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Introduction

Calderón-Zygmund operators and their generalizations on Euclidean space R n have been extensively studied, see for example [START_REF] Journé | Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón[END_REF][START_REF] Meyer | Wavelets, Calderón-Zygmund and multilinear operators[END_REF][START_REF] Yabuta | Generalizations of Calderón-Zygmund operators[END_REF][START_REF] Quek | Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n[END_REF]. In particular, Yabuta [START_REF] Yabuta | Generalizations of Calderón-Zygmund operators[END_REF] introduced certain θ-Calderón-Zygmund operators to facilitate his study of certain classes of pseudo-differential operator. Definition 1.1. Let θ be a nonnegative nondecreasing function on (0, ∞) satisfying

1 0 θ(t)
t dt < ∞. A continuous function K : R n ×R n \{(x, x) : x ∈ R n } → C is said to be a θ-Calderón-Zygmund singular integral kernel if there exists a constant C > 0 such that a θ-Calderon-Zygmund singular integral kernel K such that for all f ∈ C ∞ c (R n ) and all x / ∈supp f , we have

T f (x) = R n
K(x, y)f (y)dy.

When K j (x, y) = π -(n+1)/2 Γ n+1 2 x j -y j |x-y| n+1 , j = 1, 2, ..., n, then they are the classical Riesz transforms denoted by R j .

It is well-known that the Riesz transforms R j , j = 1, 2, ..., n, are bounded on unweighted Hardy spaces H p (R n ). There are many different approaches to prove this classical result (see [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF][START_REF] Lee | Different approaches to the H p boundedness of Riesz transforms[END_REF]). Recently, by using the weighted molecular theory (see [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF]) and combined with García-Cuerva's atomic decomposition [START_REF] García-Cuerva | Weighted H p spaces[END_REF] for weighted Hardy spaces H p w (R n ), the authors in [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF] established that the Riesz transforms R j , j = 1, 2, ..., n, are bounded on H p w (R n ). More precisely, they proved that R j f H p w ≤ C for every w-(p, ∞, ts -1)-atom where s, t ∈ N satisfy n/(n+s) < p ≤ n/(n+s-1) and ((s-1)r w +n)/(s(r w -1)) with r w is the critical index of w for the reverse Hölder condition. Remark that this leaves a gap in the proof. Similar gaps exist in some litteratures, for instance in [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF][START_REF] Quek | Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n[END_REF] when the authors establish H p w -boundedness of Calderón-Zygmund type operators. Indeed, it is now well-known that (see [START_REF] Bownik | Boundedness of operators on Hardy spaces via atomic decompositions[END_REF]) the argument "the operator T is uniformly bounded in H p w (R n ) on w-(p, ∞, r)-atoms, and hence it extends to a bounded operator on H p w (R n )" is wrong in general. However, Meda, Sjögren and Vallarino [START_REF] Meda | On the H 1 -L 1 boundedness of operators[END_REF] establishes that (in the setting of unweighted Hardy spaces) this is correct if one replaces L ∞ -atoms by L q -atoms with 1 < q < ∞. See also [START_REF] Yang | A boundedness criterion via atoms for linear operators in Hardy spaces[END_REF] for L 2 -atoms with a different method from [START_REF] Meda | On the H 1 -L 1 boundedness of operators[END_REF]. Later, the authors in [START_REF] Bownik | Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators[END_REF] extended these results to the weighted anisotropic Hardy spaces. More precisely, it is claimed in [START_REF] Bownik | Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators[END_REF] that the operator T can be extended to a bounded operator on H p w (R n ) if it is uniformly bounded on w-(p, q, r)-atoms for q w < q < ∞, r ≥ [n(q w /p -1)] where q w is the critical index of w.

Motivated by [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF][START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF][START_REF] Quek | Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n[END_REF][START_REF] Bownik | Boundedness of operators on Hardy spaces via atomic decompositions[END_REF][START_REF] Bownik | Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators[END_REF], in this paper, we extend Theorem 1 in [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF] to A ∞ weights (see Theorem 1.1); Theorem 4 in [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF] (see Theorem 1.2), Theorem 3 in [START_REF] Quek | Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n[END_REF] (see Theorem 3.1) to θ-Calderón-Zygmund operators; and fill the gaps of the proofs by using the atomic decomposition and molecular characterization of H p w (R n ) as in [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF]. Throughout the whole paper, C denotes a positive geometric constant which is independent of the main parameters, but may change from line to line. In R n , we denote by B = B(x, r) an open ball with center x and radius r > 0. For any measurable set E, we denote by |E| its Lebesgue measure, and by E c the set R n \ E.

Let us first recall some notations, definitions and well-known results. Let 1 ≤ p < ∞. A nonnegative locally integrable function w belongs to the Muckenhoupt class A p , say w ∈ A p , if there exists a positive constant C so that 1

|B| B w(x)dx 1 |B| B (w(x)) -1/(p-1) dx p-1 ≤ C, if 1 < p < ∞, and 1 |B| B w(x)dx ≤ C ess-inf x∈B w(x), if p = 1, for all balls B in R n . We say that w ∈ A ∞ if w ∈ A p for some p ∈ [1, ∞).
It is well known that w ∈ A p , 1 ≤ p < ∞, implies w ∈ A q for all q > p. Also, if w ∈ A p , 1 < p < ∞, then w ∈ A q for some q ∈ [1, p). We thus write q w := inf{p ≥ 1 : w ∈ A p } to denote the critical index of w. For a measurable set E, we note w(E) = E w(x)dx its weighted measure.

The following lemma gives a characterization of the class A p , 1 ≤ p < ∞. It can be found in [START_REF] García-Cuerva | Weighted norm inequalities and related topics[END_REF].

Lemma A. The function w ∈ A p , 1 ≤ p < ∞, if and only if, for all nonnegative functions and all balls B, 1

|B| B f (x)dx p ≤ C 1 w(B) B f (x) p w(x)dx.
A close relation to A p is the reverse Hölder condition. If there exist r > 1 and a fixed constant C > 0 such that 1

|B| B w r (x)dx 1/r ≤ C 1 |B| B w(x)dx for every ball B ⊂ R n ,
we say that w satisfies reverse Hölder condition of order r and write w ∈ RH r .

It is known that if w ∈ RH r , r > 1, then w ∈ RH r+ε for some ε > 0. We thus write r w := sup{r > 1 : w ∈ RH r } to denote the critical index of w for the reverse Hölder condition.

The following result provides us the comparison between the Lebesgue measure of a set E and its weighted measure w(E). It also can be found in [START_REF] García-Cuerva | Weighted norm inequalities and related topics[END_REF].

Lemma B. Let w ∈ A p ∩ RH r , p ≥ 1 and r > 1. Then there exist con- stants C 1 , C 2 > 0 such that C 1 |E| |B| p ≤ w(E) w(B) ≤ C 2 |E| |B| (r-1)/r
, for all cubes B and measurable subsets E ⊂ B.

Given a weight function w on R n , as usual we denote by L q w (R n ) the space of all functions f satisfying f

L q w := ( R n |f (x)| q w(x)dx) 1/q < ∞. When q = ∞, L ∞ w (R n ) is L ∞ (R n ) and f L ∞ w = f L ∞ .
Analogously to the classical Hardy spaces, the weighted Hardy spaces H p w (R n ), p > 0, can be defined in terms of maximal functions. Namely, let φ be a function in S(R n ), the Schwartz space of rapidly decreasing smooth functions, satisfying R n φ(x)dx = 1. Define

φ t (x) = t -n φ(x/t), t > 0, x ∈ R n ,
and the maximal function f * by

f * (x) = sup t>0 |f * φ t (x)|, x ∈ R n . Then H p w (R n ) consists of those tempered distributions f ∈ S ′ (R n ) for which f * ∈ L p w (R n ) with the (quasi-)norm f H p w = f * L p w .
In order to show the H p w -boundedness of Riesz transforms, we characterize weighted Hardy spaces in terms of atoms and molecules in the following way.

Definition of a weighted atom. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p = q such that w ∈ A q . Let q w be the critical index of w.

Set [•] the integer function. For s ∈ N satisfying s ≥ [n(q w /p -1)], a function a ∈ L q w (R n ) is called w-(p, q, s)-atom centered at x 0 if (i) supp a ⊂ B for some ball B centered at x 0 , (ii) a L q w ≤ w(B) 1/q-1/p , (iii) R n a(x)x α dx = 0 for every multi-index α with |α| ≤ s. Let H p,q,s w (R n ) denote the space consisting of tempered distributions admitting a decomposition f = ∞ j=1 λ j a j in S ′ (R n )
, where a j 's are w-(p, q, s)-atoms and

∞ j=1 |λ j | p < ∞.
And for every f ∈ H p,q,s w (R n ), we consider the (quasi-)norm

f H p,q,s w = inf ∞ j=1 |a j | p 1/p : f S ′ = ∞ j=1 λ j a j , {a j } ∞ j=1 are w-(p, q, s)-atoms .
Denote by H p,q,s w,fin (R n ) the vector space of all finite linear combinations of w-(p, q, s)-atoms, and the (quasi-)norm of f in H p,q,s w,fin (R n ) is defined by

f H p,q,s w,fin := inf k j=1 |λ j | p 1/p : f = k j=1 λ j a j , k ∈ N, {a j } k j=1 are w-(p, q, s)-atoms .
We have the following atomic decomposition for H p w (R n ). It can be found in [START_REF] García-Cuerva | Weighted H p spaces[END_REF] (see also [START_REF] Bownik | Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators[END_REF][START_REF] Ky | New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators[END_REF]).

Theorem A. If the triplet (p, q, s) satisfies the conditions of w-(p, q, s)-atoms, then H p w (R n ) = H p,q,s w (R n ) with equivalent norms. The molecules corresponding to the atoms mentioned above can be defined as follows.

Definition of a weighted molecule. For 0 < p ≤ 1 ≤ q ≤ ∞ and p = q, let w ∈ A q with critical index q w and critical index r w for the reverse Hölder condition. Set s ≥ [n(q w /p -1)], ε > max{sr w (r w -1)

-1 n -1 + (r w -1) -1 , 1/p - 1}, a = 1 -1/p + ε, and b = 1 -1/q + ε. A w-(p, q, s, ε)-molecule centered at x 0 is a function M ∈ L q w (R n ) satisfying (i) M.w(B(x 0 , • -x 0 )) b ∈ L q w (R n ), (ii) M a/b L q w M.w(B(x 0 , • -x 0 )) b 1-a/b L q w ≡ N w (M) < ∞, (iii) R n M(x)
x α dx = 0 for every multi-index α with |α| ≤ s. The above quantity N w (M) is called the w-molecular norm of M. In [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF], Lee and Lin proved that every weighted molecule belongs to the weighted Hardy space H p w (R n ), and the embedding is continuous.

Theorem B. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p = q, w ∈ A q , and (p, q, s, ε) be the quadruple in the definition of molecule. Then, every w-(p, q, s, ε)-molecule M centered at any point in R n is in H p w (R n ), and M H p w ≤ CN w (M) where the constant C is independent of the molecule.

Although, in general, one cannot conclude that an operator T is bounded on H p w (R n ) by checking that their norms have uniform bound on all of the corresponding w-(p, ∞, s)-atoms (cf. [START_REF] Bownik | Boundedness of operators on Hardy spaces via atomic decompositions[END_REF]). However, this is correct when dealing with w-(p, q, s)-atoms with q w < q < ∞. Indeed, we have the following result (see [START_REF] Bownik | Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators[END_REF]Theorem 7.2]).

Theorem C. Let 0 < p ≤ 1, w ∈ A ∞ , q ∈ (q w , ∞) and s ∈ Z satisfying s ≥ [n(q w /p -1)]. Suppose that T : H p,q,s w,fin (R n ) → H p w (R n
) is a linear operator satisfying sup{ T a H p w : a is any w-(p, q, s)-atom} < ∞. Then T can be extended to a bounded linear operator on H p w (R n ).

Our first main result, which generalizes Theorem 1 in [START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF], is as follows:

Theorem 1.1. Let 0 < p ≤ 1 and w ∈ A ∞ . Then, the Riesz transforms are bounded on H p w (R n ). For the next result, we need the notion T * 1 = 0. Definition 1.2. Let T be a θ-Calderón-Zygmund operator. We say that

T * 1 = 0 if R n T f (x)dx = 0 for all f ∈ L q (R n ), 1 < q ≤ ∞, with compact support and R n f (x)dx = 0.
We now can give the H p w -boundedness of θ-Calderón-Zygmund type operators, which generalizes Theorem 4 in [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF] by taking q = 1 and θ(t) = t δ , as follows:

Theorem 1.2. Given δ ∈ (0, 1], n/(n + δ) < p ≤ 1, and w ∈ A q ∩ RH r with 1 ≤ q < p(n + δ)/n, (n + δ)/(n + δ -nq) < r. Let θ be a nonnegative nondecreasing function on (0, ∞) with 1 0 θ(t) t 1+δ dt < ∞, and T be a θ-Calderón-Zygmund operator satisfying T * 1 = 0. Then T is bounded on H p w (R n ).

Proof of Theorem 1.1

In order to prove the main theorems, we need the following lemma (see [6, page 412]).

Lemma C. Let w ∈ A r , r > 1. Then there exists a constant C > 0 such that

B c 1 |x -x 0 | nr w(x)dx ≤ C 1 σ nr w(B) for all balls B = B(x 0 , σ) in R n .
Proof of Theorem 1.1. For q = 2(q w + 1) ∈ (q w , ∞), then s := [n(q/p -1)] ≥ [n(q w /p -1)]. We now choose (and fix) a positive number ε satisfying (2.1) max{sr w (r w -1)

-1 n -1 +(r w -1) -1 , q/p-1} < ε < t(s+1)(nq) -1 +q -1 -1,
for some t ∈ N, t ≥ 1 and max{sr w (r w -1)

-1 n -1 + (r w -1) -1 , q/p -1} < t(s + 1)(nq) -1 + q -1 -1.
Clearly, ℓ := t(s + 1) -1 ≥ s ≥ [n(q w /p -1)]. Hence, by Theorem B and Theorem C, it is sufficient to show that for every w-(p, q, ℓ)-atom f centered at x 0 and supported in ball B = B(x 0 , σ), the Riesz transforms

R j f = K j * f , j = 1, 2, ..., n, are w-(p, q, s, ε)-molecules with the norm N w (R j f ) ≤ C.
Indeed, as w ∈ A q by q = 2(q w + 1) ∈ (q w , ∞). It follows from L q wboundedness of Riesz transforms that (2.2)

R j f L q w ≤ R j L q w →L q w f L q w ≤ Cw(B) 1/q-1/p . To estimate R j f.w(B(x 0 , | • -x 0 |)) b L q
w where b = 1 -1/q + ε, we write

R j f.w(B(x 0 , • -x 0 )) b q L q w = |x-x 0 |≤2 √ nσ |R j f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx + + |x-x 0 |>2 √ nσ |R j f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx = I + II.
By Lemma B, we have the following estimate,

I = |x-x 0 |≤2 √ nσ |R j f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ w(B(x 0 , 2 √ nσ)) bq |x-x 0 |≤2 √ nσ |R j f (x)| q w(x)dx ≤ Cw(B) bq R j q L q w →L q w f q L q w ≤ Cw(B) (b+1/q-1/p)q .
To estimate II, as f is w-(p, q, ℓ)-atom, by the Taylor's fomular and Lemma A, we get

|K j * f (x)| = |y-x 0 |≤σ K j (x -y) - |α|≤ℓ 1 α! D α K j (x -x 0 )(x 0 -y) α f (y)dy ≤ C |y-x 0 |≤σ σ ℓ+1 |x -x 0 | n+ℓ+1 |f (y)|dy ≤ C σ n+ℓ+1 |x -x 0 | n+ℓ+1 w(B) -1/q f L q w ,
for all x ∈ (B(x 0 , 2 √ nσ)) c . As b = 1 -1/q + ε, it follows from (2.1) that (n + ℓ + 1)q -q 2 nb > nq. Therefore, by combining the above inequality, Lemma B and Lemma C, we obtain

II = |x-x 0 |>2 √ nσ |R j f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ Cσ (n+ℓ+1)q w(B) -1 f q L q w |x-x 0 |>2 √ nσ 1 |x -x 0 | (n+ℓ+1)q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ Cσ (n+ℓ+1)q-q 2 nb w(B) (b-1/p)q |x-x 0 |>2
√ nσ 1 |x -x 0 | (n+ℓ+1)q-q 2 nb w(x)dx ≤ Cw(B) (b+1/q-1/p)q . Thus,

(2.3) R j f.w(B(x 0 , | • -x 0 |)) b
L q w = (I + II) 1/q ≤ Cw(B) b+1/q-1/p . Remark that a = 1 -1/p + ε. Combining (2.2) and (2.3), we obtain

N w (R j f ) ≤ Cw(B) (1/q-1/p)a/b w(B) (b+1/q-1/p)(1-a/b) ≤ C.
The proof will be concluded if we establish the vanishing moment conditions of R j f . One first consider the following lemma. Lemma. For every classical atom (p, 2, ℓ)-atom g centered at x 0 , we have

R n R j g(x)x α dx = 0 for 0 ≤ |α| ≤ s, 1 ≤ j ≤ n.
Proof of the Lemma. Since b = 1 -1/q + ε < (ℓ + 1)(nq) -1 < (ℓ + 1)n -1 , we obtain 2(n + ℓ + 1) -2nb > n. It is similar to the previous argument, we also obtain that R j g and R j g.| • -x 0 | nb belong to L 2 (R n ). Now, we establish that R j g.(• -x 0 ) α ∈ L 1 (R n ) for every multi-index α with |α| ≤ s. Indeed, since ε > q/p -1 by (2.1), implies that 2(s -nb) < (s -nb)q ′ < -n by q = 2(q w + 1) > 2, where 1/q + 1/q ′ = 1. We use Schwartz inequality to get

B(x 0 ,1) c |R j g(x)(x -x 0 ) α |dx ≤ B(x 0 ,1) c |R j g(x)||x -x 0 | s dx ≤ B(x 0 ,1) c |R j g(x)| 2 |x -x 0 | 2nb dx 1/2 B(x 0 ,1) c |x -x 0 | 2(s-nb) dx 1/2 ≤ C R j g.| • -x 0 | nb L 2 < ∞, and 
B(x 0 ,1) |R j g(x)(x -x 0 ) α |dx ≤ |B(x 0 , 1)| 1/2 B(x 0 ,1) |R j g(x)| 2 dx 1/2 < ∞. Thus, R j g.(• -x 0 ) α ∈ L 1 (R n ) for any |α| ≤ s. Deduce that R j g(x)x α ∈ L 1 (R n ) for any |α| ≤ s. Therefore, (R j g(x)x α ) (ξ) = C α .D α (R j g)(ξ)
is continuous, with |C α | ≤ C s (C s depends only on s) for any |α| ≤ s, where ĥ is used to denote the fourier transform of h. Consequently,

R n R j g(x)x α dx = C α .D α (R j g)(0) = C α .D α (m j ĝ)(0),
where m j (x) = -ix j /|x|. Moreover, since g is a classical (p, 2, ℓ)-atom, it follows from [17, Lemma 9.1] that ĝ is ℓth order differentiable and ĝ(ξ) = O(|ξ| ℓ+1 ) as ξ → 0. We write e j to be the jth standard basis vector of R n , α = (α 1 , ..., α n ) a multi-index of nonnegative integers α j , ∆ he j φ(x) = φ(x)φ(x -he j ), ∆

α j he j φ(x) = ∆ α j -1 he j φ(x) -∆ α j -1 he j φ(x -he j ) for α j ≥ 2, ∆ 0 he j φ(x) = φ(x), and ∆ α h = ∆ α 1 he 1 ...∆ αn hen .
Then, the boundedness of m j , and

|C α | ≤ C s for |α| ≤ s, implies R n R j g(x)x α dx = |C α | lim h→0 |h| -|α| ∆ α h (m j ĝ)(0) ≤ C lim h→0 |h| ℓ+1-|α| = 0,
for |α| ≤ s by s ≤ ℓ. Thus, for any j = 1, 2, ..., n, and |α| ≤ s,

R n R j g(x)x α dx = 0.
This complete the proof of the lemma.

Let us come back to the proof of Theorem 1.1. As q/2 = q w + 1 > q w , by Lemma A,

1 |B| B |f (x)| 2 dx q/2 ≤ C 1 w(B) B |f (x)| q w(x)dx.
Therefore, g := C -1/q |B| -1/p w(B) 1/p f is a classical (p, 2, ℓ)-atom since f is w-(p, q, ℓ)-atom associated with ball B. Consequently, by the above lemma,

R n R j f (x)x α dx = C 1/q |B| 1/p w(B) -1/p R n R j g(x)
x α dx = 0 for all j = 1, 2, ..., n and |α| ≤ s. Thus, the theorem is proved.

Following a similar but easier argument, we also have the following H p wboundedness of Hilbert transform. We leave details to readers. Theorem 2.1. Let 0 < p ≤ 1 and w ∈ A ∞ . Then, the Hilbert transform is bounded on H p w (R).

Proof of theorem 1.2

We first consider the following lemma Lemma 3.1. Let p ∈ (0, 1], w ∈ A q , 1 < q < ∞, and T be a θ-Calderón-Zygmund operator satisfying T * 1 = 0. Then, R n T f (x)dx = 0 for all w-(p, q, 0)-atoms f .

Proof of Lemma 3.1. Let f be an arbitrary w-(p, q, 0)-atom associated with ball B. It is well-known that there exists 1 < r < q such that w ∈ A r . Therefore, it follows from Lemma A that

B |f (x)| q/r dx ≤ C|B|w(B) 1/r f q/r L q w < ∞.
We deduce that f is a multiple of classical (p, q/r, 0)-atom, and thus the condition

T * 1 = 0 implies R n T f (x)dx = 0.
Proof of Theorem 1.2. Because of the hypothesis, without loss of generality we can assume q > 1. Futhermore, it is clear that [n(q w /p -1)] = 0, and there exists a positive constant ε such that

(3.1) max 1 r w -1 , 1 p -1 < ε < n + δ nq -1.
Similarly to the arguments in Theorem 1.1, it is sufficient to show that, for every w-(p, q, 0)-atom f centered at x 0 and supported in ball B = B(x 0 , σ), T f is a w-(p, q, 0, ε)-molecule with the norm N w (T f ) ≤ C. One first observe that R n T f (x)dx = 0 by Lemma 3.1, and

∞ k=0 θ(2 -k )2 knbq < ∞, where b = 1 -1/q + ε, by 1 0 θ(t) t 1+δ dt < ∞ and (3.1). We deduce that (3.2) ∞ k=0 θ(2 -k )2 knbq q < ∞.
As w ⊂ A q , 1 < q < ∞, it follows from [18, Theorem 2.4] that

(3.3) T f L q w ≤ C f L q w ≤ Cw(B) 1/q-1/p . To estimate T f.w(B(x 0 , | • -x 0 |)) b L q w , we write T f.w(B(x 0 , • -x 0 )) b q L q w = |x-x 0 |≤2σ |T f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx + + |x-x 0 |>2σ |T f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx = I + II.
By Lemma B, we have the following estimate,

I = |x-x 0 |≤2σ |T f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ w(B(x 0 , 2σ)) bq |x-x 0 |≤2σ |T f (x)| q w(x)dx ≤ Cw(B) bq f q L q w ≤ Cw(B) (b+1/q-1/p)q .
To estimate II, since f is of mean zero, by Lemma A, we have

|T f (x)| = |y-x 0 |≤σ (K(x, y) -K(x, x 0 ))f (y)dy ≤ C |y-x 0 |≤σ 1 |x -x 0 | n θ |y -x 0 | |x -x 0 | |f (y)|dy ≤ C σ n |x -x 0 | n θ σ |x -x 0 | w(B) -1/q f L q w ,
for all x ∈ (B(x 0 , 2σ)) c . Therefore, by combining the above inequality, Lemma B and (3.2), we obtain

II = |x-x 0 |>2σ |T f (x)| q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ Cw(B) -1 f q L q w |x-x 0 |>2σ σ nq |x -x 0 | nq θ σ |x -x 0 | q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ Cw(B) -q/p ∞ k=1 2 k σ<|x-x 0 |≤2 k+1 σ σ nq |x -x 0 | nq θ σ |x -x 0 | q w(B(x 0 , |x -x 0 |)) bq w(x)dx ≤ Cw(B) (b+1/q-1/p)q ∞ k=0 θ(2 -k )2 knbq q
≤ Cw(B) (b+1/q-1/p)q .

Thus,

(3.4) T f.w(B(x 0 , | • -x 0 |)) b
L q w = (I + II) 1/q ≤ Cw(B) b+1/q-1/p . Remark that a = 1 -1/p + ε. Combining (3.3) and (3.4), we obtain

N w (T f ) ≤ Cw(B) (1/q-1/p)a/b w(B) (b+1/q-1/p)(1-a/b) ≤ C.
This finishes the proof.

It is well-known that the molecular theory of (unweighted) Hardy spaces of Taibleson and Weiss [START_REF] Taibleson | The molecular characterization of certain Hardy spaces[END_REF] is one of useful tools to establish boundedness of operators in Hardy spaces (cf. [START_REF] Taibleson | The molecular characterization of certain Hardy spaces[END_REF][START_REF] Lu | Four lectures on real H p spaces[END_REF]). In the setting of Muckenhoupt weight, this theory has been considered by the authors in [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF], since then, they have been well used to establish boundedness of operators in weighted Hardy spaces (cf. [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF][START_REF] Lee | H p w -boundedness of Riesz transforms[END_REF][START_REF] Ding | Fractional integrals on weighted Hardy spaces[END_REF]). However in some cases, the weighted molecular characterization, which obtained in [START_REF] Lee | The molecular characterization of weighted Hardy spaces[END_REF], does not give the best possible results. For Calderón-Zygmund type operators in Theorem 1.2, for instance, it involves assumption on the critical index of w for the reverse Hölder condition as the following theorem does not. Theorem 3.1. Given δ ∈ (0, 1], n/(n + δ) < p ≤ 1, and w ∈ A q with 1 ≤ q < p(n + δ)/n. Let θ be a nonnegative nondecreasing function on (0, ∞) with 1 0 θ(t) t 1+δ dt < ∞, and T be a θ-Calderón-Zygmund operator satisfying T * 1 = 0. Then T is bounded on H p w (R n ). The following corollary give the boundedness of the classical Calderón-Zygmund type operators on weighted Hardy spaces (see [START_REF] Quek | Calderón-Zygmund-type operators on weighted weak Hardy spaces over R n[END_REF]Theorem 3]).

Corollary 3.1. Let 0 < δ ≤ 1 and T be the classical δ-Calderón-Zygmund operator, i.e. θ(t) = t δ , satisfying T * 1 = 0. If n/(n + δ) < p ≤ 1 and w ∈ A q with 1 ≤ q < p(n + δ)/n, then T is bounded on H p w (R n ).

Proof of Corollary 3.1. By taking δ ′ ∈ (0, δ) which is close enough δ. Then, we apply Theorem 3.1 with δ ′ instead of δ.

Proof of Theorem 3.1. Without loss of generality we can assume 1 < q < p(n + δ)/n. Fix φ ∈ S(R n ) with R n φ(x)dx = 0. By Theorem C, it is sufficient to show that for every w-(p, q, 0)-atom f centered at x 0 and supported in ball

B = B(x 0 , σ), (T f ) * L p w ≤ C.
In order to do this, one write

(T f ) * p L p w = |x-x 0 |≤4σ (T f ) * (x) p w(x)dx + |x-x 0 |>4σ (T f ) * (x) p w(x)dx = L 1 + L 2 .
By Hölder inequality, L q w -boundedness of the maximal function and Lemma B, we get

L 1 ≤    |x-x 0 |≤4σ (T f ) * (x) q w(x)dx    p/q |x-x 0 |≤4σ w(x)dx 1-p/q ≤ C f p L q w w(B(x 0 , 4σ)) 1-p/q ≤ C.
To estimate L 2 , we first estimate (T f ) * (x) for |x -x 0 | > 4σ. For any t > 0, since R n T f (x)dx = 0 by Lemma 3.1, we get |T f (y)|dy

|T f * φ t (x)| = R n T f (y) 1 t n φ x -y t -φ x -x 0 t dy ≤ 1 t n |y-x 0 |<2σ |T f (y)| φ x -y t -φ x -x 0 t dy + 1 t n 2σ≤|y-x 0 |< |x-x 0 | 2 • • • + 1 t n |y-x 0 |≥ |x-x 0 | 2 • • • = E 1 (t)
≤ C σ |x -x 0 | n+1 |B(x 0 , 2σ)|w(B(x 0 , 2σ)) -1/q T f L q w ≤ C σ n+1 |x -x 0 | n+1 w(B) -1/q f L q w ≤ C σ n+1 |x -x 0 | n+1 w(B) -1/p .
Similarly, we also get 

E 2 (f

 2 (z) K(y, z) -K(y, x 0 ) dz |y -x 0 | t × sup λ∈(0,1) ∇φ x -x 0 + λ(y -x 0 ) t dy ≤ C 1 |x -x 0 | n+1 2σ≤|y-x 0 |< |x-x 0 | 2 |y -x 0 | |z-x 0 |<σ |f (z)| 1 |y -x 0 | n θ |z -x 0 | |y -x 0 | dzdy |x -x 0 | n+δ w(B) -1/p .Next, let us look at L 3 . Similarly, we also haveE 3 (t) ≤ 1 t n |y-x 0 |≥ |x-x 0 | 2 R n f (z) K(y, z) -K(y, x 0 ) 2σ |x -x 0 | δ w(B) -1/p ≤ C σ |x -x 0 | n+δ w(B) -1/p .Therefore, for all |x -x 0 | > 4σ, (T f ) * (x) = sup

t>0(E 1

 1 (t) + E 2 (t) + E 3 (t)) ≤ C σ |x -x 0 | n+δ w(B) -1/p .Combining this, Lemma C and Lemma B, we obtain thatL 2 = |x-x 0 |>4σ (T f ) * (x) p w(x)dx ≤ C |x-x 0 |>4σ σ (n+δ)p |x -x 0 | (n+δ)p w(B) -1 w(x)dx ≤ Cw(B) -1 w(B(x 0 , 4σ)) ≤ C, since (n + δ)p > nq.This finishes the proof.

  + E 2 (t) + E 3 (t).As |x -x 0 | > 4σ, by the mean value theorem, Lemma A and Lemma B, we get

	E 1 (t) =	1 t n	|T f (y)| φ	x -y t	-φ	x -x 0 t	dy
		|y-x 0 |<2σ					
	≤ ≤ C 1 t n |x -x 0 | n+1 |T f (y)| |y-x 0 |<2σ σ |y-x 0 |<2σ |y -x 0 | t	sup λ∈(0,1)	∇φ	x -x 0 + λ(y -x 0 ) t	dy