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A NOTE ON Hp
w-BOUNDEDNESS OF RIESZ TRANSFORMS

AND θ-CALDERÓN-ZYGMUND OPERATORS THROUGH

MOLECULAR CHARACTERIZATION

LUONG DANG KY

Abstract. Let 0 < p ≤ 1 and w in the Muckenhoupt class A1. Recently,
by using the weighted atomic decomposition and molecular characteriza-
tion; Lee, Lin and Yang [11] (J. Math. Anal. Appl. 301 (2005), 394–400)
established that the Riesz transforms Rj , j = 1, 2, ..., n, are bounded on
Hp

w(R
n). In this note we extend this to the general case of weight w in the

Muckenhoupt class A∞ through molecular characterization. One difficulty,
which has not been taken care in [11], consists in passing from atoms to
all functions in Hp

w(R
n). Furthermore, the Hp

w-boundedness of θ-Calderón-
Zygmund operators are also given through molecular characterization and
atomic decomposition.

1. Introduction

Calderón-Zygmund operators and their generalizations on Euclidean space
Rn have been extensively studied, see for example [7, 14, 18, 15]. In particular,
Yabuta [18] introduced certain θ-Calderón-Zygmund operators to facilitate his
study of certain classes of pseudo-differential operator.

Definition 1.1. Let θ be a nonnegative nondecreasing function on (0,∞) satis-

fying
∫ 1

0
θ(t)
t
dt < ∞. A continuous function K : Rn×Rn\{(x, x) : x ∈ Rn} → C

is said to be a θ-Calderón-Zygmund singular integral kernel if there exists a

constant C > 0 such that

|K(x, y)| ≤ C

|x− y|n
for all x 6= y,

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
1

|x− y|nθ
( |x− x′|
|x− y|

)

for all 2|x− x′| ≤ |x− y|.
A linear operator T : S(Rn) → S ′(Rn) is said to be a θ-Calderón-Zygmund

operator if T can be extended to a bounded operator on L2(Rn) and there exists
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a θ-Calderon-Zygmund singular integral kernel K such that for all f ∈ C∞
c (Rn)

and all x /∈supp f , we have

Tf(x) =

∫

Rn

K(x, y)f(y)dy.

When Kj(x, y) = π−(n+1)/2Γ
(

n+1
2

)

xj−yj
|x−y|n+1 , j = 1, 2, ..., n, then they are the

classical Riesz transforms denoted by Rj .
It is well-known that the Riesz transforms Rj, j = 1, 2, ..., n, are bounded

on unweighted Hardy spaces Hp(Rn). There are many different approaches to
prove this classical result (see [11, 9]). Recently, by using the weighted molecu-
lar theory (see [10]) and combined with Garćıa-Cuerva’s atomic decomposition
[5] for weighted Hardy spaces Hp

w(R
n), the authors in [11] established that the

Riesz transforms Rj , j = 1, 2, ..., n, are bounded on Hp
w(R

n). More precisely,
they proved that ‖Rjf‖Hp

w
≤ C for every w-(p,∞, ts− 1)-atom where s, t ∈ N

satisfy n/(n+s) < p ≤ n/(n+s−1) and ((s−1)rw+n)/(s(rw−1)) with rw is the
critical index of w for the reverse Hölder condition. Remark that this leaves a
gap in the proof. Similar gaps exist in some litteratures, for instance in [10, 15]
when the authors establish Hp

w-boundedness of Calderón-Zygmund type oper-
ators. Indeed, it is now well-known that (see [1]) the argument ”the operator
T is uniformly bounded in Hp

w(R
n) on w-(p,∞, r)-atoms, and hence it ex-

tends to a bounded operator on Hp
w(R

n)” is wrong in general. However, Meda,
Sjögren and Vallarino [13] establishes that (in the setting of unweighted Hardy
spaces) this is correct if one replaces L∞-atoms by Lq-atoms with 1 < q < ∞.
See also [19] for L2-atoms with a different method from [13]. Later, the au-
thors in [2] extended these results to the weighted anisotropic Hardy spaces.
More precisely, it is claimed in [2] that the operator T can be extended to a
bounded operator on Hp

w(R
n) if it is uniformly bounded on w-(p, q, r)-atoms

for qw < q < ∞, r ≥ [n(qw/p− 1)] where qw is the critical index of w.
Motivated by [11, 10, 15, 1, 2], in this paper, we extend Theorem 1 in [11] to

A∞ weights (see Theorem 1.1); Theorem 4 in [10] (see Theorem 1.2), Theorem
3 in [15] (see Theorem 3.1) to θ-Calderón-Zygmund operators; and fill the gaps
of the proofs by using the atomic decomposition and molecular characterization
of Hp

w(R
n) as in [11].

Throughout the whole paper, C denotes a positive geometric constant which
is independent of the main parameters, but may change from line to line. In
Rn, we denote by B = B(x, r) an open ball with center x and radius r > 0.
For any measurable set E, we denote by |E| its Lebesgue measure, and by Ec

the set Rn \ E.
Let us first recall some notations, definitions and well-known results.
Let 1 ≤ p < ∞. A nonnegative locally integrable function w belongs to the

Muckenhoupt class Ap, say w ∈ Ap, if there exists a positive constant C so
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that

1

|B|

∫

B

w(x)dx
( 1

|B|

∫

B

(w(x))−1/(p−1)dx
)p−1

≤ C, if 1 < p < ∞,

and
1

|B|

∫

B

w(x)dx ≤ C ess-inf
x∈B

w(x), if p = 1,

for all balls B in Rn. We say that w ∈ A∞ if w ∈ Ap for some p ∈ [1,∞).
It is well known that w ∈ Ap, 1 ≤ p < ∞, implies w ∈ Aq for all q > p.

Also, if w ∈ Ap, 1 < p < ∞, then w ∈ Aq for some q ∈ [1, p). We thus write
qw := inf{p ≥ 1 : w ∈ Ap} to denote the critical index of w. For a measurable
set E, we note w(E) =

∫

E
w(x)dx its weighted measure.

The following lemma gives a characterization of the class Ap, 1 ≤ p < ∞.
It can be found in [6].

Lemma A. The function w ∈ Ap, 1 ≤ p < ∞, if and only if, for all non-
negative functions and all balls B,

( 1

|B|

∫

B

f(x)dx
)p

≤ C
1

w(B)

∫

B

f(x)pw(x)dx.

A close relation to Ap is the reverse Hölder condition. If there exist r > 1
and a fixed constant C > 0 such that

( 1

|B|

∫

B

wr(x)dx
)1/r

≤ C
( 1

|B|

∫

B

w(x)dx
)

for every ball B ⊂ R
n,

we say that w satisfies reverse Hölder condition of order r and write w ∈ RHr.
It is known that if w ∈ RHr, r > 1, then w ∈ RHr+ε for some ε > 0. We thus
write rw := sup{r > 1 : w ∈ RHr} to denote the critical index of w for the
reverse Hölder condition.

The following result provides us the comparison between the Lebesgue mea-
sure of a set E and its weighted measure w(E). It also can be found in [6].

Lemma B. Let w ∈ Ap ∩ RHr, p ≥ 1 and r > 1. Then there exist con-
stants C1, C2 > 0 such that

C1

( |E|
|B|

)p

≤ w(E)

w(B)
≤ C2

( |E|
|B|

)(r−1)/r

,

for all cubes B and measurable subsets E ⊂ B.
Given a weight function w on Rn, as usual we denote by Lq

w(R
n) the space of

all functions f satisfying ‖f‖Lq
w
:= (

∫

Rn |f(x)|qw(x)dx)1/q < ∞. When q = ∞,
L∞
w (Rn) is L∞(Rn) and ‖f‖L∞

w
= ‖f‖L∞. Analogously to the classical Hardy

spaces, the weighted Hardy spaces Hp
w(R

n), p > 0, can be defined in terms of
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maximal functions. Namely, let φ be a function in S(Rn), the Schwartz space
of rapidly decreasing smooth functions, satisfying

∫

Rn φ(x)dx = 1. Define

φt(x) = t−nφ(x/t), t > 0, x ∈ R
n,

and the maximal function f ∗ by

f ∗(x) = sup
t>0

|f ∗ φt(x)|, x ∈ R
n.

Then Hp
w(R

n) consists of those tempered distributions f ∈ S ′(Rn) for which
f ∗ ∈ Lp

w(R
n) with the (quasi-)norm

‖f‖Hp
w
= ‖f ∗‖Lp

w
.

In order to show the Hp
w-boundedness of Riesz transforms, we characterize

weighted Hardy spaces in terms of atoms and molecules in the following way.

Definition of a weighted atom. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q
such that w ∈ Aq. Let qw be the critical index of w. Set [·] the integer
function. For s ∈ N satisfying s ≥ [n(qw/p − 1)], a function a ∈ Lq

w(R
n) is

called w-(p, q, s)-atom centered at x0 if
(i) supp a ⊂ B for some ball B centered at x0,
(ii) ‖a‖Lq

w
≤ w(B)1/q−1/p,

(iii)
∫

Rn a(x)x
αdx = 0 for every multi-index α with |α| ≤ s.

Let Hp,q,s
w (Rn) denote the space consisting of tempered distributions admitting

a decomposition f =
∑∞

j=1 λjaj in S ′(Rn), where aj ’s are w-(p, q, s)-atoms and
∑∞

j=1 |λj|p < ∞. And for every f ∈ Hp,q,s
w (Rn), we consider the (quasi-)norm

‖f‖Hp,q,s
w

= inf
{(

∞
∑

j=1

|aj|p
)1/p

: f
S′

=

∞
∑

j=1

λjaj , {aj}∞j=1 are w-(p, q, s)-atoms
}

.

Denote by Hp,q,s
w,fin(R

n) the vector space of all finite linear combinations of w-

(p, q, s)-atoms, and the (quasi-)norm of f in Hp,q,s
w,fin(R

n) is defined by

‖f‖Hp,q,s
w,fin

:= inf
{(

k
∑

j=1

|λj|p
)1/p

: f =

k
∑

j=1

λjaj, k ∈ N, {aj}kj=1 are w-(p, q, s)-atoms
}

.

We have the following atomic decomposition for Hp
w(R

n). It can be found
in [5] (see also [2, 8]).

Theorem A. If the triplet (p, q, s) satisfies the conditions of w-(p, q, s)-atoms,
then Hp

w(R
n) = Hp,q,s

w (Rn) with equivalent norms.
The molecules corresponding to the atoms mentioned above can be defined

as follows.

Definition of a weighted molecule. For 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q,
let w ∈ Aq with critical index qw and critical index rw for the reverse Hölder
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condition. Set s ≥ [n(qw/p−1)], ε > max{srw(rw−1)−1n−1+(rw−1)−1, 1/p−
1}, a = 1− 1/p+ ε, and b = 1− 1/q + ε. A w-(p, q, s, ε)-molecule centered at
x0 is a function M ∈ Lq

w(R
n) satisfying

(i) M.w(B(x0, · − x0))
b ∈ Lq

w(R
n),

(ii) ‖M‖a/b
Lq
w
‖M.w(B(x0, · − x0))

b‖1−a/b

Lq
w

≡ Nw(M) < ∞,

(iii)
∫

Rn M(x)xαdx = 0 for every multi-index α with |α| ≤ s.
The above quantity Nw(M) is called the w-molecular norm of M .
In [10], Lee and Lin proved that every weighted molecule belongs to the

weighted Hardy space Hp
w(R

n), and the embedding is continuous.

Theorem B. Let 0 < p ≤ 1 ≤ q ≤ ∞ and p 6= q, w ∈ Aq, and (p, q, s, ε) be
the quadruple in the definition of molecule. Then, every w-(p, q, s, ε)-molecule
M centered at any point in Rn is in Hp

w(R
n), and ‖M‖Hp

w
≤ CNw(M) where

the constant C is independent of the molecule.
Although, in general, one cannot conclude that an operator T is bounded

on Hp
w(R

n) by checking that their norms have uniform bound on all of the cor-
responding w-(p,∞, s)-atoms (cf. [1]). However, this is correct when dealing
with w-(p, q, s)-atoms with qw < q < ∞. Indeed, we have the following result
(see [2, Theorem 7.2]).

Theorem C. Let 0 < p ≤ 1, w ∈ A∞, q ∈ (qw,∞) and s ∈ Z satisfying
s ≥ [n(qw/p− 1)]. Suppose that T : Hp,q,s

w,fin(R
n) → Hp

w(R
n) is a linear operator

satisfying
sup{‖Ta‖Hp

w
: a is any w−(p, q, s)−atom} < ∞.

Then T can be extended to a bounded linear operator on Hp
w(R

n).

Our first main result, which generalizes Theorem 1 in [11], is as follows:

Theorem 1.1. Let 0 < p ≤ 1 and w ∈ A∞. Then, the Riesz transforms are

bounded on Hp
w(R

n).

For the next result, we need the notion T ∗1 = 0.

Definition 1.2. Let T be a θ-Calderón-Zygmund operator. We say that T ∗1 =
0 if

∫

Rn Tf(x)dx = 0 for all f ∈ Lq(Rn), 1 < q ≤ ∞, with compact support

and
∫

Rn f(x)dx = 0.

We now can give the Hp
w-boundedness of θ-Calderón-Zygmund type opera-

tors, which generalizes Theorem 4 in [10] by taking q = 1 and θ(t) = tδ, as
follows:

Theorem 1.2. Given δ ∈ (0, 1], n/(n + δ) < p ≤ 1, and w ∈ Aq ∩ RHr

with 1 ≤ q < p(n + δ)/n, (n + δ)/(n + δ − nq) < r. Let θ be a nonnegative

nondecreasing function on (0,∞) with
∫ 1

0
θ(t)
t1+δ dt < ∞, and T be a θ-Calderón-

Zygmund operator satisfying T ∗1 = 0. Then T is bounded on Hp
w(R

n).
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2. Proof of Theorem 1.1

In order to prove the main theorems, we need the following lemma (see [6,
page 412]).

Lemma C. Let w ∈ Ar, r > 1. Then there exists a constant C > 0 such
that

∫

Bc

1

|x− x0|nr
w(x)dx ≤ C

1

σnr
w(B)

for all balls B = B(x0, σ) in Rn.

Proof of Theorem 1.1. For q = 2(qw + 1) ∈ (qw,∞), then s := [n(q/p − 1)] ≥
[n(qw/p− 1)]. We now choose (and fix) a positive number ε satisfying

(2.1) max{srw(rw−1)−1n−1+(rw−1)−1, q/p−1} < ε < t(s+1)(nq)−1+q−1−1,

for some t ∈ N, t ≥ 1 and max{srw(rw − 1)−1n−1 + (rw − 1)−1, q/p − 1} <
t(s+ 1)(nq)−1 + q−1 − 1.

Clearly, ℓ := t(s + 1) − 1 ≥ s ≥ [n(qw/p − 1)]. Hence, by Theorem B and
Theorem C, it is sufficient to show that for every w-(p, q, ℓ)-atom f centered
at x0 and supported in ball B = B(x0, σ), the Riesz transforms Rjf = Kj ∗ f ,
j = 1, 2, ..., n, are w-(p, q, s, ε)-molecules with the norm Nw(Rjf) ≤ C.

Indeed, as w ∈ Aq by q = 2(qw + 1) ∈ (qw,∞). It follows from Lq
w-

boundedness of Riesz transforms that

(2.2) ‖Rjf‖Lq
w
≤ ‖Rj‖Lq

w→Lq
w
‖f‖Lq

w
≤ Cw(B)1/q−1/p.

To estimate ‖Rjf.w(B(x0, | · −x0|))b‖Lq
w
where b = 1− 1/q + ε, we write

‖Rjf.w(B(x0, · − x0))
b‖q

Lq
w

=

∫

|x−x0|≤2
√
nσ

|Rjf(x)|qw(B(x0, |x− x0|))bqw(x)dx+

+

∫

|x−x0|>2
√
nσ

|Rjf(x)|qw(B(x0, |x− x0|))bqw(x)dx

= I + II.

By Lemma B, we have the following estimate,

I =

∫

|x−x0|≤2
√
nσ

|Rjf(x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ w(B(x0, 2
√
nσ))bq

∫

|x−x0|≤2
√
nσ

|Rjf(x)|qw(x)dx

≤ Cw(B)bq‖Rj‖qLq
w→Lq

w
‖f‖q

Lq
w
≤ Cw(B)(b+1/q−1/p)q.
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To estimate II, as f is w-(p, q, ℓ)-atom, by the Taylor’s fomular and Lemma A,
we get

|Kj ∗ f(x)| =
∣

∣

∣

∫

|y−x0|≤σ

(

Kj(x− y)−
∑

|α|≤ℓ

1

α!
DαKj(x− x0)(x0 − y)α

)

f(y)dy
∣

∣

∣

≤ C

∫

|y−x0|≤σ

σℓ+1

|x− x0|n+ℓ+1
|f(y)|dy

≤ C
σn+ℓ+1

|x− x0|n+ℓ+1
w(B)−1/q‖f‖Lq

w
,

for all x ∈ (B(x0, 2
√
nσ))c. As b = 1 − 1/q + ε, it follows from (2.1) that

(n + ℓ + 1)q − q2nb > nq. Therefore, by combining the above inequality,
Lemma B and Lemma C, we obtain

II =

∫

|x−x0|>2
√
nσ

|Rjf(x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ Cσ(n+ℓ+1)qw(B)−1‖f‖q
Lq
w

∫

|x−x0|>2
√
nσ

1

|x− x0|(n+ℓ+1)q
w(B(x0, |x− x0|))bqw(x)dx

≤ Cσ(n+ℓ+1)q−q2nbw(B)(b−1/p)q

∫

|x−x0|>2
√
nσ

1

|x− x0|(n+ℓ+1)q−q2nb
w(x)dx

≤ Cw(B)(b+1/q−1/p)q.

Thus,

(2.3) ‖Rjf.w(B(x0, | · −x0|))b‖Lq
w
= (I + II)1/q ≤ Cw(B)b+1/q−1/p.

Remark that a = 1− 1/p+ ε. Combining (2.2) and (2.3), we obtain

Nw(Rjf) ≤ Cw(B)(1/q−1/p)a/bw(B)(b+1/q−1/p)(1−a/b) ≤ C.

The proof will be concluded if we establish the vanishing moment conditions
of Rjf . One first consider the following lemma.
Lemma. For every classical atom (p, 2, ℓ)-atom g centered at x0, we have

∫

Rn

Rjg(x)x
αdx = 0 for 0 ≤ |α| ≤ s, 1 ≤ j ≤ n.

Proof of the Lemma. Since b = 1 − 1/q + ε < (ℓ + 1)(nq)−1 < (ℓ + 1)n−1,
we obtain 2(n + ℓ + 1)− 2nb > n. It is similar to the previous argument, we
also obtain that Rjg and Rjg.| · −x0|nb belong to L2(Rn). Now, we establish
that Rjg.(· − x0)

α ∈ L1(Rn) for every multi-index α with |α| ≤ s. Indeed,
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since ε > q/p − 1 by (2.1), implies that 2(s − nb) < (s − nb)q′ < −n by
q = 2(qw + 1) > 2, where 1/q + 1/q′ = 1. We use Schwartz inequality to get
∫

B(x0,1)c

|Rjg(x)(x− x0)
α|dx ≤

∫

B(x0,1)c

|Rjg(x)||x− x0|sdx

≤
(

∫

B(x0,1)c

|Rjg(x)|2|x− x0|2nbdx
)1/2(

∫

B(x0,1)c

|x− x0|2(s−nb)dx
)1/2

≤ C‖Rjg.| · −x0|nb‖L2 < ∞,

and
∫

B(x0,1)

|Rjg(x)(x− x0)
α|dx ≤ |B(x0, 1)|1/2

(

∫

B(x0,1)

|Rjg(x)|2dx
)1/2

< ∞.

Thus, Rjg.(· − x0)
α ∈ L1(Rn) for any |α| ≤ s. Deduce that Rjg(x)x

α ∈
L1(Rn) for any |α| ≤ s. Therefore,

(Rjg(x)x
α)(̂ξ) = Cα.D

α(̂Rjg)(ξ)

is continuous, with |Cα| ≤ Cs (Cs depends only on s) for any |α| ≤ s, where ĥ
is used to denote the fourier transform of h. Consequently,

∫

Rn

Rjg(x)x
αdx = Cα.D

α(̂Rjg)(0) = Cα.D
α(mj ĝ)(0),

where mj(x) = −ixj/|x|. Moreover, since g is a classical (p, 2, ℓ)-atom, it
follows from [17, Lemma 9.1] that ĝ is ℓth order differentiable and ĝ(ξ) =
O(|ξ|ℓ+1) as ξ → 0. We write ej to be the jth standard basis vector of Rn,
α = (α1, ..., αn) a multi-index of nonnegative integers αj , ∆hejφ(x) = φ(x) −
φ(x− hej), ∆

αj

hej
φ(x) = ∆

αj−1
hej

φ(x)−∆
αj−1
hej

φ(x− hej) for αj ≥ 2, ∆0
hej

φ(x) =

φ(x), and ∆α
h = ∆α1

he1
...∆αn

hen
. Then, the boundedness of mj, and |Cα| ≤ Cs for

|α| ≤ s, implies
∣

∣

∣

∫

Rn

Rjg(x)x
αdx

∣

∣

∣
= |Cα|

∣

∣

∣
lim
h→0

|h|−|α|∆α
h(mj ĝ)(0)

∣

∣

∣

≤ C lim
h→0

|h|ℓ+1−|α| = 0,

for |α| ≤ s by s ≤ ℓ. Thus, for any j = 1, 2, ..., n, and |α| ≤ s,
∫

Rn

Rjg(x)x
αdx = 0.

This complete the proof of the lemma.
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Let us come back to the proof of Theorem 1.1. As q/2 = qw + 1 > qw, by
Lemma A,

( 1

|B|

∫

B

|f(x)|2dx
)q/2

≤ C
1

w(B)

∫

B

|f(x)|qw(x)dx.

Therefore, g := C−1/q|B|−1/pw(B)1/pf is a classical (p, 2, ℓ)-atom since f is
w-(p, q, ℓ)-atom associated with ball B. Consequently, by the above lemma,

∫

Rn

Rjf(x)x
αdx = C1/q|B|1/pw(B)−1/p

∫

Rn

Rjg(x)x
αdx = 0

for all j = 1, 2, ..., n and |α| ≤ s. Thus, the theorem is proved. �

Following a similar but easier argument, we also have the following Hp
w-

boundedness of Hilbert transform. We leave details to readers.

Theorem 2.1. Let 0 < p ≤ 1 and w ∈ A∞. Then, the Hilbert transform is

bounded on Hp
w(R).

3. Proof of theorem 1.2

We first consider the following lemma

Lemma 3.1. Let p ∈ (0, 1], w ∈ Aq, 1 < q < ∞, and T be a θ-Calderón-
Zygmund operator satisfying T ∗1 = 0. Then,

∫

Rn Tf(x)dx = 0 for all w-
(p, q, 0)-atoms f .

Proof of Lemma 3.1. Let f be an arbitrary w-(p, q, 0)-atom associated with
ball B. It is well-known that there exists 1 < r < q such that w ∈ Ar.
Therefore, it follows from Lemma A that

∫

B

|f(x)|q/rdx ≤ C|B|w(B)1/r‖f‖q/r
Lq
w
< ∞.

We deduce that f is a multiple of classical (p, q/r, 0)-atom, and thus the con-
dition T ∗1 = 0 implies

∫

Rn Tf(x)dx = 0. �

Proof of Theorem 1.2. Because of the hypothesis, without loss of generality we
can assume q > 1. Futhermore, it is clear that [n(qw/p − 1)] = 0, and there
exists a positive constant ε such that

(3.1) max
{ 1

rw − 1
,
1

p
− 1

}

< ε <
n+ δ

nq
− 1.

Similarly to the arguments in Theorem 1.1, it is sufficient to show that, for
every w-(p, q, 0)-atom f centered at x0 and supported in ball B = B(x0, σ),
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Tf is a w-(p, q, 0, ε)-molecule with the norm Nw(Tf) ≤ C. One first observe
that

∫

Rn Tf(x)dx = 0 by Lemma 3.1, and

∞
∑

k=0

θ(2−k)2knbq < ∞,

where b = 1− 1/q + ε, by
∫ 1

0
θ(t)
t1+δ dt < ∞ and (3.1). We deduce that

(3.2)
∞
∑

k=0

(

θ(2−k)2knbq
)q

< ∞.

As w ⊂ Aq, 1 < q < ∞, it follows from [18, Theorem 2.4] that

(3.3) ‖Tf‖Lq
w
≤ C‖f‖Lq

w
≤ Cw(B)1/q−1/p.

To estimate ‖Tf.w(B(x0, | · −x0|))b‖Lq
w
, we write

‖Tf.w(B(x0, · − x0))
b‖q

Lq
w

=

∫

|x−x0|≤2σ

|Tf(x)|qw(B(x0, |x− x0|))bqw(x)dx+

+

∫

|x−x0|>2σ

|Tf(x)|qw(B(x0, |x− x0|))bqw(x)dx = I + II.

By Lemma B, we have the following estimate,

I =

∫

|x−x0|≤2σ

|Tf(x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ w(B(x0, 2σ))
bq

∫

|x−x0|≤2σ

|Tf(x)|qw(x)dx

≤ Cw(B)bq‖f‖q
Lq
w
≤ Cw(B)(b+1/q−1/p)q.

To estimate II, since f is of mean zero, by Lemma A, we have

|Tf(x)| =
∣

∣

∣

∫

|y−x0|≤σ

(K(x, y)−K(x, x0))f(y)dy
∣

∣

∣

≤ C

∫

|y−x0|≤σ

1

|x− x0|n
θ
( |y − x0|
|x− x0|

)

|f(y)|dy

≤ C
σn

|x− x0|n
θ
( σ

|x− x0|
)

w(B)−1/q‖f‖Lq
w
,
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for all x ∈ (B(x0, 2σ))
c. Therefore, by combining the above inequality, Lemma

B and (3.2), we obtain

II =

∫

|x−x0|>2σ

|Tf(x)|qw(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)−1‖f‖q
Lq
w

∫

|x−x0|>2σ

σnq

|x− x0|nq
(

θ
( σ

|x− x0|
)

)q

w(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)−q/p

∞
∑

k=1

∫

2kσ<|x−x0|≤2k+1σ

σnq

|x− x0|nq
(

θ
( σ

|x− x0|
)

)q

w(B(x0, |x− x0|))bqw(x)dx

≤ Cw(B)(b+1/q−1/p)q

∞
∑

k=0

(

θ(2−k)2knbq
)q

≤ Cw(B)(b+1/q−1/p)q.

Thus,

(3.4) ‖Tf.w(B(x0, | · −x0|))b‖Lq
w
= (I + II)1/q ≤ Cw(B)b+1/q−1/p.

Remark that a = 1− 1/p+ ε. Combining (3.3) and (3.4), we obtain

Nw(Tf) ≤ Cw(B)(1/q−1/p)a/bw(B)(b+1/q−1/p)(1−a/b) ≤ C.

This finishes the proof. �

It is well-known that the molecular theory of (unweighted) Hardy spaces
of Taibleson and Weiss [17] is one of useful tools to establish boundedness
of operators in Hardy spaces (cf. [17, 12]). In the setting of Muckenhoupt
weight, this theory has been considered by the authors in [10], since then,
they have been well used to establish boundedness of operators in weighted
Hardy spaces (cf. [10, 11, 3]). However in some cases, the weighted molecular
characterization, which obtained in [10], does not give the best possible results.
For Calderón-Zygmund type operators in Theorem 1.2, for instance, it involves
assumption on the critical index of w for the reverse Hölder condition as the
following theorem does not.

Theorem 3.1. Given δ ∈ (0, 1], n/(n + δ) < p ≤ 1, and w ∈ Aq with 1 ≤
q < p(n+ δ)/n. Let θ be a nonnegative nondecreasing function on (0,∞) with
∫ 1

0
θ(t)
t1+δ dt < ∞, and T be a θ-Calderón-Zygmund operator satisfying T ∗1 = 0.

Then T is bounded on Hp
w(R

n).

The following corollary give the boundedness of the classical Calderón-
Zygmund type operators on weighted Hardy spaces (see [15, Theorem 3]).

Corollary 3.1. Let 0 < δ ≤ 1 and T be the classical δ-Calderón-Zygmund

operator, i.e. θ(t) = tδ, satisfying T ∗1 = 0. If n/(n + δ) < p ≤ 1 and w ∈ Aq

with 1 ≤ q < p(n+ δ)/n, then T is bounded on Hp
w(R

n).
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Proof of Corollary 3.1. By taking δ′ ∈ (0, δ) which is close enough δ. Then,
we apply Theorem 3.1 with δ′ instead of δ. �

Proof of Theorem 3.1. Without loss of generality we can assume 1 < q <
p(n+δ)/n. Fix φ ∈ S(Rn) with

∫

Rn φ(x)dx 6= 0. By Theorem C, it is sufficient
to show that for every w-(p, q, 0)-atom f centered at x0 and supported in ball
B = B(x0, σ), ‖(Tf)∗‖Lp

w
≤ C. In order to do this, one write

‖(Tf)∗‖p
Lp
w

=

∫

|x−x0|≤4σ

(

(Tf)∗(x)
)p

w(x)dx+

∫

|x−x0|>4σ

(

(Tf)∗(x)
)p

w(x)dx

= L1 + L2.

By Hölder inequality, Lq
w-boundedness of the maximal function and Lemma

B, we get

L1 ≤







∫

|x−x0|≤4σ

(

(Tf)∗(x)
)q

w(x)dx







p/q

(

∫

|x−x0|≤4σ

w(x)dx
)1−p/q

≤ C‖f‖p
Lq
w
w(B(x0, 4σ))

1−p/q ≤ C.

To estimate L2, we first estimate (Tf)∗(x) for |x− x0| > 4σ. For any t > 0,
since

∫

Rn Tf(x)dx = 0 by Lemma 3.1, we get

|Tf ∗ φt(x)| =

∣

∣

∣

∣

∣

∣

∫

Rn

Tf(y)
1

tn

(

φ
(x− y

t

)

− φ
(x− x0

t

)

)

dy

∣

∣

∣

∣

∣

∣

≤ 1

tn

∫

|y−x0|<2σ

|Tf(y)|
∣

∣

∣

∣

φ
(x− y

t

)

− φ
(x− x0

t

)

∣

∣

∣

∣

dy

+
1

tn

∫

2σ≤|y−x0|< |x−x0|
2

· · ·+ 1

tn

∫

|y−x0|≥ |x−x0|
2

· · ·

= E1(t) + E2(t) + E3(t).
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As |x− x0| > 4σ, by the mean value theorem, Lemma A and Lemma B, we
get

E1(t) =
1

tn

∫

|y−x0|<2σ

|Tf(y)|
∣

∣

∣

∣

φ
(x− y

t

)

− φ
(x− x0

t

)

∣

∣

∣

∣

dy

≤ 1

tn

∫

|y−x0|<2σ

|Tf(y)| |y− x0|
t

sup
λ∈(0,1)

∣

∣

∣

∣

∇φ
(x− x0 + λ(y − x0)

t

)

∣

∣

∣

∣

dy

≤ C
σ

|x− x0|n+1

∫

|y−x0|<2σ

|Tf(y)|dy

≤ C
σ

|x− x0|n+1
|B(x0, 2σ)|w(B(x0, 2σ))

−1/q‖Tf‖Lq
w

≤ C
σn+1

|x− x0|n+1
w(B)−1/q‖f‖Lq

w
≤ C

σn+1

|x− x0|n+1
w(B)−1/p.

Similarly, we also get

E2(t) ≤ 1

tn

∫

2σ≤|y−x0|< |x−x0|
2

∣

∣

∣

∣

∣

∣

∫

Rn

f(z)
(

K(y, z)−K(y, x0)
)

dz

∣

∣

∣

∣

∣

∣

|y − x0|
t

× sup
λ∈(0,1)

∣

∣

∣

∣

∇φ
(x− x0 + λ(y − x0)

t

)

∣

∣

∣

∣

dy

≤ C
1

|x− x0|n+1

∫

2σ≤|y−x0|< |x−x0|
2

|y − x0|
∫

|z−x0|<σ

|f(z)| 1

|y − x0|n
θ
( |z − x0|
|y − x0|

)

dzdy

≤ C
( σ

|x− x0|
)n+1

1/2
∫

2σ/|x−x0|

θ(t)

t2
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n+1( |x− x0|

2σ

)1−δ
1/2
∫

2σ/|x−x0|

θ(t)

t1+δ
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n+δ

w(B)−1/p.
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Next, let us look at L3. Similarly, we also have

E3(t) ≤ 1

tn

∫

|y−x0|≥ |x−x0|
2

∣

∣

∣

∣

∣

∣

∫

Rn

f(z)
(

K(y, z)−K(y, x0)
)

dz

∣

∣

∣

∣

∣

∣

(

∣

∣

∣
φ
(y − x0

t

)∣

∣

∣
+ 2

∣

∣

∣
φ
(x− x0

t

)∣

∣

∣

)

dy

≤ C
1

|x− x0|n
∫

|y−x0|≥ |x−x0|
2

∫

|z−x0|<σ

|f(z)| 1

|y − x0|n
θ
( |z − x0|
|y − x0|

)

dzdy

≤ C
( σ

|x− x0|
)n

2σ/|x−x0|
∫

0

θ(t)

t
dtw(B)−1/p

≤ C
( σ

|x− x0|
)n

2σ/|x−x0|
∫

0

θ(t)

t1+δ
dt
( 2σ

|x− x0|
)δ

w(B)−1/p

≤ C
( σ

|x− x0|
)n+δ

w(B)−1/p.

Therefore, for all |x− x0| > 4σ,

(Tf)∗(x) = sup
t>0

(E1(t) + E2(t) + E3(t)) ≤ C
( σ

|x− x0|
)n+δ

w(B)−1/p.

Combining this, Lemma C and Lemma B, we obtain that

L2 =

∫

|x−x0|>4σ

(

(Tf)∗(x)
)p

w(x)dx ≤ C

∫

|x−x0|>4σ

σ(n+δ)p

|x− x0|(n+δ)p
w(B)−1w(x)dx

≤ Cw(B)−1w(B(x0, 4σ)) ≤ C,

since (n + δ)p > nq. This finishes the proof. �

References

[1] M. Bownik, Boundedness of operators on Hardy spaces via atomic decompositions.
Proc. Amer. Math. Soc. 133 (2005), 3535–3542.

[2] M. Bownik, B. Li, D. Yang, and Y. Zhou, Weighted anisotropic Hardy spaces and
their applications in boundedness of sublinear operators. Indiana Univ. Math. J.
57 (2008), no. 7, 3065–3100.

[3] Y. Ding, M.-Y. Lee and C.-C. Lin, Fractional integrals on weighted Hardy spaces.
J. Math. Anal. Appl. 282 (2003), 356–368.

[4] C. Fefferman, E.M. Stein, Hp spaces of several variables. Acta Math. 129 (1972),
137–193.
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