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ON A MARKOV CHAIN MODEL FOR POPULATION GROWTH
SUBJECT TO RARE CATASTROPHIC EVENTS

THIERRY E. HUILLET

Abstract. We consider a Markov chain model for population growth sub-

ject to rare catastrophic events. In this model, the moves of the process are

getting algebraically rare (as from x−λ) when the process visits large heights
x, and given a move occurs and the height is large, the chain grows by one

unit with large probability or undergoes a rare catastrophic event with small

complementary probability ∼ γ/x. We assume pure reflection at the origin.
This chain is irreducible and aperiodic; it is always recurrent, either positive

or null recurrent.

Estimates are obtained for first-return time probabilities to the origin (ex-
cursion length), eventual return (contact) probability and excursion height.

All exhibit power-law decay in some range of the parameters (γ, λ). We show
a scaling relationship between heights and lengths of the excursions. From

this, the mean and median of both the empirical average and sample maxi-

mum are shown to grow algebraically with exponents being identified in terms
of (γ, λ).

Keywords: Population growth, Markov chain, catastrophic events, height
and length of excursions, scaling.
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1. Introduction

We study a particular instance of a discrete-time Markov chain subject to rare
catastrophic events or disasters. This model is in the class of the “house-of-cards”
processes as the authors of ([11], p. 47) and ([12], p. 9) suggestively call them.
In contrast to most studies on similar subjects in the literature (also often dealing
with continuous times), we limit ourselves to the case where only birth or holding
events can occur at times when disasters are ruled out. See [3], [5], [13] and [21].

Our model can precisely be described as follows.

Let λ ≥ 0, γ > 0. Consider the following Markov chain X̃ on Z+ = {0, 1, ...} : Given
X̃n = x ∈ {1, 2, ...}, the increment of X̃n is

+1 with probability : p̃x = x−λe−γ/x

0 with probability : r̃x = 1− x−λ

−x with probability : q̃x = x−λ
(
1− e−γ/x

)
∼ γ/xλ+1.

λ > 0 accounts for the fact that moves of X̃ get rare when x gets large, and given
a move occurs and x is large, X̃ grows by one unit with large probability e−γ/x or
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undergoes a rare catastrophic event with small complementary probability ∼ γ/x.
We assume pure reflection at the origin. This chain is irreducible and aperiodic; it
is always recurrent, either positive or null recurrent.

The birth and holding probabilities depend on the current state of the population in
the specific way just described. A model with a similar flavor can be found in [17]
although the Authors deal here with continuous-time birth and death processes,
which is of course not our case. The study of stochastic stability of the model with
long-range-dependence and power-law crash sizes developed in [19] seems to be the
closest to our own purposes.

Our study includes first-return time probabilities to the origin (excursion length),
eventual return (contact) probability to the origin, excursion height, time to failure
and estimates of the growth of the mean and median of both the empirical average
and sample maximum. It is based on a scaling relationship between excursions
heights and lengths. Because catastrophic events are assumed to be rare, the pop-
ulation growth is shown to be slow and in fact algebraic in the number of steps.
We identify the algebraic exponents of growth in terms of (γ, λ) .

2. Motivations and relation to similar works in the literature

Before we proceed with the mathematical study of our specific model, let us briefly
give some motivations together with the mentioning of some relations to the vast
existing literature on growth-collapse models. Growth-collapse processes where
long periods of growth are interrupted by rare crash events occur in a large variety
of systems. For instance in applications related to Transmission Control Protocol
(see [19] for a precise description) or, as we will explain it in more details in the
next Section, in the context of machine replacement (see [18]) in Queuing Systems.
But also in the Physics of Self-Organized-Criticality such as sandpile growth pro-
cesses where a long accumulation of grains is brutally interrupted by the occurrence
of a critical avalanche (see [1]). Self-Organized-Criticality where an energy accu-
mulation occurs preceding a rapid energy redistribution (or stress-release) is also
suspected to explain power-law distributions of earthquakes sizes (see [2], [6] and
[7]). And also, as we do here typically, growth-collapse models occur as models for
population growth subject to rare catastrophic extinction events. Not to briefly
mention crashes in financial mathematics.

As we mentioned in the Introduction, most works deal with continuous times, see for
instance [4]. In several studies, the growing part of the process is more complicate
than ours; for instance in [8] and [16], the Authors consider it as a one-sided Lévy
subordinator with times and sizes of the crashes depending on the system’s state.
In [9], similar ideas are applied to model the charge and discharge of a capacitor. In
[10], the inflow process undergoes a smooth deterministic growth/decay evolution
with perturbations designed in such a way that the overall process obeys a geometric
Langevin equation driven by a state-dependent noise. On the other hand in [4], the
inflow process is constant but still with state-dependent times and magnitudes of
the crashes. In all these papers, the main statistical characteristics of the systems
at stationarity are computed.

To a large extent, the Markov chain model under study here is the simplest possible
in the vast family of growth-collapse models. Using ideas stemming from excursion
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theory, we make precise here to what extent growth is (algebraically) slow when
catastrophic events are rare under our over-simplistic model hypothesis. It is hoped
that models in the same class of universality could share similar behaviors as one
reasonably can expect some sort of robustness.

3. The Model: A special Markov chain with catastrophe on Z+

Before proceeding with the MC model with holding probabilities, let us first in-
vestigate the simpler case where holding probabilities are absent. Let γ > 0. We
shall first consider the following discrete-time homogeneous Markov chain X :=
(Xn;n ≥ 0) with state-space Z+ = {0, 1, ...} and transition probabilities character-
ized by:

• given Xn = x ∈ {1, 2, ...}, the increment of Xn is

+1 with probability : px = e−γ/x

−x with probability : qx = 1− e−γ/x ∼ γ/x.

• given Xn = 0, the increment of Xn is +1 with probability p0 = 1.

In other words, with (Un, n ≥ 1) a sequence of independent identically distributed
(i.i.d.) uniform random variables (rvs), the dynamics of Xn reads

Xn+1 = (Xn + 1) 1 (Un+1 > qXn
) .

This irreducible Markov chain (MC) is in the class of general MCs with catastrophes
(whose transition probabilities are state-dependent). It is reflected at the origin.
In this model, the walker Xn is occasionally bounced back to the origin. When x
is large, the drift of this MC is of order 1 − γ − γ/x. So when γ > 1, the walker
is attracted to the origin: The strength of the attraction goes like γ − 1 for large
x. For γ < 1, the walker is repelled from the origin correspondingly. When γ = 1,
its drift is still attracting but of order −1/x, and the drift that the walker feels
vanishes when x approaches ∞. We will see that while crossing the critical value
γ = 1 from above, the process X switches from positive recurrent to null-recurrent.

In the context of machine replacement in reliability theory, one may classically inter-
pret this MC as follows: at time n = 0, a machine is put into service. This machine
has a random lifetime, say τ0,0. After τ0,0, a new machine (with lifetime a copy of
τ0,0) is installed to replace the old defective one and so on. The failure epochs of
the successive machines constitute a renewal process on N0 generated by τ0,0 − 1.
In this context, Xn clearly represents the age of the machine currently in action
(the time till the last machine failed before it was replaced by the new one in action
at time n). Given the age of the current machine is x, there is an age-dependent
probability px that the machine will survive one more time unit and a probability
qx that it will not. Clearly, the law of τ0,0 is P (τ0,0 = k + 1) =

∏k−1
y=0 pyqk, k ≥ 1,

in terms of the ps and the τ0,0s are seen to be the times between consecutive visits
to 0 for X. While assuming, as we do, that p0 = 1, we suppose that the new ma-
chine is put into service as soon as the old one fails (there is no latency waiting time).
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One may also interpret this MC as follows: Xn represents the size of some growing
population at time n. Given Xn = x, at the next time unit, a new element presents
itself for possible integration to the clan. The population can then grow by one
unit with size-dependent probability px, integrating normally the new element, so:
Xn → Xn+1 = Xn + 1 with probability px. But there is a ‘chance’ qx that the
new element is a black sheep (a “terminator”) at the contact of which the whole
population will get decimated, so: Xn → Xn+1 = 0 with probability qx; the black
sheep is then the only survivor in the next generation. Clearly the occurrence of a
black sheep is a catastrophic renewal event.

The contamination (or collapse) probability qx may be a decreasing or an increasing
function of the current size x. In the former case, large populations are getting more
and more immune to black sheep and one expects that large population sizes will
get stable. This is the case under study here with qx = 1 − e−γ/x ∼

x→∞
γx−1. We

will see that such a MC X is always recurrent. In case for instance qx ∼
x→∞

γx−α

(α, γ > 0), we would check that X is transient if α > 1, positive recurrent if α < 1,
whereas if α = 1, X is positive recurrent if γ > 1, null recurrent if γ ≤ 1.

In the latter case, large populations are more susceptible and vulnerable to black
sheep and so quite unlikely to grow large and develop too much. Think of a forest
fire occasionally destroying completely an otherwise regularly growing forest. This
would be the case for a model with qx = 1− e−γx. If one also thinks of the process
of building a house of cards, clearly adding a new card to a house of cards of size
x is more likely to lead to a collapse of the whole structure if x is already large.

Including holding probabilities. An important ingredient of our model is
the opportunity to include holding probabilities, making the chain’s changes al-
gebraically rare. Let λ ≥ 0. We shall in fact study the following more general
Markov chain X̃, which may be viewed as a time-changed of X if λ > 0 :

• given X̃n = x ∈ {1, 2, ...}, the increment of X̃n is

+1 with probability : p̃x = x−λe−γ/x

(1) 0 with probability : r̃x = 1− x−λ

−x with probability : q̃x = x−λ
(
1− e−γ/x

)
∼ γ/xλ+1.

• given X̃n = 0, the increment of X̃n still is +1 with probability p0 = 1.

Clearly now, the dynamics of X̃n reads

X̃n+1 = X̃n1 (Un+1 ≤ r̃Xn) +
(
X̃n + 1

)
1
(
r̃X̃n

< Un+1 ≤ p̃X̃n
+ r̃X̃n

)
.

When x is large, the holding probability r̃x is close to 1 if λ > 0 so the chain X̃

remains steady with large probability. Whenever X̃ moves, with large probability
e−γ/x, it moves up by one unit and only exceptionally, with probability 1−e−γ/x ∼
γ/x, does the catastrophic event take place. In this context, X̃n is just the size of
the cluster since the last catastrophe. This model therefore accounts for the lazy
growth of stable large populations when the events leading either to growth or to
collapse are themselves getting rare.
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4. First properties of the general catastrophe Markov chain

In this Section, we first supply a detailed study of the general catastrophe Markov
chain, without specifying the catastrophe probabilities qx.

4.1. Without holding probabilities. Consider a general catastrophe process Xn

reflected at the origin (p0 = 1 and q0 = 0) for which both px and qx > 0, for
all x ≥ 1, with px+ qx = 1 and so with associated stochastic transition matrix:
P = [P (x, y)], (x, y) ∈ Z2

+ with P (x, 0) = qx and P (x, x + 1) = px, x ≥ 1.

Existence and shape of the invariant measure. Let π′ ≡ (π0, π1, ..) be
the row-vector of the invariant measure, whenever it exists. Then π should solve
π′ = π′P, whose formal solution is:

(2) π0 =
∑
x≥1

πxqx and πx = π0

x−1∏
y=0

py, x ≥ 1.

Let ux =
∏x−1

y=0 py. Using the second equation, the first equation is satisfied when-
ever ∑

x≥1

qx

x−1∏
y=0

py =
∑
x≥1

(ux − ux+1) = 1,

so also when u∞ =
∏∞

y=1 py = 0 which is fulfilled iff S2 ≡
∑∞

y=1 qy = ∞.

We first conclude that there exists an invariant measure iff S2 = ∞.

If in addition, S1 ≡
∑

x≥1

∏x−1
y=0 py < ∞, then π0 = 1

1+S1
∈ (0, 1) and the invariant

measure is unique and is a proper invariant probability measure. In this case, with
the empty product being 1, we have

πx =

∏x−1
y=0 py

1 + S1
, x ≥ 0.

When S1 = ∞, the measure solution to (2) exists but it is not a probability measure
as its total mass π0 (1 + S1) sums to infinity.

Return time to the origin. Let Xn be the Markov chain with transition prob-
ability matrix P and state-space N0. Starting from X0 = x ≥ 1, the walker moves
one step up with probability px or goes back to the origin (the catastrophic event)
with probability qx and then the process starts afresh from 0. Clearly of interest are
the times τ0,0 between consecutive visits to 0 (the first return times to 0) because if
X0 = 0, Xn represents the backward recurrence time (the time separating n to the
previous visit to 0) of a discrete renewal process generated by τ0,0 ≥ 2. We have

P (τ0,0 = k + 1) =
k−1∏
y=0

pyqk = uk − uk+1, k ≥ 1,

which is also P (τ0,0 > k) =
∏k−1

y=0 py = uk.
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Note that px = P (τ0,0 > x + 1) /P (τ0,0 > x) and qx = P (τ0,0 = x + 1) /P (τ0,0 > x) :
If the law of the lifetime τ0,0 is known in the first place, this gives the survival prob-
ability px given the age (backward recurrence time) Xn of the current machine is
x.

Note also that P (τ0,0 < ∞) iff u∞ = 0 (S2 = ∞) which is the recurrence condition
for Xn.

We conclude that: If S2 ≡
∑∞

y=1 qy < ∞, Xn is transient. If S2 = ∞, Xn is
recurrent. If S2 = ∞ and S1 ≡

∑
x≥1

∏x−1
y=0 py < ∞, Xn is positive recurrent with

µ := E (τ0,0) = 1/π0 = 1 + S1 < ∞. If S2 = S1 = ∞, Xn is null recurrent with
τ0,0 < ∞ almost surely (a.s.) and E (τ0,0) = ∞. In the positive recurrent case,

πx =

∏x−1
y=0 py

1 + S1
=

P (τ0,0 > x)
µ

, x ≥ 0

which is the law of the limiting (n → ∞) backward recurrence time X∞ of the
discrete renewal process generated by τ0,0 − 1 ≥ 1. Let indeed τn be the length

of the interval to which n belongs. Then τn
d→ τ (convergence in distribution) as

n →∞ with

P (τ = k) =
kP (τ0,0 − 1 = k)

µ
, k ≥ 1

which is the size-biased version of the law of τ0,0−1. If Y∞ is the limiting (n →∞)
forward recurrence time of the discrete renewal process generated by τ0,0 − 1 ≥ 1,

with X∞ + Y∞ = τ , we have X∞
d= Y∞ (distributional equality) and (see e.g. [20],

Lemma 9, p. 447)

(X∞, Y∞) d= (U ◦ τ , (1− U) ◦ τ) .

Here, with U a uniform random variable independent of τ , U ◦ τ is the U−thinning
of τ : U ◦ τ =

∑τ
l=1 Bl (U) where, given U, Bl (U) ; l ≥ 1 are mutually independent

and independent of τ rvs with law Bernoulli(U) . Indeed

P (U ◦ τ = x) =
∫ 1

0

P (u ◦ τ = x) du

and

P (u ◦ τ = x) =
∑
k≥x

(
k

x

)
uk (1− u)k−x P (τ = k) .

Thus,

P (U ◦ τ = x) =
∑
k≥x

(
k

x

)∫ 1

0

ux (1− u)k−x
duP (τ = k)

=
∑
k≥x

1
k

P (τ = k) =
1
µ

P (τ0,0 > x) = πx.

So there is a clear connection of our model with the discrete theory of renewal
processes.

Time-reversal. It is of importance to check whether or not detailed balance holds
for the MC under study here. Assume Xn is recurrent. The catastrophe MC is
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not time-reversible as detailed balance does not hold. Let Q 6= P be the transition
matrix of the process Yn which is Xn backward in time. With ′ denoting matrix
transposition and Dπ =diag(π0, π1, ...), we have

Q′ = DπPD−1
π .

It can be checked that the only non-null entries of Q are its first row with Q0,0 =
Q0,1 = 0 and Q0,k = P (τ0,0 = k) if k ≥ 2 and the lower diagonal whose entries are
ones. Starting from Y0 = y, the process Yn decays linearly till it hits 0 and once
at state 0, Yn jumps abruptly upward, undergoing a jump of amplitude k ≥ 2 with
probability P (τ0,0 = k) before diminishing again and again to 0. Clearly, in case of
positive recurrence, Yn models the forward recurrence time of the original process
with Yn

d→ Y∞ as n →∞. Note that π′ = π′Q (π is also the invariant measure for
Q) and so: X∞

d= Y∞ ∼ πx, as required.

The scale (or harmonic) function.

In the recurrent case, the sample paths of Xn are made of i.i.d. excursions (the
pieces of the sample paths between consecutive visits to 0). The lengths of the
excursions are τ0,0. Let us look at their heights H. Clearly H

d= τ0,0 − 1, because
X grows linearly between consecutive visits to 0. Let us rapidly check this with the
use of the scale function. The scale function idea will appear more useful when we
shall deal next with the time-changed version of the catastrophe MC because here
the relationship between height and length of an excursion is far from trivial.

Assume X0 = x. Let Xn∧τx,0
stopping Xn when it first hits 0. Let us define the scale

(or harmonic) function ϕ of Xn as the function which makes Yn ≡ ϕ
(
Xn∧τx,0

)
a

martingale. The function ϕ is important because, as is well-known, for all 0 < x <
x∗, with τx the first hitting time of {0, x∗} starting from x

P (Xτx
= x∗) = P (τx,x∗ < τx,0) =

ϕ (x)
ϕ (x∗)

.

Using this remark, the event H = h is realized when τ1,h < τ1,0 and τh,h+1 > τh,0,
the latter two events being independent. Thus:

(3) P (H = h) =
ϕ (1)
ϕ (h)

(
1− ϕ (h)

ϕ (h + 1)

)
, h ≥ 1.

We clearly have
∑

h≥1 P (H = h) = 1 because partial sums are part of a telescoping
series. Clearly, this is also P (H ≥ h) = 1/ϕ (h). It remains to compute ϕ with
ϕ (0) = 0. We wish to have: Ex (Yn+1 | Yn = y) = y, leading to

ϕ (x) = pxϕ (x + 1) + qxϕ (0) = pxϕ (x + 1) , x ≥ 1.

Thus, the searched ‘harmonic’ function is

(4) ϕ (x) =
1∏x−1

y=0 py

, x ≥ 1, ϕ (0) ≡ 0.

Note ϕ (1) = 1. Equations (3) and (4) characterize the law of the excursion height
of the random walker. Note

P (H ≥ h) = 1/ϕ (h) =
h−1∏
y=0

py = P (τ0,0 > h) .
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showing, as expected from the beginning, that H
d= τ0,0 − 1.

Probability of extinction. Consider now the same Markov chain but assume
now that p0 = 0, q0 = 1. In this case, the state 0 is absorbing. Consider then
the restriction P of matrix P to the states {1, 2, ...}. Let φx, x ≥ 1 be the prob-
abilities that state 0 is hit in finite time given the chain started originally at x.
Let φ ≡ (φ1, φ2, ..)

′ be the column-vector of these absorption probabilities. Let
q ≡ (q1, q2, ..)

′
. Then φ is the smallest non-negative solution to φ = q+Pφ whose

formal solution is: φ =
(
I − P

)−1
q. All φx can therefore be expressed in terms of

φ1, leading simply to:

1− φx =
1∏x−1

y=1 py

(1− φ1) .

If S2 ≡
∑

y≥1 qy = ∞, then ux =
∏x−1

y=1 py → 0 : the restriction φx ∈ [0, 1] forces
φ1 = 1 and so φx = 1 for all x < ∞: The state 0 is hit with probability 1, starting
from x, for all x < ∞. The Markov chain is recurrent.

But, if S2 < ∞, then we can take φ1 < 1 so long as φx ≥ 0 for all x ≥ 1. The
minimal solution occurs when 1− φ1 = P (τ0,0 = ∞) =

∏
y≥1 py > 0, leading to:

(5) φx = 1−
∏

y≥1 py∏x−1
y=1 py

= 1−
∏
y≥x

py.

In this case, φx < 1 for x ≥ 1 and the absorbed random walker started at x avoids 0
with positive probability (a transience case for the original reflected Markov chain).
Note that x < x′ ⇒ φx > φx′ .

To summarize, we have:

Proposition 1. (i) If S2 < ∞, the MC is transient and, with

τx,0 = inf (n ≥ 1 : Xn = 0 | X0 = x) ,

P (τx,0 = ∞) =
∏

y≥x py > 0.

(ii) If S2 = ∞, the MC is recurrent with P (τx,0 = ∞) = 0. Moreover, it is: null
recurrent if S1 = ∞, positive recurrent if S1 < ∞.

Due to irreducibility (because px and qx > 0, for all x ≥ 1), states are either all
transient or recurrent.

Times to collapse. How long does it take, starting from x ≥ 1, to first hit 0?
We give here some insight on the way to compute the law of these first times to
collapse. With x ≥ 1, let thus τx,0 be the time it takes to first hit 0, starting from
X0 = x ≥ 1. With τ ′x+1,0 a statistical copy of τx+1,0, from first-step analysis, we
clearly have:

τx,0
d= (1−Bx) · 1 + Bx ·

(
1 + τ ′x+1,0

)
,

where Bx is a Bernoulli random variable with P (Bx = 1) = px. Therefore with
φx (z) = E (zτx,0) , φx (z) obeys the recurrence φx (z) = qxz + pxzφx+1 (z), with
initial condition φ1 (z): again, φx (z) can easily be deduced once φ1 (z) is known.
With φ0 (z) = E (zτ0,0) the probability generating function of the first return time to
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0, τ1,0
d= τ0,0−1 entails φ1 (z) = φ0 (z) /z. Because P (τ0,0 = k + 1) =

∏k−1
y=0 pyqk =

uk − uk+1, with u (z) =
∑

k≥1 zkuk, we have

φ1 (z) =
∑
k≥1

zk
k−1∏
y=0

pyqk =
∑
k≥1

zk (uk − uk+1) =
z − 1

z
u (z) + 1,

fixing the initial condition. The full probability generating function (p.g.f.) of τx,0

follows.

With φ (z) = (φ1 (z) , φ2 (z) , ...)′ the column-vector of the φx (z), and q = (q1, q2, ...)
′

the column-vector of the qx, φ (z) solves:

(6) φ (z) = zq + zPφ (z) ,

whose formal solution is φ (z) = z
(
I − zP

)−1
q, involving the resolvent of P . When

z = 1, φx (1) = φx = P (τx,0 < ∞) are the absorption probabilities already com-
puted.

Transience versus recurrence. We here discuss the criterion for recurrence or
transience of the general catastrophe Markov chain. When S2 = ∞, the recurrent
chain started at x first hits 0 with probability 1 and returns infinitely often to
0. Given X0 = x, with Nx,y ≡

∑
n≥0 1 (Xn = y) , the number of visits to state

y, then Nx,y = ∞, Px−almost surely. If τx,x is the first return time at x, then
P (τx,x < ∞) = 1. Furthermore, with Nx,y ≡

∑τx,x

n=0 1 (Xn = y) the number of visits
to state y before the first return time to state x, then: E (Nx,y) = πy

πx
and by the

Chacon-Ornstein limit ratio ergodic theorem:∑N
n=0 1 (Xn = y)∑N
n=0 1 (Xn = x)

→
N↗∞

πy

πx
, Px − almost surely.

Starting in particular from x = 0, a recurrent chain is made of infinitely many
independent and identically distributed (i.i.d.) excursions which are the sample
paths of (Xn;n ≥ 0) between consecutive visits to state 0. We have: E (N0,x) =
πx

π0
=
∏x−1

y=0 py. When the chain is positive recurrent (S1 < ∞) the expected time
elapsed between consecutive visits to 0 is finite and equal to E (τ0,0) ≡ µ = 1/π0 =
1 + S1, whereas this expected time is infinite when the chain is null recurrent.

When S2 = ∞, the state x ≥ 0 is transient. Thus, Nx,x < ∞, Px−almost surely
and P (Nx,x = k) = (1− αx) αk−1

x where αx = P (τx,x < ∞) < 1.

4.2. Including holding probabilities and time change. We now proceed with
including the opportunity of a holding probability in the transition matrix of the
catastrophe process.

Let ρx ∈ (0, 1), x ≥ 1. Consider now a general catastrophe MC X̃n still reflected
at the origin (p̃0 = 1 and q̃0 = 0) and for which p̃x = pxρx, q̃x = qxρx and
r̃x = 1 − ρx > 0, for all x ≥ 1, with p̃x+ q̃x + r̃x = 1. So X̃n is generated by
the stochastic transition matrix: P̃ =

[
P̃ (x, y)

]
, (x, y) ∈ Z2

+ with P̃ (x, 0) = q̃x,

P̃ (x, x) = r̃x and P̃ (x, x + 1) = p̃x, x ≥ 1. There is now a positive holding proba-
bility r̃x that given X̃n = x ≥ 1, X̃n+1 = x. The Markov chain X̃ is lazy.
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In the context of machine replacement, the times at which X̃n = X̃n+1 = x are idle
times, whereas in the population growth image, these times correspond to periods
where no new candidate present themselves for possible integration to the current
cluster (so in particular with no risk of appearance of the black sheep): the collapse
is delayed. X̃n accounts for the population size since the last catastrophe.

Invariant measure. We now investigate the way the invariant measure is modified
by the adjunction of holding probabilities. Let Dρ =diag(ρ0 := 1, ρ1, ρ2, ...) . We
have P̃ = I + Dρ (P − I) . Let π̃ be the invariant measure associated to P̃ , when it
exists. It should solve π̃′ = π̃′P̃ , and we get:

π̃0 =
∑
x≥1

π̃xqxρx and π̃x = π̃0

∏x−1
y=0 py

ρx

, x ≥ 1.

Using the second equation, the first equation is satisfied whenever

∑
x≥1

qxρx

∏x−1
y=0 py

ρx

=
∑
x≥1

(ux − ux+1) = 1,

so again when ux =
∏x−1

y=1 py →
x→∞

0 which is fulfilled iff S2 ≡
∑∞

y=1 qy = ∞

(the recurrence condition for X): The time change leading from X to X̃ does not
change the road map of X so the recurrence criteria are identical for both X and
X̃. However, the criteria for positive recurrence are modified.

Indeed, if in addition S̃1 ≡
∑

x≥1 ρ−1
x

∏x−1
y=0 py < ∞, then π̃0 = 1

1+S̃1
∈ (0, 1) and

then the MC is positive recurrent with invariant probability measure

π̃x = π̃0

∏x−1
y=0 py

ρx

, x ≥ 0.

Else if S̃1 = ∞, the MC is null recurrent.

Scale function. X̃n is again the size at time n of the current population before
the last catastrophic event. In the recurrent case (S2 = ∞), X̃ is again made of
i.i.d. excursions, whose height H̃ has the same law as the one for X : indeed, one
can easily check that the scale function ϕ̃ of X̃ solving P̃ ϕ̃ = ϕ̃, ϕ̃0 = 0, coincide
with the scale function ϕ of X solving Pϕ = ϕ, ϕ0 = 0. Because the scale function
determines the height’s law, we have the claimed statement that the height’s law
is left unchanged by time substitution.

Excursions lengths. However, because of the time change, the times τ̃0,0 between
consecutive visits to 0 (the excursions lengths of X̃) are of course very different from
τ0,0 (statistically longer). With X̃0 = 0, both times are related by

τ0,0 =
τ̃0,0∑
n=1

1
(
X̃n 6= X̃n−1

)
.
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We thus have
P (τ0,0 = k) =

∑
l≥k

P
(
X̃l−1 = k, τ̃0,0 = l

)
,

where, on the event τ̃0,0 = l, X̃l−1 is the height H̃l of an excursion of length l for
X̃.

Given the height of an excursion is h, we have

P
(
τ̃0,0 = l | H̃ = h

)
= qhP (τ̃0,h = l − 1 | τ̃0,h < τ̃0,0)

= qhP0

(
X̃l−1 = h | τ̃1,h < τ̃1,0

)
.

The p.g.f. of τ̃0,0 can be obtained as follows. With x ≥ 1, let τ̃x,0 be the time it takes
for X̃ to first hit 0, starting from X̃0 = x ≥ 1. Therefore with φ̃x (z) = E

(
zτ̃x,0

)
,

φ̃x (z) obeys the recurrence φ̃x (z) = q̃xz + r̃xzφ̃x (z) + p̃xzφ̃x+1 (z), with initial
condition φ̃1 (z): again, φ̃x (z) can easily be deduced once φ̃1 (z) is known. With

φ̃ (z) =
(
φ̃1 (z) , φ̃2 (z) , ...

)′
the column-vector of the φ̃x (z), and q̃ = (q̃1, q̃2, ...)

′

the column-vector of the q̃x, φ̃ (z) solves:

φ̃ (z) = zq̃ + zP̃ φ̃ (z) ,

whose formal solution is φ̃ (z) = z
(
I − zP̃

)−1

q̃, involving the resolvent of P̃ . In
particular, with e′1 = (1, 0, 0, ...), the exact p.g.f. of τ̃0,0 is:

φ̃0 (z) = E
(
zτ̃0,0

)
= zφ̃1 (z) = z2e′1

(
I − zP̃

)−1

q̃.

Note that P̃ is an upper-diagonal matrix with upper-diagonal entries p̃x and diago-
nal entries r̃x. So this matrix is diagonable with eigenvalues r̃x = 1− ρx. From this
fact, in principle

φ̃0 (z) =
∑
x≥1

Ax
z2 (1− r̃x)

1− zr̃x
,

showing that τ̃0,0 is an infinite mixture of (shifted) geometrically distributed rvs
with success probabilities r̃x.

Time reversal. We now show how to compute the transition matrix of the time-
reversed process corresponding to the catastrophe MC with holding probabilities.
When X̃n is recurrent, this catastrophe MC is not time-reversible either. Let Q̃ 6= P̃

be the transition matrix of the process Ỹn which is X̃n backward in time. Ỹ now
models a population that shrinks slowly and continuously to 0 before undergoing an
instantaneous rebirth allowing the process to start afresh. Thus Ỹn represents the
size of the disintegrating cluster at time n till the next forthcoming rebirth event.
With ′ denoting matrix transposition and Dπ̃ =diag(π̃0, π̃1, ...), we indeed have

Q̃′ = Dπ̃P̃D−1
π̃ .

The only non-null entries of Q̃ are its first row with Q̃0,k = Q0,k if k ≥ 1 (Q̃0,0 = 0),
the lower diagonal whose entries are ρk, k ≥ 1 and the diagonal terms Q̃k,k = 1−ρk,
k ≥ 1. Starting from Ỹ0 = y, the process Ỹn decays linearly but with steady periods,
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till it hits 0 and once at state 0, Ỹn jumps abruptly upward, undergoing a jump of
amplitude k ≥ 1 with probability Q̃0,k = Q0,k before shrinking again to 0.

5. The special catastrophe Markov chain

We now specify the results of the latter Section to the special MC defined in (1).
The special MC deserves special interest in particular because it is, to a large ex-
tent, amenable to exact analytic computations. We shall limit ourselves to the
study of X̃ with the two parameters γ > 0, λ ≥ 0 because the study of X (without
holding probabilities) can be obtained from the one of the time-changed X̃ while
plugging λ = 0.

Consider then the special MC X̃, so determined by:

p̃x = x−λe−γ/x and q̃x = x−λ
(
1− e−γ/x

)
, x ≥ 1

and satisfying p̃0 = 1 and q̃0 = 0 (reflection at the origin). Given X̃n = x, the local
drift at x of this MC is f (x) = p̃x−xq̃x. For all 0 < γ 6= 1, λ > 0, this drift tends to
0 as x tends to ∞ as a result of f (x) ∼ − (γ − 1) x−λ. The asymptotic drift is < 0
(respectively > 0) when γ > 1 (respectively γ < 1). In the former (latter) case, X̃n

is asymptotically attracted (repelled) by the wall. When γ = 1, f (x) ∼ −x−(λ+1).

Its local variance at x is g2 (x) = p̃x + x2q̃x − (p̃x − xq̃x)2, with g2 (x) ∼ γx1−λ.
If λ < 1 (respectively λ > 1), the volatility at large x diverges (vanishes) whereas
g2 (x) ∼ γ if λ = 1.

Both MCs X and X̃ are always recurrent because, with qy ∼ γ/y, S2 =
∑

y qy = ∞.
There is no transience case for the special MC. The invariant measure of X̃ satisfies

π̃x ∼ π̃0x
−(γ−λ),

suggesting that π̃ ≡ (π̃x;x ∈ Z+) is a proper (summable) probability measure if
and only if γ − λ > 1. Using the results of the latter Section, we thus get

Proposition 2. When γ − λ ≤ 1, the MC X̃ is null recurrent.

When γ − λ > 1, the MC X̃ is positive recurrent; it has a unique and summable
invariant measure satisfying π̃x ∼

x↗∞
x−(γ−λ). It is given explicitly by

(7) π̃0 =
1

1 + S̃1

=
1

1 +
∑

x≥1 xλ
∏x−1

y=0 e−γ/y
,

and

(8) π̃x = π̃0

∏x−1
y=0 py

ρx

= π̃0x
λ

x−1∏
y=0

e−γ/y, x ≥ 1.

When γ − λ > 2,

(9) E
(
X̃∞

)
=
∑
x≥1

xπ̃x < ∞,

so that the invariant measure has a finite explicit mean.
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Note that when γ − λ > 1 (positive recurrence), the invariant probability measure
is heavy-tailed with power-law exponent γ−λ > 1. So X̃∞ can get large which is a
hint that large population sizes are stable as a result of qx ∼ γ/x, decreasing with x.

Excursion heights. The scale or ‘harmonic’ function of X̃ is

(10) ϕ̃ (x) =
1∏x−1

y=0 py

∼ xγ , x ≥ 1, ϕ̃ (0) ≡ 0.

Therefore, the excursion heights of X̃ have power-law tails

P
(
H̃ ≥ h

)
= 1/ϕ (h) ∼ h−γ .

Excursion lengths. In order to estimate the lengths of a big excursion, we suggest
the following heuristics: Consider an excursion whose length k and height h are both
assumed to be very large. We wish to estimate the height h = h (k) for which the
conditional probability P

(
τ̃0,0 = k | H̃ = h

)
is maximal, with:

P
(
τ̃0,0 = k | H̃ = h

)
= qhP (τ̃0,h = k − 1 | τ̃0,h < τ̃0,0)

= qhP0

(
X̃k−1 = h | τ̃1,h < τ̃1,0

)
.

We have

P
(
τ̃0,0 = k | H̃ = h

)
≈ qh

k−1∏
l=1

(1− qxl
)

where xl is the position at time l of the walker X̃ which can roughly be estimated
to be of order xl ≈ lh

k . For large x, qx is small and of order γx−(λ+1).Thus

P
(
τ̃0,0 = k | H̃ = h

)
≈ h−(λ+1)

(
1− γ

k∑
l=1

(xl)
−(λ+1)

)
≈

h−(λ+1)

(
1− γ

(
h

k

)−(λ+1) k∑
l=1

l−(λ+1)

)
≈ h−(λ+1)

(
1− γkh−(λ+1)

)
Maximizing this over h we get h (k) ≈ k1/(λ+1) suggesting that the height of a big
excursion should scale like its length raised to the power 1/ (λ + 1) . Plugging h (k)
in the latter expression

P
(
τ̃0,0 = k | H̃ ≥ h (k)

)
≈ k−1.

Thus

P (τ̃0,0 = k) ≈ P
(
τ̃0,0 = k, H̃ ≥ h (k)

)
≈ k−1h (k)−γ = k−(γ/(λ+1)+1).

Scaling properties. We now describe the scaling relationship between height and
length of an excursion. Because P

(
H̃ ≥ h

)
∼ h−γ , we conclude that the excursions
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lengths should also display power-law tails with

P (τ̃0,0 > k) ∼ k−γ/(λ+1).

Thus τ̃0,0 and H̃λ+1 are expected to be tail equivalent with P (τ̃0,0 ≥ k) ≈ P
(
H̃λ+1 ≥ k

)
,

meaning that the ratio P (τ̃0,0 ≥ k) /P
(
H̃λ+1 ≥ k

)
should tend to some constant

when k →∞.

Recall that the exact p.g.f. of τ̃0,0 is:

φ̃0 (z) = E
(
zτ̃0,0

)
= zφ̃1 (z) = z2e′1

(
I − zP̃

)−1

q̃,

where P̃ is an upper-diagonal substochastic matrix with upper-diagonal entries p̃x

and diagonal entries r̃x. So this matrix is diagonable with eigenvalues r̃x = 1− ρx.
The spectral gap here is ρx = x−λ → 0 as x →∞, algebraically fast, so the tails of
τ̃0,0 are not expected to be geometric, rather they are power-law. We have∑

k

zkP (τ̃0,0 > k) =: Φ̃0 (z) =
1− φ̃0 (z)

1− z
=

1
z (1− z) h (z)

,

where h (z) ∼
z→1

(1− z)−a and a = γ/ (λ + 1) . Thus Φ̃0 (z) ∼
z→1

(1− z)−(1−a).

From the Karamata theorem (see [15]), therefore

(11)
[
zk
]
Φ̃0 (z) = P (τ̃0,0 > k) ∼

k→∞
k−a/Γ (1− a) .

Note that in the positive recurrent case (γ − λ > 1), a > 1 so τ̃0,0 has finite mean,
whereas in the null recurrent case, a < 1, and E (τ̃0,0) = ∞. We shall return to this
crucial point later.

First passage times. Let τ̃x,y be the first passage time at y 6= x when the process
is started at x. We wish here to briefly derive an exact formal formula for the law
of τ̃x,y, making use of the Green function of a MC. Let

φ̃x,y (z) ≡
∞∑

k=1

zkP (τ̃x,y = k)

be the generating function of the law of τ̃x,y. Then, with

gz (x, y) ≡
∞∑

n=0

znPx

(
X̃n = y

)
=

∞∑
n=0

znP̃n (x, y) =
(
I − zP̃

)−1

(x, y)

the generating function of P̃n (x, y) (the Green potential function of the chain),
using P̃n (x, y) =

∑n
m=0 P (τ̃x,y = m) P̃n−m (y, y), we easily get the expression:

φ̃x,y (z) =
gz (x, y)
gz (y, y)

.

In particular,

φ̃x,0 (z) =
gz (x, 0)
gz (0, 0)

and φ̃0,x (z) =
gz (0, x)
gz (x, x)

are the generating functions of τ̃x,0 and τ̃0,x.
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The p.g.f. φ̃x,x (z) first-return time τ̃x,x to state x satisfies

φ̃x,x (z) =
gz (x, x)− 1

gz (x, x)
= 1− 1

gz (x, x)

where gz (x, x) =
∑∞

n=0 znPx

(
X̃n = x

)
=
∑∞

n=0 znP̃n (x, x) is the Green function
at x.

6. First return times to 0 and contact probability at 0

First return times to 0 and contact probability at 0 are classically related to one
another by renewal arguments. Let us here compute the contact probability at 0
making use of the first return time probability to the origin. With |z| < 1, let

(12) φ̃0 (z) =
∑
k≥1

zkP (τ̃0,0 = k)

be the generating function of the first return time to zero probability. Let also

(13) ũ0 (z) = 1 +
∑
n≥1

znP0

(
X̃n = 0

)
be the Green potential function of the chain at state x = 0. As can easily be
checked by renewal arguments, ũ0 (z) = 1 + ũ0 (z) φ̃0 (z), showing that

(14) ũ0 (z) =
1

1− φ̃0 (z)
and φ̃0 (z) = 1− 1

ũ0 (z)
.

Because the Markov chain X̃n is always recurrent, ũ0 (1) = 1+
∑

n≥1 P0

(
X̃n = 0

)
=

∞.

Recalling P (τ̃0,0 > k) ∼ k−γ/(λ+1), by the Karamata’s theorem, we get φ̃0 (z) ∼
z↓1

1− (1− z)γ/(λ+1). Thus

ũ0 (z) ∼
z↓1

(1− z)−γ/(λ+1)

We conclude from singularity analysis and Karamata’s theorem applied to ũ0 (z)
that

• If 0 < γ − λ < 1 (null recurrence):

P0

(
X̃n = 0

)
∼

n→∞
n−(1−γ/(λ+1))

with 1− γ/ (λ + 1) ∈ (0, 1) . The contact probability at 0 decays algebraically to 0,
with decay exponent 1− γ/ (λ + 1).

• If γ − λ > 1 (positive recurrence):

P0

(
X̃n = 0

)
→

n→∞
π̃0 < ∞,

the mass at 0 of the invariant probability measure. In the positive recurrent setup,
the return time to the origin only occurs in finite time (τ̃0,0 < ∞ with probability
1). Recall also that E (τ̃0,0) < ∞. In fact, a more detailed study of the singularities
of φ̃0 (z) shows that τ̃0,0 has no moment of order larger or equal than γ

λ+1 .
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7. Excursion statistics of the special Markov chain: extreme value
analysis heuristic

In this Section, we study the way the mean and median of both the empirical aver-
age and sample maximum grow, depending on the values of (γ, λ). Because growth
is rare and regularly obstructed by catastrophic events, we expect growth to be
slow. In fact, we will show that growth is algebraic only, with exponents that we
can identify in terms of the model parameters (γ, λ).

Recall the height of an excursion obeys

(15) P
(
H̃ ≥ h

)
= 1/ϕ (h) ∼ h−γ .

Therefore, E
(
H̃
)

= ∞ when γ ∈ (0, 1], E
(
H̃
)

< ∞ as soon as γ > 1 and

E
(
H̃2
)

< ∞ as soon as γ > 2.

For the excursions lengths, we have

(16) P (τ̃0,0 > k) ∼ k−γ/(λ+1).

Therefore E (τ̃0,0) = ∞ when γ − λ ≤ 1, E (τ̃0,0) < ∞ as soon as γ − λ > 1 and

E
(
τ̃2

0,0

)
< ∞ as soon as γ − λ > 2.

We will summarize these results as follows:

Proposition 3. With the scale function given by (10), the law of the excursion
height of the special walker is exactly given by:

(17) P
(
H̃ ≥ h

)
= 1/ϕ (h) ,

satisfying P
(
H̃ ≥ h

)
≈ h−γ .

(i) when γ − λ ∈ (0, 1] and γ ∈ (0, 1], the special MC is null recurrent with both
E (τ̃0,0) = ∞ and E

(
H̃
)

= ∞.

(ii) when γ−λ ∈ (0, 1] and γ > 1, the special MC is null recurrent with E (τ̃0,0) = ∞
but with E

(
H̃
)

< ∞.

(iii) In the positive recurrent case (γ − λ > 1) the special MC sample paths are
made of infinitely many i.i.d. excursions with both E (τ̃0,0) and E

(
H̃
)

< ∞.

7.1. Height and length of the largest excursion: the positive recurrent
case. (Height). The preceding informations allow to derive the following qual-
itative result about the maximal height HN reached by time N in the positive
recurrent case (γ − λ > 1): by time N , with µ = E (τ̃0,0) < ∞ there are indeed
N/µ i.i.d. excursions on average. Thus,

HN = max
n=1,..,[N/µ]

H̃(n)

where H̃(n) d= H̃ are i.i.d. with law governed by (15). Due to (17), there exists a
sequence hN such that N

µ P
(
H̃ > hN

)
→N↗∞ α for some α > 0, say α = log 2.
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From (15), we obtain:

(18) hN ≈ N1/γ .

Using this, we have

P (HN ≤ hN ) =
(
1− P

(
H̃ > hN

))N/µ

→N↗∞ e−α = 1/2,

and therefore (when γ − λ > 1), the typical (median) maximal height that the
MC reaches by time N, grows like N1/γ . With M denoting the median value, with
MN := max

(
X̃1, .., X̃N

)
, we therefore have: M (MN ) = hN ≈ N1/γ .

Clearly, the number of H̃n, n = 1, .., [N/µ] exceeding hN converges to a Poisson(α)
distributed random variable. Furthermore,HN/hN

d→
N↗∞

F where F is Fréchet (α, γ)

distributed with P (F ≤ x) = e−αx−γ

.

(Length). Similarly for the lengths, let

τN = max
n=1,..,[N/µ]

τ̃
(n)
0,0

be the length of the largest excursion, with τ̃
(n)
0,0

d= τ̃0,0 i.i.d. with law gov-
erned by (16). Due to (16), there exists a sequence of time lags kN such that
N
µ P (τ̃0,0 > kN ) →N↗∞ α > 0. Since P (τ̃0,0 > k) ≈ k−γ/(λ+1), we get:

(19) kN ≈ N (λ+1)/γ .

We have

P (τN ≤ kN ) = (1− P (τ̃0,0 > kN ))[N/µ] →N↗∞ e−α = 1/2.

Therefore, when γ−λ > 1, the typical length of the excursion with maximal length
by time N grows like N (λ+1)/γ � N. Note that

(20) hN ≈ k
1/(λ+1)
N ,

so that the typical height of the largest excursion scales like its length raised to the
power 1/ (λ + 1).

Note also that, observing E (MkN
) ≈ M (MN ), we obtain

E (MN ) ≈ M
(
max

(
X̃1, .., X̃k−1

N

))
=
(
Nγ/(λ+1)

)1/γ

= N1/(λ+1)

with M (MN ) � E (MN ) in the positive-recurrent regime under study γ − λ > 1.

Let τ0,h be the first time at which some excursion height exceeds the level h (the
time between failure at h). We have

P (τ0,h > N) = P (HN ≤ h) =
(
1− P

(
H̃ > h

))[N/µ]

.

Due to (15), for all α > 0, assuming h large, we get:

(21) P
(
h−γτ0,h > α

)
∼

h large

(
1− h−γ

)α
µ hγ

→ e−
α
µ ,

showing that τ0,h is of order M (τ0,h) ≈ hγ with an exponential limit law. This
point is in accordance with (18). We can summarize these results as follows:
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Proposition 4. Assume γ − λ > 1 (positive recurrence of the special walker).
Then,

(i) the typical (median) height hN of its largest excursion satisfies hN ≈ N1/γ .

(ii) the typical (median) length kN of its largest excursion satisfies kN ≈ N (λ+1)/γ ,

so with hN ≈ k
1/(λ+1)
N .

(iii) the typical (median) time to failure at level h satisfies: M (τ0,h) ≈ hγ .

7.2. The null recurrent case. To some extent, this situation extends to the
range γ − λ < 1, although it deserves a special treatment. In this null recurrent
case indeed, µ = ∞ and so one deals with very large and therefore rare excursions
(see [14]). By renewal arguments, the expected number of such excursions by time
N (large) now is of order Na/c (with a = γ/ (λ + 1) < 1 and c > 0), so much
smaller than N . The typical length kN of the largest excursion by time N is now
given by:

Na

c
P (τ̃0,0 > kN ) →N↗∞ α > 0,

leading to kN ≈ N (with no dependence of the scaling exponent on γ and λ): In
this null-recurrent regime, the size of a typical excursion is the largest possible,
corresponding to a single big excursion (or perhaps just a few of them).

Similarly, the maximal height HN reached by time N in this null recurrent case is
again given by:

HN = max
n=1,..,[Na/c]

H̃(n),

where H(n) are i.i.d. with law governed by (15). Due to (10), there exists a sequence
hN such that Na

c P
(
H̃ > hN

)
→N↗∞ α for some α > 0, leading to

(22) hN ≈ N1/(λ+1).

Thus, when γ − λ < 1, hN ≈ k
1/(λ+1)
N . Although when γ − λ < 1, hN and kN are

not individually of the same order of magnitude as when γ − λ > 1, the typical
height of the largest excursion continues to scale like its length raised to the power
1/ (λ + 1).

In the null recurrent case, we also have

P (τ0,h > N) = P (HN ≤ h) =
(
1− P

(
H̃ > h

))[Na/c]

.

Due to (15), for all α > 0, when h is large, we get:

(23) P
(
h−(λ+1)τ0,h > α

)
∼

h large

(
1− h−γ

)αahγ/c → e−αa/c,

showing that the time to failure τ0,h at h is now of order M (τ0,h) ≈ hλ+1 with a
Weibull limit law. We shall summarize these results as follows:

Proposition 5. Assume γ − λ < 1 (null recurrence of the special walker). Then,

(i) the typical (median) height hN of its largest excursion satisfies hN ≈ N1/(λ+1).

(ii) the typical (median) length kN of its largest excursion satisfies kN ≈ N, so still
with hN ≈ k

1/(λ+1)
N .

(iii) the typical (median) time to failure at level h satisfies: M (τ0,h) ≈ hλ+1.
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From this result concerning the null recurrent case and the previous one in the
positive recurrent case, we observe that the typical height of the largest excursion
always scales like its length raised to the power 1/ (λ + 1).

7.3. Height and length of excursions. Scaling properties in the regime
1 < γ − λ < 2. The previous study in the positive recurrent case, suggests that,
at least when 1 < γ − λ < 2, it could always be true that the expected height of
any excursion (not only the largest) should scale like its length raised to the power
1/ (λ + 1). If this were to be the case, defining the empirical mean of the walk as

(24) XN ≡ 1
N

N∑
n=1

X̃n,

then,

E
(
XN

)
=

1
N

N∑
k=1

k
N

µ
P (τ0,0 = k) k1/(λ+1),

because there are approximately N
µ P (τ0,0 = k) excursions of length k whose contri-

bution to the empirical mean is k N
µ P (τ0,0 = k), each with typical height k1/(λ+1).

Using (11), we therefore expect that in the range 1 < γ − λ < 2

E
(
XN

)
≈

N∑
k=1

k1+1/(λ+1)P (τ0,0 = k) ≈
N∑

k=1

k1+1/(λ+1)−(1+ γ
λ+1 )(25)

=
N∑

k=1

k−
γ−1
λ+1 ≈ N1− γ−1

λ+1 = N
λ−γ+2

λ+1 .(26)

This shows that the expected height of the special MC X̃ at time N grows like
N

λ−γ+2
λ+1 .

Note that we get a sub-diffusive (super-diffusive) regime in the domain {1 < γ − λ < 2}∩
{γ < (λ + 3) /2} (respectively {1 < γ − λ < 2} ∩ {γ > (λ + 3) /2}). In particular if
λ > 1, the regime is always super-diffusive.

Rather considering the median value M
(
XN

)
of XN , still when 1 < γ − λ < 2, we

get

M
(
XN

)
≈

kN∑
k=1

k1+1/(λ+1)P (τ0,0 = k) =
kN∑
k=1

k−
γ−1
λ+1 ≈ k

1− γ−1
λ+1

N ≈ N
λ−γ+2

γ ,

with M
(
XN

)
� E

(
XN

)
� hN = M (MN ) for the parameter range 1 < γ − λ < 2

under concern. The median height M
(
XN

)
of XN can also be estimated in the

following way:

(27) M
(
XN

)
≈

hN∑
x=1

xP
(
XN = x

)
≈

hN∑
x=1

xx−(γ−λ) ≈ h2+λ−γ
N ≈ N (2+λ−γ)/γ ,

where we used that when N is large, P
(
XN = x

)
is ‘close’ to the invariant measure

π̃ which scales for large x like x−(γ−λ). Indeed, with ‖P −Q‖TV ≡ sup
A
{P (A)−Q (A)}

defining the total variation distance between two probability measures P and Q,∥∥P (XN = ·
)
− π̃·

∥∥
TV

≈ P (XN ≥ hN ) ≈ h1+λ−γ
N ≈ N−(γ−λ−1)/γ ,
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from (18). The latter quantity N−(γ−λ−1)/γ tends to 0 because γ − λ > 1. This
heuristic approach also suggests that the convergence to equilibrium of P

(
XN = .

)
should be algebraically slow when 1 < γ − λ < 2. To summarize, we obtained:

Proposition 6. Let XN in (24) define the empirical mean height of the walker by
time N .

(i) Assume 1 < γ − λ < 2. Then, the expected value E
(
XN

)
of XN satisfies:

E
(
XN

)
≈ N (2+λ−γ)/(λ+1). Its typical (median) value M

(
XN

)
satisfies: M

(
XN

)
≈

N (2+λ−γ)/γ with, since M (MN ) ≈ N1/γ and E (MN ) ≈ N1/(λ+1) :

M
(
XN

)
� E

(
XN

)
� M (MN ) � E (MN ).

(ii) When γ − λ > 2, E
(
XN

)
→N↗∞ E

(
X̃∞

)
, the finite mean of the invariant

measure π̃. However, M (MN ) ≈ N1/γ and E (MN ) ≈ N1/(λ+1) still holds true in
this parameter range.

In (i) , it can be checked that the scaling exponent (2 + λ− γ) / (λ + 1) of E
(
XN

)
is indeed smaller than the one 1/γ of M (MN ) in the regime under study 1 <
γ−λ < 2. Note also that one expects that, normalizing the maximum by its mean,
MN/N1/(λ+1) should admit a limit law as N →∞.

(ii) is clear because, when γ − λ > 2, XN →
N→∞

E
(
X̃∞

)
< ∞ almost surely.
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