)), a non-vanishing function (r, θ) 7→
rλ
∑K
k=0(log r)kϕk(θ)/k! does not belong to H1. Since wβS and w both belong locally

to H1 in a neighborhood of the origin, it follows that necessarily∑
λ∈Λε, S ∩B(−αS ; βS)

Res
λ

rλL(λ)−1ĥ(λ, ·) = 0.
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Thus, w = wβS . This implies w ∈ V 1
−βS (Γ), wj ∈ V 2

1−βS (Γj), j = 1.. JS , with the
continuity estimate of theorem 4.11

‖w‖V 1
−βS

(Γ) +

JS∑
j=1

‖wj‖V 2
1−βS

(Γj)
≤ C1 ‖p‖V 0

1−βS
(Γ)

where the constant C1 depends only on βS .
We are now able to state the regularity result at boundary vertices. Recall that p,

defined in (4.8), belongs to L2(Γ) with compact support, so p is in V 0
1−βS (Γ) (βS < 1),

so one may write

‖p‖V 0
1−βS

(Γ) =
∥∥(x2 + y2)1−βS p

∥∥
L2(Γ)

≤
∥∥(x2 + y2)1−βS

∥∥
L∞(Γ)

‖p‖L2(Γ)

≤ d
2(1−βS)
S ‖p‖L2(Γ)

≤ C2

(
‖f‖L2(Ω) + ‖∇u‖L2(Ω)

)
.

This leads to

‖w‖V 1
−βS

(Γ) +

JS∑
j=1

‖wj‖V 2
1−βS

(Γj)
≤ C1 C2

(
‖f‖L2(Ω) + ‖∇u‖L2(Ω)

)
which in turns leads to the regularity result for boundary vertices.

Theorem 4.15. Assume that εj+εj+1 6= 0, j = 1.. (JS−1). Then, for βS ∈ ]0; 1[
defined in corollary 4.10, there holds

‖u‖
V 1
−βS

(Ω∩B(S,
dS
2 ))

+

JS∑
j=1

‖uj‖V 2
1−βS

(Ωj ∩B(S,
dS
2 ))
≤ C

(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

4.5. Regularity at interior vertices. Consider an interior vertex S ∈ Sint.
The regularity study around this vertex is very similar to the one which we carried out
in the previous subsections. One has to replace the homogeneous Dirichlet boundary
conditions at 0 and σJS = 2π by two transmission conditions.
Below, we keep the same notations. This time, we define the set Λε, S of singular
exponents related to the vertex S as the set of complex numbers λ ∈ C such that
there is a non-zero JS-tuple (φλ, j)

JS
j=1 ∈

∏JS
j=1H

2(Gj) which fulfills the conditions
below: (

∂2
θ + λ2

)
φλ, j = 0 in Gj , j = 1.. JS

φλ, 1(0) = φλ, JS (2π)
ε1 ∂θφλ, 1(0) = εJS ∂θφλ, JS (2π)
φλ, j(σj) = φλ, j+1(σj) j = 1.. (JS − 1)
εj ∂θφλ, j(σj) = εj+1 ∂θφλ, j+1(σj) j = 1.. (JS − 1).

This time, one is led to study the Mellin symbol

L(λ) : D(L) −→
JS∏
j=1

L2(Gj)

v 7−→
(
εj
(
d2
θ + λ2

)
vj
)JS
j=1



Compact imbeddings in electromagnetism 17

where

D(L) := {v ∈ H1(G) | vj ∈ H2(Gj), εJS v
′
JS (2π) = ε1 v

′
1(0),

εj v
′
j(σj) = εj+1 v

′
j+1(σj), j = 1.. (JS − 1)}.

Note that one can prove results similar to lemmas 4.8 and 4.9 and corollary 4.10,
using here the above definitions of D(L) and L(λ). Following the lines of proofs for
boundary vertices, we have

wβS − w =
∑

λ∈Λε, S ∩B(−αS ; βS)

Res
λ

rλL(λ)−1ĥ(λ, ·) .

Proceeding as before, because of the lack of homogeneous Dirichlet boundary condi-
tion, we can only conclude that∑

λ∈Λε, S ∩B(−αS ; βS)

Res
λ

rλL(λ)−1ĥ(λ, ·) = zS ,

where zS is a constant. However, this constant is not really annoying, since we are
mainly interested in the behavior of ∇u.

We conclude by the result below.
Theorem 4.16. Assume that εj + εj+1 6= 0, j = 1.. (JS − 1). Then, there exists

a constant number zS such that there holds, with βS ∈ ]0; 1[ defined in corollary 4.10,

‖u+ zS‖V 1
−βS

(Ω∩B(S,
dS
2 ))

+

JS∑
j=1

‖uj + zS‖V 2
1−βS

(Ωj ∩B(S,
dS
2 ))
≤ C

(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

4.6. Global regularity. Let us go back to the global regularity problem. We
recall that for all S ∈ S, VS := Ω ∩ B(S, dS) is a neighborhood of S such that
VS ∩ S = {S}. Consider next an open set V0 ⊂ Ω such that V0 ∩ S = ∅ and
Ω = V0 ∪ (∪S∈SVS). For m ∈ N and γ ∈ R, let us introduce the functional space

Km
γ (Ω) := {v ∈ D′(Ω) | v ∈ Hm(V0) and

∀α ∈ N, |α| ≤ m, ∀S ∈ S, r|α|−m+γ
S ∂αxv ∈ L2(VS)} ,

endowed with the norm

‖v‖Km
γ (Ω) := (‖v‖2Hm(V0) +

∑
|α|≤m

‖r|α|−m+γ
S ∂αxv‖2L2(VS))

1
2 ,

where (rS , θS) are the local polar coordinates associated with the vertex S.

In addition, for j = 1.. N , m ∈ N et γ ∈ R, let us introduce the functional spaces

Km
γ (Ωj) := {v ∈ D′(Ωj) | v ∈ Hm(V0 ∩ Ωj) and

∀α ∈ N, |α| ≤ m,∀S ∈ S, r|α|−m+γ
S ∂αxv ∈ L2(VS ∩ Ωj)} ,
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endowed with the norms

‖v‖Km
γ (Ωj) := (‖v‖2Hm(V0 ∩Ωj)

+
∑
|α|≤m

‖r|α|−m+γ
S ∂αxv‖2L2(VS ∩Ωj)

)
1
2 .

Using a partition of unity, and with the help of theorems 4.1, 4.2, 4.6, 4.15 and 4.16,
we can conclude that the following global regularity result holds.

Theorem 4.17. Assume that, for all couples of subdomains (Ωi,Ωj) of Ω whose
boundary share a common edge, one has εi+εj 6= 0. If one lets β := minS∈S βS, then

‖∇u‖K0
−β(Ω)2 +

N∑
j=1

‖∇u‖K1
1−β(Ωj)2

≤ C
(
‖div (ε∇u)‖L2(Ω) + ‖∇u‖L2(Ω)

)
where the constant C is independent of u.

5. Compact imbedding of XN (Ω, ε) into L2(Ω). We have now at hand all
results to prove that the imbedding of XN (Ω, ε) into L2(Ω) is compact.

Theorem 5.1. Let Ω ⊂ R2 be a bounded, open, connected polygonal set of R2,
partitioned into N open, polygonal and disjoint subsets Ωj. Assume that, for all
couples of subsets (Ωi,Ωj) whose boundary share a common edge, one has εi+εj 6= 0.
Then, the imbedding of XN (Ω, ε) into L2(Ω) is compact.

Proof. Let (un)n∈N be a bounded sequence of elements XN (Ω, ε). Theorem
3.2 shows that we can associate to (un)n∈N two sequences, respectively (u0n)n∈N ∈
HN (Ω, ε)N and (ϕn)n∈N ∈ D(F )N, such that

un = u0n +∇ϕn , ∀n ∈ N.

In addition, the same theorem states that (u0n)n∈N is bounded in PH1(Ω,P), whereas
(div (ε∇ϕn))n∈N and (∇ϕn)n∈N are respectively bounded in L2(Ω), and in L2(Ω).
But we know that PH1(Ω,P) is compactly imbedded into L2(Ω). For instance, we
remark that PH1(Ω,P) ⊂ ∩s< 1

2
Hs(Ω), and that Hs(Ω) is compactly imbedded into

L2(Ω) for any s > 0, when Ω is bounded.
One has only to study the sequence (∇ϕn)n∈N. Denote β := minS∈S βS , where the
real numbers βS are defined in corollary 4.10. Theorem 4.17 allows us to prove that
the sequences (∇ϕn|Ωj )n∈N are bounded in K1

1−β(Ωj)
2, for j = 1.. N . Since β > 0,

one has 1−β < 1, so that K1
1−β(Ωj)

2 is compactly imbedded into L2(Ωj) (cf. lemma
6.2.1 of [21]), for j = 1.. N .
The conclusion follows.

6. Extensions – Case of a curvilinear polygonal domain Ω. Here, we use
the definition of a curvilinear polygonal domain given (for instance) in [13].

Definition 6.1. The open subset Ω of R2 has a C2 curvilinear polygonal bound-
ary ∂Ω if, for all points a of ∂Ω, there exist ra > 0 and a diffeomorphism χa,
such that χa is a piecewise, C2-diffeomorphism that maps the neighborhood Va :=
Ω ∩ B(a, ra) of a to a neighborhood of the origin O, included into the plane sector
Γa := {(r cos θ, r sin θ) | r ≥ 0, θ ∈ [0;ωa]} of opening ωa ∈ ]0; 2π[, a being sent to O.

With the help of local maps and going back to the “strict” polygonal boundary
case, one is able to prove the result below.
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Theorem 6.2. (Curvilinear polygon case) Let Ω ⊂ R2 be a bounded, open,
connected subset of R2, with a C2 curvilinear polygonal, connected boundary. Let Ω be
partitioned into N open, disjoint subsets Ωj with C2 curvilinear polygonal boundaries.
Assume that, for all couples of subsets (Ωi,Ωj) whose boundary share a common edge,
one has εi + εj 6= 0.
Then, the imbedding of XN (Ω, ε) into L2(Ω) is compact.

7. Case of a non-compact imbedding ofXN (Ω, ε) into L2(Ω). To conclude,
let us present a negative compact imbedding result. Define Ω1 := ]−1; 0[ × ]0; 1[,
Ω2 := ]0; 1[ × ]0; 1[ and Ω := ]−1; 1[ × ]0; 1[ (so that the partition of Ω is symmetric
with respect to the (Oy)-axis). According to theorem 5.1, the imbedding of XN (Ω, ε)
into L2(Ω) is compact when ε1 + ε2 6= 0. However, one has the

Proposition 7.1. Assume that ε1 + ε2 = 0. Then the imbedding of XN (Ω, ε)
into L2(Ω) is not compact.

Proof. The idea of the proof can be traced back to proposition 2.7 of [1]. Let A
denote the edge A := Ω2 ∩ Ω1. We recall that H̃

1
2 (A) is the subset of H

1
2 (A), made

up of those elements whose extension by 0 to R belongs to H
1
2 (R). Let (gk)k∈N be

a sequence of elements of H̃
1
2 (A), weakly converging to 0 in H̃

1
2 (A), and such that

there is no subsequence that converges strongly in H̃
1
2 (A).

For all k ∈ N, consider the unique solutions to the problems

Find ϕk1 ∈ H1(Ω1) such that
∆ϕk1 = 0
ϕk1 |∂Ω∩ ∂Ω1

= 0
ϕk1 |A = gk

Find ϕk2 ∈ H1(Ω2) such that
∆ϕk2 = 0
ϕk2 |∂Ω∩ ∂Ω2

= 0
ϕk2 |A = gk

.

Using the symmetry of the domain, one shows easily that

ϕk1(x, y) = ϕk2(−x, y), a.e. (x, y) ∈ Ω1.

In addition, since the contrast is equal to −1, the element ϕk of H1
0 (Ω) defined by its

restrictions

ϕk :=

{
ϕk1 in Ω1

ϕk2 in Ω2

satisfies div (ε∇ϕk) = 0.
By construction, the sequence (ϕk)k∈N is bounded in H1(Ω), and moreover it goes
weakly to 0 in H1(Ω) as the mapping gk 7→ ϕk is continuous from H̃

1
2 (A) to H1

0 (Ω).
However, there exists no subsequence of (ϕk)k∈N that converges strongly to 0 inH1(Ω)
(argue by contradiction, using the continuity of the trace mapping on A).

Next, define uk := ∇ϕk. For all k ∈ N, there holds curluk = 0 and div (εuk) = 0.
The sequence (uk)k∈N is thus bounded inXN (Ω, ε), and moreover it converges weakly
to 0 in L2(Ω). On the other hand, one can not extract a subsequence of (uk)k∈N, that
converges strongly (to 0) in L2(Ω). To prove this last result, let us use a contradiction
argument: assume there exists a subsequence (ũk)k∈N of (uk)k∈N which converges
strongly in L2(Ω). Then the corresponding subsequence (ϕ̃k)k∈N converges strongly
(to 0) in H1(Ω), hence the contradiction.

Remark 7.2. This negative imbedding result can obviously be extended to a
symmetrically partitioned subset of R3.
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