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Abstract

In this article, we introduce a new method to calculate Lagrange resolvent. This technique is
based on Lagrange’s algorithm and it enables to calculate algebraically the resolvent. This algo-
rithm is based on the fundamental theorem of symmetric functions:we generalize the effectivity
of this theorem to any surgroup of the Galois’s group of the polynomial.
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Introduction

The fundamental theorem of symmetric functions has various effective forms (see, for
example, [10],[9] and [14]). The computer algebraic system Maxima has an important
library on the subject (see Symmetries in [12]). Cauchy’s method enables to reduct a
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symmetric polynomial with respect to the ideal of symmetric relations S generated by

the triangular set of Cauchy moduli ([4]). The Galois theorem is not formulated in a

constructive form but it generalizes the fundamental theorem of symmetric functions. It

is stated not rigorously as follows: Any polynomial expression on a field k in the roots of

a univariate polynomial f with coefficients in k belongs to k if and only if it is invariant

by the Galois group of f on k. Its effective calculation is the stake of the effective Galois

theory: let be a polynomial f in k[x], calculate its Galois group G on k as well as the ideal

M of its relations (this maximum ideal M contains the ideal of the symmetric relations).

In order to have an effective calculation of M, it is necessary to calculate simultaneously

the Galois group and thus resolvents ([15]). The resolvent offers a double advantage. It

excludes groups and provides primitive elements of galoisian ideals, these intermediate

ideals between S and M. The resolvent is thus a fundamental tool of Galois theory.

When the resolvent is absolute, its coefficients are symmetric in the roots of f and, as

a result, the fundamental theorem of symmetric functions can be applied. As the direct

calculation of the coefficients being too expensive, Lagrange proposed two algorithms

for its calculation. The first uses the technique of elimination, i.e. the resultant without

naming it since it does not exist yet as a mathematical object ([7]). The second fact uses

the Newton’s functions of the resolvent’s roots ([8], page 237). The resolvent function

of Maxima implements this algorithm (see resolvent:general in library Symmetries).

In [2], an algorithm based on triangular ideals and using resultants was worked out for

resolvents (absolute ones or not).

We present, in section 3, a new algorithm devoted to the algebraic method which

uses the Newton’s functions of the resolvent’s roots. This algebraic algorithm requires a

generalization of the effectivity of the fundamental theorem of the symmetric function.

We were inspired by Cauchy’s method in order to “evaluate” the multivariate polynomials

in the roots of f by using a galoisian ideal (see section 2). In particular, when the galoisian

ideal is M, this evaluation produces the effectiveness of Galois theorem. We describe our

algorithm in the free mathematics software system SAGEmath (see section 3.2). In order

to measure the effectiveness of our algorithm (see section 5), we do not take account

of optimizations of section 6. In section 6, we will note that the algorithm is naturally

parallelizable and that we can apply to him a method of calculation of products in a

ring quotiented by a triangular ideal ([3]). It presents other interests like detecting linear

factors over k[x] of resolvent while accelerating its calculation.

1. Reminder

In all this article, f is a univariate polynomial of degree n, with coefficients in a perfect

field k, α = (α1, ..., αn) denotes an n-tuple formed by n roots of f supposed distincts

(where n > 0). The extension field k(α) of k is the decomposition field of f ; recall that

we have k(α) = k[α]. Let x1, . . . , xn be algebraically independent variables; we consider

that they are ordered by x1 < x2 < . . . < xn; let k[x1, . . . , xn] be the ring of polynomials

in these variables and with coefficients in k; k(x1, . . . , xn) is its field of fractions.

We adopt the notations and the results of [15] without citing them explicitely.
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1.1. Orbits and group actions

Let L be a subgroup of the symmetric group Sn of degree n and H be a subgroup of
L. The symmetric group Sn acts naturally on the field k(x1, ..., xn) by:

Sn × k(x1, ..., xn) → k(x1, ..., xn)

(σ, P ) 7→ σ.P (x1, ..., xn) = P (x
σ(1), ..., xσ(n))

Definition 1. The orbit L.P of P under the action of L is defined by:

L.P = {σ.P | σ ∈ L}.

Definition 2. The stabilizer StabL(P ) of a polynomial P in k[x1, ..., xn] with respect
to L is defined by:

StabL(P ) = {σ ∈ L | P = σ.P}

and the stabilizer of H with respect to L is defined by:

StabL(H) = {σ ∈ L | ∀ r ∈ H r = σ.r}.

Definition 3. An invariant of L (or an L-invariant) is a polynomial P in k[x1, ..., xn]
verifying:

L.P = {P}.

It is called an L-primitif H-invariant if

H = StabL(P ) = {σ ∈ L | σ.P = P}.

When L = Sn, the polynomial P is called a primitif H-invariant.

Examples 1.

- The Vandermonde determinant δn =
∏

1≤i<j≤n(xi − xj) is a primitif An-invariant
where An is the alternating group of degree n.
- The polynomial x1x2 + x3x4 is a S4-primitif D4-invariant where

D4 =< (1, 2), (3, 4), (1, 3)(2, 4) >

is the dihedral group
- The polynomials x1 +2x2 + ...+(n− 1)xn−1 and x1x

2
2...x

n−1
n−1 are primitif In-invariants

where In is the identity group of degree n.

1.2. Symmetric polynomials

A polynomial s of k[x1, ..., xn] is called symmetric (in x1, x2, ..., xn) if s = σ.s for all
permutations σ ∈ Sn. Two important bases of the ring k[x1, ..., xn]

Sn of the symmetrical
polynomials are pointed out below:

- the elementary symmetric fonctions e0, e1, ..., en, ... in x1, ..., xn, are defined by e0 =
1, er = 0 for r > n and for r ∈ [[1, n]]

er =
∑

m∈Sn.(x1x2...xr)

m ;
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- the Newton’s functions p0, p1, ..., pn, ... in x1, ..., xn (also called power functions), are
defined by

pr =

n∑

i=1

xri .

The Girard-Newton formulae ([6]) constitute a triangular system which makes it pos-
sible to pass from a basis to another: for all integers r > 0

pre0 − pr−1e1 + · · ·+ (−1)r−1p1er−1 + (−1)rr.er = 0.

Put ai = (−1)iei(α) for i = 1, . . . , n. The polynomial f can be written in the form

f = xn + a1xn−1 + a2xn−2 + · · ·+ an

and the Girard-Newton formulae give us:

pr(α) + pr−1(α)a1 + · · ·+ p1(α)ar−1 + rar = 0.

The fundamental theorem of symmetric polynomials say that any symmetric polyno-
mial over k can be expressed as a polynomial over k in elementary symmetric polynomi-
als . Furthermore, by using Girard-Newton formulae, any symmetric polynomial on the
roots of a univariate polynomial can be expressed as a polynomial expression over k of
the power functions on these roots.

1.3. Triangular ideals

Definition 4. A triangular set T is defined by:

T = {f1(x1), ..., fn(x1, ..., xn)}

where every fi is a monic polynomial on xi and deg(fi, xi) > 0. This triangular set T is

called separable if any fi verify for all β = (β1, ..., βi−1) ∈ k̂
i−1 such that

f1(β1) = f2(β1, β2) · · · fi−1(β1, ..., βi−1) = 0,

the univariate polynomial fi(β1, ..., βi−1, xi) does not admit a multiple root.

Example 1. For n = 8, the following triangular set T is separable:

T = { f1 = x8
1 + 9x6

1 + 23x4
1 + 14x2

1 + 1,

f2 = x2 + x1,

f3 = x3
3 + (x7

1 + 8x5
1 + 16x3

1 + 3x1)x
2
3

+(x6
1 + 9x4

1 + 21x2
1 + 6)x3 + x7

1 + 9x5
1 + 23x3

1 + 14x1,

f4 = x2
4 + (x7

1 + 8x5
1 + 16x3

1 + 3x1)(x4 + x3) + x3x4 + x2
3 + x6

1 + 9x4
1 + 21x2

1 + 6,

f5 = x5 + x4 + x3 + x7
1 + 8x5

1 + 16x3
1 + 3x1,

f6 = x6 + x3,

f7 = x7 + x4,

f8 = x8 + x5 }

In fact: the polynomials f2,f5,f6,f7 and f8 satisfies the condition because they are repec-
tively linear on x2, x5, x6, x7 and x8; the polynomial f1 is irreductible over the perfect
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field Q and so separable; the polynomial f3(α1, x) is a factor of f1(x) over Q(α1) what
involves its separability; finally,

f4(x1, x3, x4) =
1

x3 − x4
(f3(x1, x3)− f3(x1, x4)),

thus its separability.

Definition 5. The Cauchy moduli of f are polynomials f1, ..., fn in k[x1, ..., xn] defined
inductively as follows:
- f1(x1) = f(x1) and
- for i = 2, ..., n:

fi(xi) =
fi−1(x1, x2, . . . , xi−2, xi−1)− fi−1(x1, x2, . . . , xi−2, xi)

xi−1 − xi
.

The Cauchy moduli form a separable triangular set.

Definition 6. An ideal I is said triangular if it is generated by a separable triangular
set.

Let I be a triangular ideal generated by the following separable triangular set:

T = {f1(x1), f2(x1, x2), ..., fn(x1, ..., xn)}.

The set T forms a minimal Gröbner basis for the lexicographic order (recall that x1 <
x2 < · · · < xn). Reducing the polynomial P of K[x1, ..., xn] by the ideal I consists on
realizing successive Euclidean divisions for each polynomial fi regarded as a polynomial
in xi for i ∈ [[1, n]]. The remainder of this division is a normal form of P in the quotient
ring k[x1, ..., xn]/I. The result of this reduction will be noted P mod I.

Algorithm ReductionTriangulaire(P,I)

Input: P ∈ k[x1, ..., xn] and f1, ..., fn, a triangular basis of I

Output: P mod I

P mod I←− P

For i ∈ [[1, n]] Do

P mod I ←− Reste(P mod I, fi, xi)

Return P mod I

where Reste(p, q, x) is the remainder of euclidean division of p by q regarded as
polynomials in x. The ideal of symmetric relations S is triangular and is generated by
the Cauchy moduli ([11]). Cauchy proposed in [4] an effective form of the fundamental
theorem of symmetric functions which we rewrite in the following form:

Theorem 7. (Cauchy, 1840) Let s be a symmetric polynomial of k[x1, . . . , xn]. Thus
s(α) is the output of the algorithm ReductionTriangulaire(s,S).
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1.4. Ideal of α-relations and Galois group

Definition 8. A polynomial P of k[x1, ..., xn] is called an α-relation if

P (α) = 0.

Definition 9. The ideal M of k[x1, ..., xn] defined by

M = {R ∈ k[x1, ..., xn] | R(α) = 0}

is called the ideal of α-relations.

Definition 10. The Galois group Gα of α over k is the stabilizer of M in Sn:

Gα = {σ ∈ Sn | (∀R ∈M) σ.R ∈M}.

Theorem 11. (Galois, 1897) Let P ∈ k[x1, . . . , xn]. We put σ.P (α) = P (α) for all
σ ∈ Gα if and only if P (α) ∈ k.

Definition 12. Let L be a subset of Sn. The ideal

ILα = {R ∈ k[x1, ..., xn] | (∀σ ∈ L) σ.R(α) = 0}

is called the ideal of α-relations invariant by L. Such an ideal is called a galoisian ideal
of f over k.

Remark 13.

- The ideal of α-relations M is the ideal of α-relations invariants by Gα or by In, the
identity group of Sn.
- The ideal S = ISn

α is the ideal of symmetric relations between the roots of f .

Definition 14. Let I be a galoisian ideal of f (over k). The injector of I in M is given
by:

Inj(I,M) = {σ ∈ Sn | (∀R ∈ I) R(ασ(1), ..., ασ(n)) = 0}.

Example 2. Inj(S,M) = Sn and Inj(M,M) = Gα.

We have the following identities:

Card(V (I)) = Card(Inj(I,M)) = dimk k[x1, . . . , xn]/I (1)

where V (I) is the algebraic variety of I, the set of its zeros.
When the injector of I in M is a group, the ideal I is said pure. A galoisian ideal I

included in M is pure if and only if its injector in itself (we have Inj(I, I) = StabSn
(I))

contains the Galois group Gα ; which is equivalent to

Inj(I, I) = Inj(I,M) ;

which is, using (1), still equivalent to

Card(Inj(I, I)) = dim k[x1, . . . , xn]/I .

In [2], the authors show that a pure galoisian ideal is triangular. For example, the ideals
S and M are pure. The galoisian ideals considered are for the majority pure otherwise
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we obtain this case by permutations of its relations (see [16]). The reduction modulo
a pure galoisian ideal consists on n Euclidean divisions with its generators (see section
1.3).

1.5. Minimal and characteristic polynomials and Resolvents

We consider I ⊂M, a galoisian ideal with injector L in M, H a group included in L
and P an L-primitif H-invariant.

Let P̂ be the multiplicative endomorphism of k[x1, ..., xn]/I induced by P :

bP : k[x1, ..., xn]/I → k[x1, ..., xn]/I

Θ 7−→ Θ.P

The characteristic polynomial of P̂ is an element of k[x] of degree Card(L) given by

χ
P̂ ,I

=
∏

σ∈L

(x− σ.P (α)). (2)

This results is easily obtained from Identity (1) and from the Stickelberger’s Theorem
expressing the characteristic polynomial of such multiplicative endomorphisms (for ideals
of finished variety not necessarily radical). We can also affirm that χ

P̂ ,S
∈ k[x] by the

Galois Theorem since the injector L contains the Galois group.
When k is a perfect field, the minimal polynomial of the endomorphism P̂ is the square

free factor over k of the characteristic polynomial:

Min
P̂ ,I

=
∏

ψ∈{Q(α) | Q∈L.P}

(x− ψ).

The resolvent L-relative of α by P is, by definition, the polynomial

RP,I =
∏

Q∈L.P

(x−Q(α)). (3)

It belongs to k[x] since its coefficients are invariant by L and since that L contains the
Galois group Gα. When the resolvent is square free, it is identified with the minimal
polynomial. We have the identity:

χ
P̂ ,I

= R
Card(H)
P,I . (4)

When L = Sn, the resolvent does not depend on the order α1, ..., αn of the roots of f .
It is said absolute and called resolvent of f by P .

Example 3. Let put n = 3, f = (x− x1)(x− x2)(x− x3) and P = x1x
2
2. We have

RP,S = (x− x1x
2
2)(x− x1x

2
3)(x− x2x

2
1)(x− x2x

2
3)(x− x3x

2
1)(x− x3x

2
2) .
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1.6. General assumptions

Let us assume that I is a galoisian ideal knowed by a reduced Gröbner basis (this
basis is used for performing the reduction modulo I). We denote by L the injector of
I in a maximal ideal M containing I. We fix a subgroup H of L and a an L-primitif
H-invariant P in k[x1, ..., xn].

2. Effectiveness of Galois Theorem

We seek to evaluate polynomials which are invariant by any injector in M of a galoisian
ideal.
As mentioned in Introduction, when the injector L is Sn, the considered polynomials
are symmetric and there are many methods to evaluate them on the roots of f . They
are effective forms of fundamental theorem of symmetric polynomials (voir section 1.2).
When L = Gα it is about the effective form of Theoroem 11 of Galois. We gather here
these two theorems into an effective one (i.e. for any injector L).

Theorem 15. Let I be a galoisian ideal of f included in M, the ideal of α-relations, and
L the injector of I in M. Let R ∈ k[x1, ..., xn] such that σ.R = R for all σ ∈ L. Then
R(α) belongs to the field k of coefficients of f and

R−R(α) ∈ I.

In other words, R(α) is calculated as the reduction of R modulo I. Proof : Since L is
the injector of I in M, the Galois group Gα is included in L. Let put λ = R(α). As the
polynomial R is invariant by L, it is also invariant by Gα. Therefore, by Theorem 11,
λ ∈ k and R− λ ∈ k[x1, . . . , xn]. For any σ ∈ L, we have

σ.(R− λ)(α) = σ.R(α) − λ = R(α)− λ = 0 ,

because R is L-invariant. So, by definition of galoisian ideals, we obtain the result R −
R(α) ∈ I.

3. Algebraic algorithm for the resolvent

3.1. The principle of calculation

From Theorem 15, we can bring out an algorithm to find the resolvent RP,I inspired
on Lagrange algorithm ([8], page 237) restricted to the absolute resolvent (i.e. L = Sn
and I = S). Its method is to calculate the power functions of the roots of the absolute
resolvent based on the effectiveness of the fundamental theorem of symmetric polynomi-
als; then he deduce the coefficients of the resolvent with Girard-Newton formulae. We
present a simular algorithm for any L- relative resolvents based on Theorem 15.

First of all, the following well known lemma provides us a way to calculate, without
duplication, the orbit L.P of P under the action of L:

Lemma 16. Let d be the index of H in L. Then the orbit L.P consists of d distinct
polynomials τ.P where τ runs through a left coset of L mod H.
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We fix i ∈ [[1, d]]. According to Fomula (3) defining the resolvent RP,I , the ith power
function pi(RP,I) of its roots is given by:

pi(RP,I) =
∑

Q ∈ L.P

Qi(α) ;

this is the evaluation in α of the polynomial

pi(L.P ) =
∑

Q ∈ L.P

Qi .

Let check with the following lemma that pi(L.P ) is an L-invariant:

Lemma 17. Let L.P = {P1, . . . , Pd} and s be a symmetric polynomial in k[x1, ..., xd].
Then, the polynomial s(P1, . . . , Pd) is an L-invariant. Proof : For any σ ∈ L

σ.s(P1, . . . , Pd) = s(σ.P1, . . . , σ.Pd) = s(Pτ(1), . . . , Pτ(d))

where τ ∈ Sd since σ ∈ L and {P1, . . . , Pd} is the orbit of P under the action of L. As s
is a symmetric polynomial, the lemma is proven.

Theorem 18. For each i ∈ N, the value in k of the i-th power function pi(RP,I) of RP,I
is given by

pi(RP,I) =
∑

Q ∈ L.P

Qi mod I.

Proof : In our case, the polynomial s of Lemma 17 is the ith power sum pi. Then
pi(L.P ) =

∑
Q ∈ L.P Q

i is L-invariant. By Theorem 15, its evaluation pi(RP,I) on the

roots of f is given by pi(RP,I) =
∑
Q ∈ L.P Q

i mod I.
Since it is about finding the values in k of p1(RP,I), . . . , pd(RP,I) where d, the index of

H in L, is the degree of the resolvent, our algorithm avoids to develop each polynomial∑
Q ∈ L.P Q

i in order to reduce it modulo I. We explain below the process selected.

We fix R = R mod I, for any R ∈ k[x1, . . . , xn], and pi = pi(RP,I). We calculate Q,
Q ∈ L.P , we keep them in a list lp and we build lpp=(1,. . .,1) of length d. At the ith
step, 1 ≤ i ≤ d, we suppose that lpp contains Qi−1, Q ∈ L.P , of the previous step, and
we keep the list lp of the first step. The power function pi is computed as follows:

(a) pi:=0
(b) Browse lists lp and lpp simultaneously in order to replace every polynomial

u = Qi−1

of lpp by u ∗Q where Q is the element extracted from lp; this new element is Qi.
(c) For any (reduced) polynomial u of lpp Do pi := pi + u.

3.2. The algorithm ABV

All functions are described in the SAGEmath’s language.
For our algorithm called ABV which compute relative resolvents we need tree additional
functions: somme mod, Orbite and pui2polynome which are described in the follows of
the function ABV.
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Function ABV

Input:

- n the degree of the polynomial f on the variable x

- I a galoisian ideal given with its reduced Gröbner basis
- L the injector of I in a maximal ideal containing I

- H a subgroup of L
- P an L-primitif H-invariant
Output: RP,I , the L-relative resolvent of α by P, for any α ∈ V (I).

def ABV(P,L,H,I,n,x):

d=gap.Index(L,H)

lp=Orbite(P,L,H,n)

lp=[s.mod(I) for s in lp]

lpp=[1 for i in range(d)]

pui=[d]

for i in range(d):

for j in range(d):

lpp[j]=(lp[j]*lpp[j]).mod(I)

pui= pui + [somme_mod(lpp,I)]

Resolvante=pui2polynome(d,[s for s in pui],x)

return Resolvante

where:
- The function somme mod(lpp,I) returns the sum of the reduced elements of the list
lpp modulo l.
- The function Orbite(P,L,H,n) calculates the orbit of P under the action of L:

def Orbite(P,L,H,n)

from sage.groups.perm_gps.permgroup import from_gap_list

Sn=SymmetricGroup(n)

rc= gap.RightCosets(L,H)

rc=gap.List(rc,’i->Representative(i)’)

LTransv=[s for s in rc]

return [P * si for si in from_gap_list(Sn,"%s" % LTransv)]

- The function pui2polynome(p,x) calculates a univariate polynomial of degree d in x

from the d+ 1 power functions p0 = d, p1, . . . , pd of its roots; the variable p is the list of
this power functions:

def pui2polynome(p,x):

a=[p[0]]

pol=x^a

for i in range(1,d+1):

ai=p[i]+sum(p[j]*a[i-j] for j in range(1,i))

a=a+[-1/i*ai]

return pol=pol+a[i]*x^(d-i)
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4. Example

Take for example the polynomial f = x6 + 2. Its galoisian ideal I is defined by

I = 〈f1 = 24x6 + x3
3x

3
2x1 + 8x3

3x
2
2x

2
1 + 6x3

3x2x
3
1 + 5x3

3x
4
1 + 8x2

3x
3
2x

2
1 + 4x2

3x
2
2x

3
1

+8x2
3x2x

4
1 + 6x3x

3
2x

3
1 + 8x3x

2
2x

4
1 − 4x3x2x

5
1 + 12x3 + 5x3

2x
4
1 + 12x2 + 14x1,

f2 = 24x5 − 5x3
3x

4
2 − 7x3

3x
3
2x1 − 16x3

3x
2
2x

2
1 − 7x3

3x2x
3
1 − 5x3

3x
4
1 − 8x2

3x
4
2x1

−12x2
3x

3
2x

2
1 − 12x2

3x
2
2x

3
1 − 8x2

3x2x
4
1 − 12x3x

4
2x

2
1 − 16x3x

3
2x

3
1 − 12x3x

2
2x

4
1

+8x3 − 5x4
2x

3
1 − 5x3

2x
4
1 − 2x2 − 2x1,

f3 = 24x4 + 5x3
3x

4
2 + 6x3

3x
3
2x1 + 8x3

3x
2
2x

2
1 + x3

3x2x
3
1 + 8x2

3x
4
2x1 + 4x2

3x
3
2x

2
1 +

8x2
3x

2
2x

3
1 + 12x3x

4
2x

2
1 + 10x3x

3
2x

3
1 + 4x3x

2
2x

4
1 + 4x3x2x

5
1 + 4x3 +

5x4
2x

3
1 + 14x2 + 12x1,

f4 = x4
3 + x3

3x2 + x3
3x1 + x2

3x
2
2 + x2

3x2x1 + x2
3x

2
1

+x3x
3
2 + x3x

2
2x1 + x3x2x

2
1 + x3x

3
1 + x4

2 + x3
2x1 + x2

2x
2
1 + x2x

3
1 + x4

1,

f5 = x5
2 + x4

2x1 + x3
2x

2
1 + x2

2x
3
1 + x2x

4
1 + x5

1,

f6 = x6
1 + 2〉.

The group L = 〈(1, 3)(2, 4), (1, 3, 4)(2, 5, 6), (2, 3)(4, 5), (3, 5)(4, 6), (3, 4, 5, 6)〉 of order
128 is the injector of I. Let

H = 〈(1, 2)(3, 4)(5, 6), (1, 3, 5)(2, 4, 6), (3, 5)(4, 6)〉,

be a subgroup of L of index 10 in L.
The package PrimitiveInvariant of GAP (see [1]) calculates the following L-primitif
H-invariant

P = x3x6 + x1x6 + x4x5 + x2x5 + x1x4 + x2x3.

Let L.P = {Q1, ..., Q10} be the orbit of P under the action of L computed with Orbite(P,L,H, 6)
where 6 is the degree of f .
The first and second power functions of the roots of the resolvent are computed as follows:

p1(RP,I) =Q1 +Q2 +Q3 + · · ·+Q9 +Q10 = 0 and

p2(RP,I) =Q
2

1 +Q
2

2 +Q
2

3 + · · ·+Q
2

9 +Q
2

10 = 0.

By the same way:

p3(RP,I) = −6, p4(RP,I) = 0, p5(RP,I) = 0, p6(RP,I) = 36,

p7(RP,I) = 0, p8(RP,I) = 0, p9(RP,I) = −24, p10(RP,I) = 0.

We save these ten values in the variable pui and we deduce the resolvent after executing
pui2polynome(pui,10). The function ABV(P,L,H, I, 6, x) returns

RP,I = x10 + 2x7 − 4x4 − 8x.
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5. Time and comparisons with other methods

We will compare our algorithm ABV with two others algebraic methods. The first algo-
rithm, which we call Algo2, is described in [2] and is based on resultants. It computes the
characterisctic polynomial (i.e. a power of the resolvent). Its implementation is available
in Maxima with version 2 of the library Symmetries (not yet distributed). The second

algorithm, called Algo3, computes on Maple the matrix of the endomorphism P̂ with the
function MultiplicationMatrix then Min

P̂ ,I
with the function MinimalPolynomial.

The following table shows the CPU execution times in seconds with n = deg(f),
c = Card(L), d = deg(RP,I), D is the total degree of the invariant P , N is the monomial’s
number of P and r is its arity. The polynomials belongs to Q[x].

n c (D,N ,r) d ABV Algo2 Algo3

4 4! (6, 12, 4) 2 0.18 0.6 2.96

5 5! (4, 25, 5) 12 2.63 9.04 8.14

5 5! (4, 20, 5) 24 15.94 19.58 766.27

5 5! (3, 6, 5) 60 88.09 96.60 2361.34

6 6! (6, 30, 6) 6 2.52 170.1 318

6 128 (2, 6, 6) 10 7.97 11.43 18.50

6 6! (2, 12, 6) 15 2.60 3.57 860.92

6 6! (7, 45, 6) 20 4.22 12079.5 571.97

6 6! (3, 18, 6) 30 120 876.22 4212.70

6 6! (2, 8, 6) 45 118.15 214.05 1577.51

8 128 (6, 32, 8) 2 8.15 11.92 14.92

8 1152 (2, 8, 8) 9 17.56 337.42 994.84

9 9! (1, 8, 9) 9 5.16 67.45 867.84

Remark 19. Algorithm ABV is based on reductions modulo I, Algo2 computes a char-
acteristic polynomial of degree the dimension over k of R = k[x1, . . . , xn]/I and Algo3

produces a square matrix of dimension dimk(R)2. Then, in the preceeding table, the
value of the order c of the injector L of the ideal I is essential because this value also
represents the dimension of R over k.

Comments

We note that Algo3 is slower than function ABV and Algo2; it tells us nothing about
the multiplicities of roots of the resolvent when it is not separable. To determine these
multiplicities, we must find the characteristic polynomial in a longer time than that
required by the minimal polynomial, and then calculate a c

d
th root (see Identity (4)). In

terms of efficiency, this method offers no interest.
We also note that Algo2 is often slower than function ABV. Lagrange already noticed

12



the same thing in his memory [8] by writing on page 240:
“. . .mais, comme on ne voit pas de cette manière de quel degré devrait être cette équation
finale en x, qu’on pourrait même parvenir à une équation en x d’un degré plus haut qu’elle
ne devrait être, ce qui est l’inconvénient ordinaire des méthodes d’élimination, nous avons
cru devoir montrer comment on peut trouver cette équation a priori et s’assurer du degré
précis auquel elle doit monter ∗ ”. What Lagrange expressed and which we translate
here is that elimination’s methods introduce power parasites and, moreover, these power
are unknown; while with the power functions, he found directly the resolvent. Today, we
know that this power equals to the order of the stabilizer of the invariant P since he
calculated the characteristic polynomial χ

P̂ ,S
of degree n!.

Remark 20. Note that Algo2 is far more efficient than that proposed by Lagrange.
Indeed, the Lagrange’s method which is restricted to absolute resolvents (i.e. L = Sn)
enables to eliminate the variables xn, . . . , x1 of the polynomial x − P with respect to
polynomials f(xn), . . . , f(x1); he computes polynomial g of degree nn where χ

P̂ ,S
is a

factor. Next, with division of g by its”parasite’s factors”, which can be calculated by
eliminations too, he extracts the divisor χ

P̂ ,S
of g.

By using Algo2, elimination is achieved with the Cauchy moduli (here L = Sn) of
respective degrees n, n− 1, . . . , 1 en xn, . . . , x1 and the result is the polynomial χ

P̂ ,S
of

degree n!.

Our function ABV does not include the optimizations propozed in the following section.
Nevertheless, this comparison demonstrates the efficiency of the function ABV.

6. Further Developpements

6.1. Parallelization.

We assume L.P = {P1, . . . , Pd}. The algorithm ABV is parallelizable as follows:

Step 1 In parallel, for j = 0, ..., d, calculate the list lj of P ij , i = 1, . . . , d:
(a) lj = [Pj mod I]
(b) For i = 1, . . . , d lj = lj + [ lj [1] ∗ lj [j − 1] mod I ].

Step 2 In parallel, for i = 0, ..., d, calculate the ith power function pi by using the
function somme mod(ll,I) where ll is the list composed by the ith element of every
lj , j = 1, . . . , d.

6.2. Efficient method for products under k[x1, . . . , xn]/I.

When the ideal I is triangular, our algorithm can be greatly improved by optimizing
the multiplication of polynomials modulo I. Indeed, we can incorporate the method
described in [3] based on assessment techniques and on interpolation. This optimization
is applicable to the function ABV and also in Step 1 of the parallel version. Detecting

roots over k. We can lighten the calculations when there is Q ∈ L.P such that λ = Q

∗ “. . . but as we are not able to see the degree of the final equation in x, even more we could reach an
equation in x of a degree higher than it should be (and this is the drawback of elimination’s methods),
we felt obliged to show how this equation can be found in advance and ensure the precise degree to
which it must climb.”
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mod I belongs to k. When I = M, by the Galois Theorem and Theorem 15, the resolvent
has a root Q(α) in k if and only if Q mod M belongs to k. For any ideal I the resolvent
may have a root in k but no polynomial Q of L.P satisfies Q ∈ k . However, the reciprocal
of the preceding assertion is true as expressed in the following lemma:

Lemma 21. Let Q ∈ L.P and Q = Q mod I. If Q ∈ k then x−Q is a factor over k of
the resolvent RP,I ; even more, for any i ≥ 0,

pi(L.P\{Q}) mod I

is the ith power function si of the roots of
RP,I

x−Q
.

Proof. We always have Q(α) = Q mod M. Suppose that λ = Q mod I belongs to k.
Then Q(α) = Q mod I since I ⊂ M and Q(α) = Q mod M = λ. Therefore x − λ
is a factor of the resolvent RP,I . We have s0 = d − 1 and, for i ≥ 1, pi(L.P\{Q})
mod I = (pi(L.P )− λi) mod I = (pi(L.P ) mod I)− λi = si. ✷

When λ ∈ k, the polynomial Q is removed from the orbit L.P . These compute s0 =
, s1, . . . , sd−1, the d first power functions of the roots of

RP,I

x−λ . According to Lemma 21,
this is possible since s0 = d− 1 and, for i = 1, . . . , d− 1, we have:

si = p mod I for i ∈ [[1, d− 1]],

where p = pi(L.P\{Q}). Here, the polynomial p is not invariant by L and Theorem 15
does not apply. But since p−si is an α-relation invariant by L, we get si as the reduction
of p modulo I.

Conclusion

We have exploited the properties of galoisian ideals to develop our algorithm. For this,
we generalized the fundamental theorem of symmetric functions and give an effective
form of Galois Theorem. The time comparisons between two others techniques show
the effectiveness of our algorithm ABV. Propositions for its optimization will provide
significant gains. In the other hand, we are working on an implementation of the parallel
version including the results of [3]. This implementation will be developed on SAGEmath.

References Computer Algebra Systems

• SAGE http://www.sagemath.org/

• GAP http://www.gap-system.org/

• PrimitiveInvariant GAP-Package of I. Abdeljaouad
http://www-gap.mcs.st-and.ac.uk/Gap3/Contrib3/contrib.html

• MAXIMA http://maxima.sourceforge.net

• Symmetries in MAXIMA, author A. Valibouze
http://maxima.sourceforge.net/docs/manual/en/maxima 32.html#SEC125

• MAPLE http://www.maplesoft.com
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