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ON THE GENERAL ADDITIVE DIVISOR PROBLEM

ALEKSANDAR IVIĆ AND JIE WU

Abstract. We obtain a new upper bound for
∑

h6H ∆k(N, h) for 1 6 H 6 N ,

k ∈ N, k > 3, where ∆k(N, h) is the (expected) error term in the asymptotic
formula for

∑

N<n62N dk(n)dk(n+h), and dk(n) is the divisor function generated

by ζ(s)k. When k = 3 the result improves, for H > N1/2, the bound given in
the recent work [1] of Baier, Browning, Marasingha and Zhao, who dealt with the
case k = 3.

1. Introduction

Let dk(n) denote that (generalized) divisor function, which represents the number
of ways n can be written as a product of k (∈ N) factors. Thus

∞
∑

n=1

dk(n)

ns
= ζ(s)k (ℜe s > 1),

where ζ(s) is the familiar zeta-function of Riemann. In particular d1(n) ≡ 1 and
d2(n) =

∑

δ|n 1 is the number of positive divisors of n. The function dk(n) is a
multiplicative function of n, and

dk(p
ν) = (−1)ν

(−k

ν

)

=
k(k + 1) · · · (k + ν − 1)

ν!

for primes p and ν ∈ N. The general divisor problem deals with the estimation
of ∆k(x), the error term in the asymptotic formula (see Chapter 13 of Ivić [3] and
Chapter 12 of Titchmarsh [15] for an extensive discussion)

(1.1) Dk(x) :=
∑

n6x

dk(n) = xpk−1(log x) + ∆k(x),

where

(1.2) pk−1(log x) = Res
s=1

(

ζ(s)k
xs

s

)

.

Since ζ(s) is regular in C except at s = 1 where it has a simple pole with residue
1, it transpires that pk−1(y) is a polynomial of degree k − 1, whose coefficients may
be explicitly evaluated, and in particular p1(y) = y + 2γ − 1, where γ is Euler’s
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2 ALEKSANDAR IVIĆ AND JIE WU

constant. The important constants αk, βk are defined as

(1.3)

αk := inf
{

ak : ∆k(x) ≪ xak
}

,

βk := inf

{

bk :

∫ X

1

|∆k(x)|2 dx ≪ X1+2bk

}

.

It is known that αk > βk > (k − 1)/(2k) for all k ∈ N, and the conjecture that
αk = βk = (k − 1)/(2k) for all k ∈ N is equivalent to the Lindelöf hypothesis that
ζ(1

2
+it) ≪ε (|t|+1)ε. Here and later ε (> 0) denotes arbitrarily small constants, not

necessarily the same ones at each occurrence, while ≪a,b,... means that the implied
constant in the ≪–symbol depends on a, b, . . . .

The general additive divisor problem is another important problem involving the
divisor function dk(n). It consists of the estimation of the quantity ∆k(x, h), given
by the formula

(1.4)
∑

n6x

dk(n)dk(n+ h) = xP2k−2(log x; h) + ∆k(x, h).

In (1.4) it is assumed that k > 2 is a fixed integer, and P2k−2(log x; h) is a suitable
polynomial of degree 2k − 2 in log x, whose coefficients depend on k and h, while
∆k(x, h) is supposed to be the error term. This means that we should have

(1.5) ∆k(x, h) = o(x) as x → ∞,

but unfortunately (1.5) is not yet known to hold for any k > 3, even for fixed h.
However, when we consider the sum

(1.6)
∑

h6H

∆k(x, h),

we may reasonably hope that a certain cancelation will occur among the individual
summands ∆k(x, h), since there are no absolute value signs in (1.6). It turns out
that it is precisely the estimation of the sum in (1.6) which is relevant for bounding
the integral

(1.7)

∫ T

0

|ζ(1
2
+ it)|2k dt,

which is of great importance in the theory of the Riemann zeta-function (see the
monographs [3, 4, 15]).

For k = 1 the sum in (1.6) is trivial, while for k = 2 it was extensively studied
by many authors, including Kuznetsov [10], Motohashi [13], Ivić & Motohashi [8]
and Meurman [12]. The natural next step in (1.6) is to deal with the case k = 3,
but the works of A.I. Vinogradov and Takhtadžjan [19, 20] and A.I. Vinogradov
[16, 17, 18] show that the analytic problems connected with the Dirichlet series
generated by d3(n)d3(n + h) are overwhelmingly hard. The ensuing problems are
connected with the group SL(3,Z), and they are much more difficult than the
corresponding problems connected with the group SL(2,Z) which appear in the case
k = 2. The latter involve the spectral theory of the non-Euclidean Laplacian, which
was extensively developed in recent times by Kuznetsov (see e.g., [11]), Iwaniec and
others (see Motohashi’s monograph [14] for applications of spectral theory to the
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theory of ζ(s)). Thus at present in the case k = 2 we have sharp explicit formulas,
while in the case k > 2 we have none.

A.I. Vinogradov [18] conjectured that ∆k(x, h) ≪ x1−1/k, without stating for
which range of h this sharp bound should hold. Very likely this bound is too strong,
and (even for fixed h) it seems probable that a power of a logarithm should be
included on the right-hand side. More importantly, one hopes that the bound

(1.8)
∑

h6H

∆k(x, h) ≪k,ε Hx1−1/k+ε for 1 6 H 6 x(k−2)/k+δk

holds uniformly in H for fixed k > 3 and some δk > 0, which was stated in [5]. Note
that Vinogradov’s conjecture in the form ∆k(x, h) ≪k,ε x1−1/k+ε trivially implies
(1.8), but the important point is that there are no absolute value signs in the sum
in (1.8). One can also assume (1.8) to hold in the case k = 2 for 1 6 H 6

√
x, say.

Then it would follow that the inequality

(1.9)

∫ T+G

T−G

∣

∣

∣
ζ(1

2
+ it)

∣

∣

4
dt ≪ε GT ε

holds with G = T 5/6, whereas it is known (see e.g., [7]) that G = T 2/3 is uncondi-
tionally permissible. It was conjectured in [5] that for any k > 2 and h > 1 one
has

(1.10) ∆k(x, h) = Ω
(

x1−1/k
)

.

For k = 2 and fixed h this conjecture was proved by Motohashi [13]. As usual,
f(x) = Ω

(

g(x)
)

means that lim
x→∞

f(x)/g(x) 6= 0.

The general additive divisor problems is connected to the power moments of
|ζ(1

2
+ it)| (see e.g., [3] and [4] for an extensive account). In 1996 the first author [5]

proved that

(1.11)

∫ T

0

∣

∣ζ(1
2
+ it)

∣

∣

6
dt ≪ε T

1+ε + T (α+3β−1)/2+ε

provided that
∑

h6H

∆3(x, h) ≪ε H
αxβ+ε

holds for 1 6 H 6 x1/3+δ3 for some constant δ3 > 0, 0 6 α, β 6 1, α + β > 1. The
conjecture (1.8) with k = 3 means that we can take α = 1, β = 2/3 in (1.11) so that
the sixth moment in the form

(1.12)

∫ T

0

∣

∣ζ(1
2
+ it)

∣

∣

6
dt ≪ε T 1+ε

follows. Note that the best known exponent of T for the right-hand side of the above
integral is 5/4 (see [3, Chapter 8]).

In [6] the research begun in [5] was continued, and a plausible heuristic evaluation
of the polynomial P2k−2(x; h) in (1.4) was made. Yet another (heuristic) evaluation
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of the sum in (1.5) was made later by Conrey and Gonek [2] in 2001. Moreover, it
was shown in [6] that, for a fixed integer k > 3 and any fixed ε > 0, we have

(1.13)

∫ T

0

|ζ(1
2
+ it)|2k dt ≪k,ε T

1+ε

(

1 + sup
T 1+ε<M≪T k/2

Gk(M ;T )

M

)

,

if, for T 1+ε 6 M ≪ T k/2 and M < M ′ 6 2M ,

(1.14) Gk(M ;T ) := sup
M6x6M ′

16t6M1+ε/T

∣

∣

∣

∑

h6t

Dk(x, h)
∣

∣

∣
.

This result, which generalizes (1.11), provides a directlink between upper bounds
for the 2k-thmoment of |ζ(1

2
+ it)| and sums of Dk(x, h) over the shift parameter

h. The result also gives an insight as to the limitations of the attack on the 2k-th
moment of |ζ(1

2
+ it)| via the use of estimates for ∆k(x, h). Of course the problem

greatly increases in complexity as k increases, and this is one of the reasons why in
[5] only the case k = 3 was considered. The case k = 2 was not treated, since for the
fourth moment of |ζ(1

2
+ it)| we have an asymptotic formula with precise results for

the corresponding error term (see e.g., [7] and [14]). Note that (1.13)–(1.14) again
lead to the sixth moment bound (1.12) if the conjecture (1.8) holds with k = 3.

2. The general additive divisor problem

The main objective of this note is to study the averaged sum (1.6), when k > 3
is a fixed integer. To this end we introduce more notation, defining

(2.1) Dk(N, h) :=
∑

N<n62N

dk(n)dk(n+ h),

and letting henceforth

(2.2) ∆k(N ; h) := Dk(N, h)−
∫ 2N

N

Sk(x, h) dx,

so that ∆k(N ; h) in (2.2) differs slightly from (1.4); in fact it equals ∆k(2N, h) −
∆k(N, h) in the notation of (1.4). Here we follow the notation of [1], based on the
approach of Conrey and Gonek [2], who made conjectures on the high moments of
|ζ(1

2
+ it)|. Let us also define

Sk(x, h) :=

∞
∑

q=1

cq(h)

q2
Qk(x, q)

2,

where µ(n) is the Möbius function, cq(h) :=
∑

d|(h,q) dµ(q/d) is the Ramanujan sum

and Qk(x, q) is defined as follows. If ϕ(n) is the Euler totient function, set

Ψd,e(s, q, k) :=
dµ(d)µ(e)

ϕ(d)e

∏

p|(eq/d)

{(

1− 1

ps

)k ∞
∑

ν=0

dk
(

pν+νp(eq/d)
)

pνs

}

,
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where here and later νp(m) is the p-adic valuation of m. Then we define

Qk(x, q) :=
1

2πi

∫

|s−1|=1/8

ζ(s)k
∑

d|q

∑

e|d

Ψd,e(s, q, k)

(

ex

dq

)s−1

ds

= Res
s=1

{

ζ(s)k
∑

d|q

∑

e|d

Ψd,e(s, q, k)

(

ex

dq

)s−1}

,

by the residue theorem. Thus Qk(x, q) is a polynomial of degree 2k − 2 whose
coefficients depend on q, and may be explicitly evaluated. The work of Conrey-
Gonek (op. cit.) predicts, as stated in (2.2), that Dk(N, h) is well approximated by
∫ 2N

N
Sk(x, h) dx, which equals N times a polynomial in logN of degree 2k − 2, all

of whose coefficients depend on h and k. This is in agreement with [5] (when k = 3
and [6] (in the general case), although the shape of the polynomial in question is
somewhat different. Conrey and Gonek even predict that uniformly

∆k(N ; h) ≪ε N
1/2+ε for 1 6 h 6 N1/2.

This conjecture is probably too strong, and one feels that more likely the bound
∆k(N ; h) ≪ε N

1−1/k+ε is closer to the truth (see (1.10)).

In a recent work [1], Baier, Browning, Marasingha and Zhao obtain new results
involving averages of ∆3(N ; h) (they employ the terminology “shifted convolutions
of d3(n)”, which seems appropriate). They proved that

(2.3)
∑

h6H

∆3(N ; h) ≪ε N
ε
(

H2 +H1/2N13/12
)

(1 6 H 6 N),

and if N1/3+ε 6 H 6 N1−ε, then there exists δ(ε) > 0 such that

(2.4)
∑

h6H

|∆3(N ; h)|2 ≪ε HN2−δ(ε).

These results can be used, in conjunction with the bounds (1.13)–(1.14) when k = 3,
to bound the integral in (1.11), but they will produce only the exponent 11/8 on the
right-hand side of (1.11), hence no improvement on the known result for the sixth
moment of |ζ(1

2
+ it)|.

Remark 1. Note that (2.3), in the range N1/6+ε 6 H 6 N1−ε, provides an
asymptotic formula for the averaged sum

∑

h6H D3(N, h) (see (2.1)). However, it
should be noted that no asymptotic formula for the individual D3(N, h) has been
found yet, and in general for ∆k(N ; h) when k > 3. In fact, it is worth pointing
out that when 1 6 H 6 N1/6, the bound in (2.3) is worse than the trivial bound
HN1+ε. Namely we have

∑

h6H

Dk(N, h) ≪ε

∑

h6H

∑

N<n62N

(n+ h)ε/2 ≪ε (HN)1+ε/2 ≪ε HN1+ε.

On the other hand we have
∑

h6H

∫ 2N

N

Sk(x, h) dx ≪ε HN1+ε,
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which is obvious from (3.8). Hence by (2.2) it follows that

(2.5)
∑

h6H

∆k(N ; h) ≪ε HN1+ε (1 6 H 6 N),

and clearly (2.5) for k = 3 improves (2.3) for 1 6 H 6 N1/6. The aim of this note is

to give a bound for the sum in (1.6), or equivalently for the average of (2.2), which
for k = 3 improves (2.3) for a certain range of H . The result is contained in the
following

Theorem 1. For fixed k > 3 we have

(2.6)
∑

h6H

∆k(N ; h) ≪ε N
ε
(

H2 +N1+βk
)

(1 6 H 6 N),

where βk is defined by (1.3).

Note that we have β3 = 1/3, β4 = 3/8 (see Chapter 13 of [3]), β5 6 9/20 (see
Zhang [21]), β6 6 1/2, etc. For a discussion of the values of αk and βk, see also the
paper by Ouellet and Ivić [9].

Corollary 1. . We have, for 1 6 H 6 N ,

(2.7)

∑

h6H

∆3(N ; h) ≪ε N
ε
(

H2 +N4/3
)

,

∑

h6H

∆4(N ; h) ≪ε N
ε
(

H2 +N11/8
)

,

∑

h6H

∆5(N ; h) ≪ε N
ε
(

H2 +N29/20
)

,

∑

h6H

∆6(N ; h) ≪ε N
ε
(

H2 +N3/2
)

.

Remark 2. Since it is known that βk < 1 for any k, this means that the bound
in (2.6) improves on the trivial bound HN1+ε in the range Nβk+ε 6 H 6 N1−ε.
Our result thus supports the assertion that ∆k(N ; h) is really the error term in the
asymptotic formula for Dk(N, h), as given by (3.1) and (3.2). In the case when
k = 3, we have by (2.7) an improvement of (2.3) when H > N1/2.

3. Proof of Theorem 1

We begin by noting that obviously
∑

h6H

dk(n+ h) =
∑

m6n+H

dk(m)−
∑

m6n

dk(m).

Therefore by (1.1)–(1.2) and (2.1)–(2.2) we can write

(3.1)

∑

h6H

∆k(N, h) =
∑

N<n62N

dk(n)
∑

h6H

dk(n+ h)−
∑

h6H

∫ 2N

N

Sk(x, h) dx

= Mk(N,H) +Rk(N,H)−
∑

h6H

∫ 2N

N

Sk(x, h) dx,
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say, where

Mk(N,H) :=
∑

N<n62N

dk(n) Res
s=1

(

ζ(s)k
(n +H)s − ns

s

)

,

R(N,H) :=
∑

N<n62N

dk(n)
(

∆k(n +H)−∆k(n)
)

,

where ∆k(x) is defined by (1.1). It is rather easy to estimate Rk(N,H). Namely
since dk(n) ≪ε n

ε, we have trivially

Rk(N,H) ≪ε N
ε
∑

n63N

|∆k(n)|.

For n < t < n+ 1, we obviously have

∆k(n)−∆k(t) = tpk−1(log t)− npk−1(logn) ≪ (logn)k−1.

Thus

(3.2)

Rk(N,H) ≪ε N
ε
∑

n63N

∫ n+1

n

|∆k(n)| dt

≪ε N
ε
∑

n63N

∫ n+1

n

|∆k(t)| dt+N1+ε

≪ε N
ε

∫ 4N

1

|∆k(t)| dt+N1+ε

≪ε N
ε

(

N

∫ 4N

1

|∆k(t)|2 dt
)1/2

+N1+ε

≪ε N
1+βk+ε,

where we used the Cauchy-Schwarz inequality for integrals and the mean square
bound (1.3) in the last step.

To estimate Mk(N,H), set

uk(x) := Res
s=1

(

ζ(s)k
(x+H)s − xs

s

)

.

Then we can write

Mk(N,H) =

∫ 2N+0

N

uk(x) dDk(x).

But we have, since

Dk(x) = Res
s=1

(

ζ(s)k
xs

s

)

+∆k(x)

in view of (1.1) and (1.2),

(3.3) Mk(N,H) =

∫ 2N

N

uk(x) Res
s=1

(

ζ(s)kxs−1
)

dx+

∫ 2N

N

uk(x) d∆k(x).
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Further note that

(3.4)
uk(x) = ypk−1(log y)

∣

∣

∣

x+H

x
≪ H(log x)k−1,

u′
k(x) = Res

s=1
ζ(s)k

{

(x+H)s−1 − xs−1
}

≪ε x
ε.

On integrating by parts and using (1.3) and (3.4) we obtain, similarly to (3.2),

(3.5)

∫ 2N

N

uk(x) d∆k(x) = uk(x)∆k(x)
∣

∣

∣

2N

N
−
∫ 2N

N

∆k(x)u
′
k(x) dx

≪ε HNαk+ε +N1+βk+ε.

As for the other integral in (3.3), note that

(x+H)s − xs

s
=

xs

s

{

1 +
sH

x
+

(

s

2

)

H2

x2
+ · · · − 1

}

.

This gives

(3.6)

∫ 2N

N

uk(x) Res
s=1

(

ζ(s)kxs−1
)

dx = H

∫ 2N

N

(

Res
s=1

ζ(s)kxs−1
)2

dx+Oε

(

H2N ε
)

.

Therefore from (3.3), (3.5) and (3.6) we obtain

(3.7)
Mk(N,H) = H

∫ 2N

N

(

Res
s=1

ζ(s)kxs−1
)2

dx

+Oε

(

H2N ε +NHαk+ε +N1+βk+ε
)

.

Next we shall prove that

(3.8)
∑

h6H

∫ 2N

N

Sk(x, h) dx = H

∫ 2N

N

(

Res
s=1

ζ(s)kxs−1
)2

dx+Oε

(

N1+ε
)

.

The case of k = 3 has been treated in [1]. Here we repeat the same argument with
some simplification in the general case, obtaining (3.8).

First write

xs−1 =
∞
∑

n=0

(log x)n

n!
(s− 1)n.

Since Ψd,e(s, q) and (s−1)nζ(s)k with n > k are holomorphic for ℜe s > 0, Cauchy’s
theorem allows us to deduce that

Qk(x, q) =
1

2πi

k−1
∑

n=0

∫

|s−1|=1/8

ζ(s)k
∑

d|q

∑

e|d

Ψd,e(s, q)
(log(dx/eq))n

n!
(s− 1)n ds.
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Clearly for ℜe s > 1
2
, we have

Ψd,e(s, q) ≪
d

ϕ(d)e

∏

p|(eq/d)

{(

1 +
1

p1/2

)k ∞
∑

ν=0

dk(p
ν+νp(eq/d)

pνs

}

≪ε
d

ϕ(d)e

∏

p|(eq/d)

{(

1 +
1

p1/2

)k

pνp(eq/d)ε/4
∑

ν>0

pνε/4

pν/2

)}

≪ε q
ε/2.

Thus

(3.9) Qk(x, q) ≪ε,k q
ε(log x)k−1,

where the implied constant depends only on ε and k.

In view of (3.9) and the bound |cq(h)| 6 (h, q), we have

(3.10)

∑

h6H

∑

q>H

cq(h)

q2
Qk(x, q)

2 ≪ (log x)k−1
∑

h6H

∑

q>H

(h, q)

q2−ε

≪ε,k H
ε(log x)k−1.

On the other hand, it is well known that
∑

h6q cq(h) = 0 if q > 1. From this it is
easy to deduce that

∑

h6H

cq(h) =

{

H +O(1) if q = 1,

Oε(q
1+ε) if q > 1.

With the help of this relation and (3.9), we can write

(3.11)

∑

h6H

∑

q6H

cq(h)

q2
Qk(x, q)

2

= {H +O(1)}Qk(x, 1)
2 +O

(

(log x)k−1
∑

1<q6H

1

q1−ε

)

= H
(

Res
s=1

ζ(s)kxs−1
)2

+O
(

(log x)k−1Hε
)

,

where we have used the fact that

Qk(x, 1) = Res
s=1

(

ζ(s)kxs−1
)

≪k (log x)
k−1.

By combining (3.10) and (3.11), we obtain (3.8).

From (3.1), (3.2), (3.7) and (3.8) we obtain

(3.12)
∑

h6H

∆k(N,H) ≪ε N
ε
(

H2 +HNαk +N1+βk
)

(1 6 H 6 N).

But we always have

(3.13) αk 6
1
2
+ 1

2
βk.
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To see this note that, for 1 6 H 6 x, the defining relation (1.1) and dk(n) ≪ε nε

give

∆k(x)−
1

H

∫ x+H

x

∆k(y) dy =
1

H

∫ x+H

x

(∆k(x)−∆k(y)) dy

≪ε
1

H

∫ x+H

x

{

|Dk(x)−Dk(y)|+O(xε)
}

dy

≪ε Hxε.

This gives, by the Cauchy-Schwarz inequality for integrals and (1.3),

∆k(x) ≪ε
1

H

∫ x+H

x

|∆k(y)| dy +Hxε

≪ε x
1+βk+εH−1 +Hxε

≪ε x
(1+βk)/2+ε

with H = x(1+βk)/2. Hence

∆k(x) ≪ε x(1+βk)/2+ε

and (3.13) follows. Now in (3.12) we have HNαk 6 H2 for H > Nαk . If H 6 Nαk ,
then HNαk 6 N2αk 6 N1+βk by (3.13). Thus the term HNαk in (3.12) can be
discarded, and (2.6) follows. This completes the proof of the Theorem.
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[7] A. Ivić and Y. Motohashi, The fourth moment of the Riemann zeta-function, J. Number
Theory 51 (1995), 16–45.
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[9] A. Ivić and M. Ouellet, Some new estimates in the Dirichlet divisor problem, Acta Arith. 52
(1989), 241–253.

[10] N.V. Kuznetsov, Convolution of the Fourier coefficients of the Eisenstein-Maass series (in
Russian), Zap. Nauc̆n. Sem. LOMI AN SSSR 129 (1983), 43–84.



ON THE GENERAL ADDITIVE DIVISOR PROBLEM 11

[11] N.V. Kuznetsov, Petersson hypothesis for forms of weight zero and Linnik’s conjecture. Sums

of Kloosterman sums, Math. USSR Sbornik 39 (1981), 299–342.
[12] T. Meurman, On the binary additive divisor problem, in “Number theory” Proceedings of

the Turku symposium on number theory in memory of Kustaa Inkeri, Jutila, Matti (ed.) et
al., Turku, 1999, Walter de Gruyter, Berlin, 2001, 223–246.

[13] Y. Motohashi, The binary additive divisor problem, Ann. Scient. École Norm. Sup, 4e Sér.
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