
HAL Id: hal-00602863
https://hal.science/hal-00602863

Submitted on 23 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Self-Healing approach to sustain Web
Services Reliability.

Mohamed Hedi Karray, Chirine Ghedira, Zakaria Maamar

To cite this version:
Mohamed Hedi Karray, Chirine Ghedira, Zakaria Maamar. Towards a Self-Healing approach to
sustain Web Services Reliability.. IEEE Workshops of International Conference on Advanced In-
formation Networking and Applications, WAINA., Mar 2011, Singapour, Singapore. pp.267-272,
�10.1109/WAINA.2011.101�. �hal-00602863�

https://hal.science/hal-00602863
https://hal.archives-ouvertes.fr

Towards a Self-Healing Approach to Sustain Web Services Reliability

Mohamed-Hedi Karray
Femto-st Institute, Besançon, France

hedi.karray@femto-st.fr

Chirine Ghedira
Lyon 1 University, Lyon, France

chirine.ghedira@liris.cnrs.fr

Zakaria Maamar
Zayed University, Dubai, U.A.E

zakaria.maamar@zu.ac.ae

Abstract—Web service technology expands the role of the
Web from a simple data carrier to a service provider. To
sustain this role, some issues such as reliability continue to
hurdle Web services widespread use, and thus need to be
addressed. Autonomic computing seems offering solutions to
the specific issue of reliability. These solutions let Web
services self-heal in response to the errors that are detected
and then fixed. Self-healing is simply defined as the capacity
of a system to restore itself to a normal state without human
intervention. In this paper, we design and implement a self-
healing approach to achieve Web services reliability. Two
steps are identified in this approach: (1) model a Web service
using two behaviors known as operational and control; and
(2) monitor the execution of a Web service using a control
interface that sits between these two behaviors. This control
interface is implemented in compliance with the principles of
aspect-oriented programming and case-based reasoning.

Keywords- Web service; reliability; self-healing; case-based
reasoning; AOP.

I. INTRODUCTION
We all agree that the Web is dynamic by nature; new

services are offered, some services cease to exist without
prior notice, new business opportunities arise, etc. This
nature puts a lot of pressure on those who are in charge of
developing business applications that should be loosely
coupled and spread over enterprises’ organizational
boundaries. Making Web services the technology of
choice upon which these applications could be built would
require looking into some issues, with emphasis on
reliability in this paper, that still hinder the acceptance of
Web services. Reliability is the ability to perform
independently of the current execution circumstances,
which permits to guarantee business continuity. To address
Web services reliability, several works are reported in the
literature [1]. Recently, self-healing seems leading these
solutions [2,3]. In information technology, “self-healing
describes any device or system that has the ability to
perceive that it is not operating correctly and, without
human intervention, make the necessary adjustments to
restore itself to normal operation”1.

In [4], we started examining the reliability of Web
services through the use of two behaviors, which we
denoted by control and operational. Both behaviors are
specifically used to specify the functioning of a Web
service and comply with separation of concerns principle.
By doing this, the development and maintenance of Web
services is made simple. On the one hand, the operational
behavior illustrates the business logic that underpins the

1 (www.bitpipe.com/tlist/Autonomic-Computing.html)

functioning of a Web service, i.e., how the functionality of
a Web service is achieved. On the other hand, the control
behavior guides in a controlled way the progress of
executing the operational behavior (i.e., business logic) by
stating the actions to take and the constraints to put on this
progress. In this paper, we capitalize on both behaviors to
let Web services self-heal and hence, achieve the
reliability of the business applications they implement.
Mainly injecting self-healing mechanisms into Web
services should help in discovering, diagnosing, and
reacting to disruptions that affect Web services operation
[5]. We discuss how our self-healing Web services are
developed and oversee the progress of both behaviors
towards completion.

Enhancing a system with self-healing capacities could
be based on internal or external mechanisms [6]. The
former refer to trapping errors (includes exceptions: we
consider an exception as an exceptional error) when
happened like modern programming languages (e.g., Java
exceptions, assertion checking) and run-time libraries (e.g.,
timeouts for RPC) do. The latter refer to monitoring a
system using some “outsider” components (e.g.,
monitoring, recovery, etc.) that determine when a system’s
behavior is acceptable and whether self-healing should be
initiated or not.

Given the black box nature of a Web service, its
implementation details are only known to those who took
part in its development. Therefore, these persons would be
in charge of developing the self-healing functionalities as
well [7]. Since the external components' features
(monitoring, recovery, etc.) are more attractive and
effective [6,8], we adopt an hybrid approach that combines
the benefits of both internal and external mechanisms, by
first, separating the external features of self-healing
(monitoring, recovery, etc.) from the execution of the Web
service (which is not the case with, for instance, Java
exceptions), and second, encapsulating these features into
modules that run internally and in parallel with the
execution of the operations of the Web service.

In this paper, we propose a self-healing approach that
is built upon a set of dedicated modules that would support
the reliability of Web services. These modules are part of a
“control interface’’ that ensures the monitoring of a Web
service’s behavior, the catching of errors, and the recovery
from these errors. The design of this control interface
complies with Aspect-Oriented Programming (AOP) and
Case-Based Reasoning (CBR) to benefit from the dynamic
weaving principles and previous similar recovery cases in
order to use previously adapted solutions.

Section 2 presents some related work on Web services
self-healing. Section 3 suggests a motivating example to
highlight the run-time errors problem that hinder Web
services execution Section 4 presents our approach to set
up the control interface. Section 5 discusses our
implementation. A brief discussion about the approach is
presented in section 6. Finally, Section 7 concludes the
paper and sets guidelines for future work.

II. RELATED WORK
To make Web services the technology of choice when

developing critical applications, it is important to enhance
them with mechanisms that guarantee continuity of
operations despite failure. Self-healing is among these
mechanisms and could fall into the research theme of
reliability as reported in [12]. We identify two categories
of works on the topic, works that are based on models and
works that based on intelligence and technology.

Concerning the first category, we find the work
presented by Dabrowski et al. who use architectural
models to characterize how different elements such as
architecture, topology, consistency-maintenance
mechanism, and failure-recovery strategy could contribute
to self-healing during communication failure [14]. In this
specific failure and using notification as a consistency-
maintenance mechanism, the authors divided self-healing
properties into recovery techniques and topology. In [3],
Ben Halima et al. propose a self-healing framework that is
capable of managing Web services-based distributed
interactive applications. This framework focuses on QoS
monitoring and uses models for QoS analysis. In fact, the
framework considers the communication level monitoring
while intercepting exchanged SOAP messages and
extending them with QoS parameter values. Glosh et al.
classify self-healing systems based on similarities or
relationships between approaches, mechanisms,
architectures and technologies applied in these systems. In
this classification, the authors indicate that such systems
use models, whether external or internal, to monitor
behaviors so these systems can adapt themselves to the
run-time environment [13].

Regarding the second category, Gurguis et al. present
an approach to achieve the autonomic computing of Web
services. They divide Web services into functional Web
services providing computing functionalities over the
Internet, and autonomic Web services encapsulating
atomic attributes such as self-configuration, self-healing,
and self-optimization [2]. Monatni and Anglano present a
CBR approach for providing large-scale, distributed
software systems with self-healing capabilities [18].
However, the approach does not use structured knowledge
such as models of the system behavior, thus easing its
applicability to large-scale in complex software systems.
Friese et al. present the design and implementation of a
Robust Execution Layer that acts as a transparent,
configurable add-on to any BPEL4WS execution engine to
support self-healing business processes. The continuity of
process execution is achieved through service replacement

in case of communication failures [16]. Baresi and Guinea
identify and classify the major faults in service-oriented
systems and draw some solutions that allow recovery
strategies using pre and post-conditions for the required
and provided operations based on service and process
description via BPEL [15]. As for us, our approach is in
another context. Indeed, given the black box nature of the
web services, knowing the service behaviors (i.e., control
and operational) is essential.

The EU SHADOWS can be considered as an hybrid
work classified into the two categories. It concentrates on
self-healing of complex systems using a model base
approach [19]. The project introduces pioneering
technologies such as the automatic concurrent debugging
and the data race detection to enable the systematic self-
healing of failures classes and an approach to the
integration of several self-healing technologies into a
common framework solution. In this approach a game-
based model-checking technique is used to the verification
and the adaptation task: the system acts as a player in a
hostile world. Based on this model, if anything goes
wrong, the system adapts its behavior to accomplish its
task in a different way. The system doesn’t try to recover
the confronted problem. In our approach, when the service
catches any error, it tries to recover the error in the aim to
not change its behavior.

III. MOTIVATING SCENARIO
We choose WeatherWS whose functionality is to

return a 5-day weather-forecast report on a certain city. In
[4], we argue why this Web service is not simple and can
be used to illustrate different types of errors.

We assume that WeatherWS requires two inputs: city
name and date. At run-time, one of the following cases
happens knowing that WeatherWS searches the city’s
name in a dedicated database: (1)The access to the
database fails; (2)The city requested does not exist in the
database; (3)The city requested exists in the database;
WeatherWS submits a report to the user.

The execution of WeatherWS can be reflected using
different states. We refer to these states as business and
use them to form the operational behavior of a Web
service. “City located”, “weather collected”, and “report
delivered” are examples of business states in the
operational behavior of WeatherWS. This latter passes
from one state to another subject to first, completing the
operations that are included in each state and second,
satisfying the transitions that connect states. To follow up
the execution progress of a Web service, we use the
control behavior along with a specific set of states that are
extracted from the field of transactional Web services.

To achieve self-healing Web services, we look into the
interactions occurring between these two behaviors.
Different types of failure could lead to self-healing such as
bugs in the business logic and resource removal.

IV. OUR PROPOSED SELF-HEALING APPROACH
Our proposed self-healing approach for Web services

takes place over two steps: how to model the behaviors of
a Web service, and how to set up the self-healing
mechanisms in terms of operation safety and error
recovery at run-time. The identification of these
mechanisms is built upon the closed-loop of Garlan et al.
in the control system paradigm [6] which consists to
monitoring, interpretation, resolution and adaptation.
A. Behavior modeling

A behavior illustrates the actions that a Web service
takes in response to some event occurrence and condition
satisfaction. In [4], the operational behavior shows the
business logic that underlies the functioning of a Web
service, and the control behavior guides the execution
progress of the business logic (i.e., operational behavior)
of this Web service. As briefly reported in Section 2, the
control behavior uses a set of states that are reported in the
literature of transactional Web services [9]. The complete
list of these states is as follows: “activated’’, “not-
activated’’, “done’’, “aborted’’, “suspended’’, and
“compensated’’. The state chart diagrams is use to
represent both behaviors.

In addition to the control and operational behaviors,
Maamar et al. developed mechanisms that support the
interactions between them. These mechanisms are used to
convey details from one behavior to another and vice
versa. For example, a message from the control to the
operational behaviors carryies a temporal event that
permits to trigger the execution of a Web service.

The use of state chart diagrams to model the control
and operational behaviors shows what should happen at
run-time but does not permit to follow up the execution
progress at the operation level. In fact, questions like
which operation was recently executed, what dependency
exists between operations, and what operation failed
cannot be tracked if state chart diagrams are used. Any
self-healing exercise requires a clear access to the
operations that were executed and the operations that
encountered problems [17]. To overcome this limitation of
state chart diagrams, we decided to use activity charts to
model the operations of a Web service.

After modeling both behaviors, the next step consists
of mapping some states in the control behavior of a Web
service onto other appropriate states in the operational
behavior as discussed in [4].

The control and operational behaviors of a Web service
are based on a finite set of sequences. In [4], these
sequences are called path and defined as follows: A path
pi→j in a Web service behavior B is a finished sequence of
states and transitions starting with state Si and finishing at
state Sj noted: pi→j= si→(li) si+1 →(li+1) si+2 . . .sj−1→(lj−1) sj
; such that ∀k ∈ {i, j−1}:(sk, lk, k+1) ∈ T.

In the other hand, we define an execution scenario in a
Web service as the association of a control state and a path
in the operational behavior along with an execution
priority defined by the developer of the Web service. This
priority defines the recommended paths that need to be
executed in order to satisfy a user’s needs. Scenarios
having the smallest value are considered as the more
adequate to meet a user’s expectations.

Also, a function Next was defined in [4]. This function
specifies in which control state the Web service must go
after taking a final state in the operational path. We
redefine this function to specify the control state that needs
to be taken following the execution of a scenario.

Scenarios and Next function are used to oversee the
progress of the execution of a Web service. Our self-
healing approach relies on the interactions that exist
between behaviors and is built upon a control interface that
drives these interactions.

B. Control Interface
Like any other program, Web services may be subject

to events that could affect their normal execution progress.
Our self-healing approach is based on a control interface
(see Fig.1) that contains the following modules:
monitoring, interpretation, resolution, and adaptation.
These modules support synchronization, verification,
detection, and recovery.

In the control interface, the Mapping Module (MAM)
is a repository of XML schemas and XML data that result
from the mapping between the control and the operational
behaviors. The MAM contains, also, additional elements
such as matching paths, execution scenarios, and the
results of the Next function. In addition, the MAM
provides data regarding the expected behaviors during the
execution of other modules to (i) instantiate the
conversations between the two behaviors by the
Conversation Management Module (CMM) or (ii)
create recovery by the Error Recovery Module (ERM) in
case of error.

In the control interface, the CMM instantiates,
manages, and checks the conversational messages that are
exchanged between the two behaviors. The CMM collects
the scenario execution priority based on the current state in
the control behavior of the Web service and initiates
conversations with each state in the operational path that is
included in this scenario. In this work we adapt the
conversational messages that are reported by Maamar et al
in [4] like Sync, Success, Fail, Ack, just to cite some.

Through the management and monitoring of the
different conversational messages that are exchanged, the
CMM catches errors that interrupt the normal progress of
the execution of a Web service. These errors are usually
detected using Fail message.

Fig.1. Self-healing architecture

The CMM keeps track of different elements that help a
Web service self-heal. These elements include (1) a
component that instantiates conversations, (2) a list
including all messages types, (3) details of messages
related to the conversation in progress such as message Id,
message origin, message destination, etc., and (4) log of
the previous conversations. It should be noticed that there
is a watchdog that monitors the messages of each
conversation and raises alerts for the benefit of the CMM
when it catches a failure message.

In the control interface, the Transition Management
Module (TMM) comes into play before claiming the
successful execution of a scenario. This claim depends on
the operations to execute per state as well as the transitions
that connect states. The TMM stores the intra-behavior
transitions (i.e., transitions from one state to another in the
same behavior) and all the information about the business
operations (i.e., constraints, functioning description,
implementation and execution). We define this
information using pre- and post-conditions and constraints.

It should be noticed that the control interface does not
address hardware failure problems that could affect client
or server sides. Nevertheless, we designed the CI in a way
that it records a Web service’s execution states in case
interruptions arise due to external events. We provided a
buffer part of the TMM.

In the control interface, the ERM receives alerts of
execution errors that CMM submits and takes corrective
actions in response to these alerts. The implementation of
these actions complies with the AOP principles [10] by
using the following three components: Aspects base,
Patterns base, and Case base.

Aspects base. AOP is a paradigm that captures and
modularizes concerns that split a software system into
modules called Aspects. Aspects can be integrated into a
system using dynamic weaving [11]. An aspect contains
different code fragments (advices) and location
descriptions (pointcuts) to identify where code fragments
should be plugged. Our use of AOP is motivated by the
dynamic weaving of aspects. An aspect can be enabled and
disabled at run-time. In our self-healing approach, we
define a base that contains different types of aspects that
could characterize the different errors during a Web
service execution. These aspects are triggered by an aspect
weaver that exists in the TMM when an error arises. We
identify aspects with a triple (Name of the module
including the aspect, Set of advices, Set of pointcuts).

Patterns base. It is a container of execution patterns
for business operations. Each business operation is
associated with a set of execution patterns. A pattern is
used to decompose an operation into segments according
to a certain semantics and implementation constraints. We
define three types of patterns. Two are defined at design
time (normal patterns and error patterns) and one at run
time.

Case base. It contains cases of errors along with their
solutions. Whenever the ERM receives an alert, it creates a
new solution by assembling an error pattern with an aspect
and records this case in the base if it does not already exist.
A case is characterized by the 3-uplet <Sy, Con, R> where
Sy presents sets of the problem symptoms and the “error
patron”; Con is the case context, that means which aspect
in which business operations; R is the carried out treatment
i.e. resolution made.

When the ERM receives an alert, it recovers the
execution scenario from the MAM as well as the details
from the fail message that is related to the control state.
This indicates that there is an execution problem that the
CMM reports. First, the CMM starts to synchronize itself
with the MAM and TMM to retrieve information related to
the current scenario and the operations in the control state
that is affected by this error. The ERM consults its base of
patterns in order to compare the Log pattern received with
“normal’’ and “error’’ patterns so that the aspect related to
this error is detected. If the pattern is already in the
database, the ERM consults its base cases to see if a
similar error has already been treated and solved. If yes,
the ERM sends a solution to the CMM and the TMM for
deployment.

 Otherwise, if it is not according to this pattern and
the base of aspects, the ERM selects the associated aspect.
Then the ERM sends the solution to the TMM module to
apply it. In the case where the Log pattern does not exist in
the error patterns list, the ERM adds this new pattern to the
patterns base and sends an alert to the Web Service
developer, asking its (new pattern) assignment to one or
many aspect. After the application of the solution, the
ERM updates its case base.

V. EXPERIMENTS
The feasibility of our self-healing approach was tested

by implemenying the control interface. We used C # from
.Net beta 2005 platform to program the different modules
and XML to define behaviors, conversation messages,
execution scenarios, patterns, and last but not least the
manipulated data at run time.

Fig.2. Prototype architecture

Our experiments started by injecting errors to check the

mechanisms for error detection and aspect activation. An
example of error was an empty object (NULL) that was
returned following the execution of “weather collection’’
operation and then submitted to another operation namely
“report delivery’’. Our prototype catches, collects, and
locates the error, identifies the appropriate error pattern,
and finally determines the aspect that is associated with
this error. All this happens without propagating the error to
the client. We are now working on the injection of the set

of advices related to aspects, to test the reaction of the web
service behavior after this modification.

The prototype architecture as Fig.2 presents is
decomposed in two layers: “system layer” and “resource
layer”. The running system consists of two components:
“service execution” and “control interface”. An internally
exchange for instantiation, monitoring and recovery (i.e.
aspects injection) is made in the running system between
the two components. The control interface is connected to
the different XML data bases (Scenarios, Aspects,
Patterns, Cases) managed by its modules.

VI. DISCUSSIONS
When it comes to self-healing, several requirements are

suggested in the literature such as adaptability,
dynamicity, and autonomy [20]. We took into account
these requirements while working on our approach to self-
heal Web services. For example, the Web services adapt
their course of actions in reaction to the errors that are
detected. We, also, took into account other guidelines
such as failure detection, fault diagnosis, fault healing,
and validation [21]. The purpose of these guidelines is to
attempt the completeness, soundness, and robustness of
any self-healing approach. If one of these guidelines is not
satisfied, the usability of the approach can be questioned.
The externalization of self-healing mechanisms is generic
in dealing with multiple Web services at once. This
approach coupled with the black box nature of Web
services increases the complexity of making them self-
heal independently of any human assistance [18],
contrarily to the internal approach that is specified within
the Web service itself. This approach relies on the
knowledge of a Web service’s behaviors. Although most
of the aforementioned works adopt an external approach,
we adopted an hybrid approach taking advantage of both
approaches’ benefits through the use of first, the closed
loop that the external approach offers [6] and second, the
visibility and controllability elements that the internal
approach offers [21]. Visibility is the ability to observe
states, outputs, and resource usage during a Web service
execution. Controllability is the ability to modify inputs
and states during service running, to study different
behaviors, and what-if situations. Hence, given the black
box nature of a Web service, these two functionalities
cannot be ensured only by an internal approach. To this
purpose, our approach is based on modeling Web service
behaviors. It implements a model-based approach, where
models of a desired Web service behavior governs the
self-healing process throughout the service design and
implementation phase and the service deployment phase
as used in the EU SHADOWS project [19]. We based our
approach on two types of models: control/operational and
fault. The control/operational model specifies the nominal
behavior that must be satisfied by the Web service and
provided by the Web service developers. This model
ensures the behavior synchronization in order to facilitate

the monitoring, control of states, and fault localization.
The fault model specifies the types of faults that can be
identified and repaired by our control interface. We
specifically address fault types related to aspects, which
were designed and implemented in a separated module in
of this control interface.

In term of CBR, our approach differs from the work of
Montani and Anglano in [18]. These ones infer new cases
from previous resolutions using similarity mechanisms.
Contrarily, in our approach we verify if a case is resolved
before any similarity reasoning is carried out. In the
future, we aim at enhancing this part to handle the cases
that require more than one repair action.

Regarding the effectiveness of our approach, we could
not evaluate it in this paper which applies only the
feasibility and implementation aspects. All other points
such as the calculation of metrics will be addressed in
future work.

VII. CONCLUSION
 Self-healing is one of the important elements that

could enhance the reliability of Web services [21]. In this
paper, we examined self-healing Web services by first,
describing their control and operational behaviors and
second, implementing a control interface that oversees the
performance of these Web services and takes corrective
actions when necessary. This interface was implemented in
compliance with the principles of aspect-oriented
programming and case-based reasoning.

Our future work revolves around different aspects.
Firstly, we will continue enhancing the prototype to
conclude additional tests about WeatherWS, and more
examples of real Web services will be developed to
identify the failures that are not detected as expected.
Secondly, we would like to make the control interface
``learn’’ new patterns and study failure possibilities using
proactive and predictive methods to predict when a failure
would occur so that corrective actions are taken.
Moreover, we plan to apply our proposed self-healing
approach to the composition level by looking into the
combination of the respective self-healing mechanisms of
component Web services.

REFERENCES

[1] A. Erradi, P. Maheshwari, “A broker-based approach for improving
Web services reliability Web Services”, ICWS 2005, Proceedings.
2005 IEEE International Conference, july 2005, pp355- 362.

[2] SA. Gurguis, A. Zeid , “Towards Autonomic Web Services:Achieving
Self-Healing Using Web Services,” ACM SIGSOFT Software
Engineering Notes, 2005 - portal.acm.org.

[3] R. Ben Halima, K. Guennoun, K. Drira and M. Jmaiel, “ Providing
Predictive Self-Healing for Web Services: A QoS Monitoring and
Analysis-based Approach,” Journal of Information Assurance and
Security 3 (2008) pp 175-184.

[4] M. Sheng, Z. Maamar, H. Yahyaoui, J. Bentahar, and K. Boukadi,
“Separating Operational and Control Behaviors: A New Approach to
Web Services Modeling”, IEEE IC magazine, 2009.

[5] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,”
IEEE COMPUTER SOCIETY, 2007.

[6] D. Garlan, B. Schmerl, “Model-based Adaptation for Self-Healing
Systems,” Proceedings of the first workshop on Self-healing systems,
2002.

[7] P. Koopman, “Elements of the Self-Healing System Problem Space,”
ICSE Workshop on Software Architectures for Dependable Systems
WADS 2003

[8] D. S. Wile, A. Egyed, “An Externalized Infrastructure for Self-
Healing Systems,” Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA’04), 2004.

[9] Z. Maamar, N.C. Narendra, D. Benslimane, S. Sattanathan, “Policies
for Context-driven Transactional Web Services”, Proceedings of The
19th International Conference on Advanced Information Systems
(CAiSE’2007), Trondheim, Norway, 2007.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Videira Lopes,
J-C. Loingtier, J. Irwin, “Aspect-Oriented Programming”, In
European Conference on Object-Oriented Programming (ECOOP),
Springer-Verlag LNCS 1241. Finland, June 1997.

[11] C. Bockisch, M. Haupt, M. Mezini, K. Ostermann, “Virtual Machine
Support for Dynamic Join points”, Proceedings of the 3rd
International Conference on Aspect Oriented Software Development -
- AOSD 04, Lancaster UK, 2004, pp. 83--92.

[12] R. de Lemos, C. Gacek, A. Romanovsky, “ICSE 2003 Workshop on
Software Architectures for Dependable Systems and self-healing,”
ACM SIGSOFT Software Engineering Notes, 2003.

[13] D. Ghosh, R. Sharman, H. Raghav Rao, S. Upadhyaya,” Self-healing
systems: survey and synthesis,” Decision Support Systems, 2007.

[14] C. Dabrowski, K. Mills, “Understanding Self-healing in Service-
Discovery Systems,” Proceedings of the first workshop on Self-
healing systems, 2002.

[15] L. Baresi, C. Ghezzi, and S. Guinea, “Towards Selfhealing Service
Compositions,” In Proceedings of the First Conference on the
PRInciples of Software Engineering, Buenos Aires, Argentina, 2004.

[16] T. Friese, J. Muller, B. Freisleben, “Self-Healing Execution of
Business Processes Based on a Peer-to-Peer Service Architecture,”
Procidings of The 2nd IEEE International Conference on Autonomic
Computing ICAC, Springer, 2005.

[17] A. Carzaniga, A. Gorla and M. Pezzè, “Self-Healing by Means of
Automatic Workarounds, Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing
systems”, Leipzig, Germany

[18] S. Montani, C. Anglano, Achieving Self-Healing in Service Delivery
Software Systems by Means of Case-Based Reasoning, Journal of
Applied Intelligence Volume 28 , Issue 2 (April 2008) pp139 - 152

[19] 24. O. Shehory, “A Self-healing Approach to Designing and
Deploying Complex, Distributed and Concurrent Software Systems”,
Lecture Notes in Computer Science, Programming Multi-Agent
Systems, 2007, pp3-13

[20] M. Mikic-Rakic, N. Mehta, N. Medvidovic, “Architectural Style
Requirements for Self- Healing Systems”, Proceedings of the first
workshop on Self-healing systems, South Carolina, 2002, pp49 -54

[21] A. Gorla, Towards Design for Self-healing, Fourth international
workshop on Software quality assurance: in conjunction with the 6th
ESEC/FSE joint meeting Dubrovnik, Croatia, 2007, pp86 –89.

