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Abstract. In brain-computer interfaces based on motor imagery, covari-
ance matrices are widely used through spatial filters computation and
other signal processing methods. Covariance matrices lie in the space of
Symmetric Positives-Definite (SPD) matrices and therefore, fall within
the Riemannian geometry domain. Using a differential geometry frame-
work, we propose different algorithms in order to classify covariance ma-
trices in their native space.

1 Introduction

A Brain-Computer Interface (BCI) aims at providing an alternative non-muscular
communication path and a control system for the individuals with heavy motor
disabilities like in Spinal Chord Injury (SCI) or Locked-In Syndrome (LIS) pa-
tients. This new interface should perform an automatic decoding of measured
brain activity [1].
Non-invasive BCIs use mainly ElectroEncephaloGraphic (EEG) activity recorded
from a cap of scalp electrodes [2]. The goal is to detect and classify some spe-
cific patterns of EEG activities so as to drive an external effector (e.g. computer
mouse, wheelchair, ...) [1]. Different paradigms can be used to activate these
brain patterns, either synchronously (evoked potentials) [3] or asynchronously
(brain rhythm modulation) after a co-adaptive learning phase. EEG-based fea-
tures are usually related to the power (or variance) of relevant EEG channels in
specific frequency bands (e.g. mu brain oscillation in the frequency band 5-15
Hz) [3]. In this article, we propose a new signal processing framework in BCI
applications, which is based on Riemannian geometry.

As it will be shown, interesting properties may be derived by considering the
space of symmetric positive-definite (SPD) matrices. The main motivation of our
work is to make use of the concept of Riemannian distance between SPD matrices
in BCI applications. We will introduce basic tools to manipulate EEG data in this
Riemannian manifold and illustrate these concepts with a simple and didactic
binary classification task. Doing so, EEG data can be manipulated in a con-
venient way through their spatial covariances, and then detection/classification
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can be achieved by measuring, for instance, the Riemannian distance between
covariance matrices of signal epochs and and covariance matrices of reference
epochs. Indeed, classical methods treats the SPD matrices as if they were natu-
rally lying in the Euclidean space, whereas the natural geometry to be considered
is the Riemann geometry.

This approach has already been followed in diffusion tensor imaging to study
the statistical properties of a population of geometric objects [4], in image pro-
cessing to detect pedestrians images [5] or in radar detection and High Resolution
Doppler Imagery to achieve a robust statistical estimation of Toeplitz Hermitian
positive definite covariance matrices of sensor data time series [6]. First we will
present the basic tools of Riemannian geometry in space of SPD matrices, next
we will propose some classification and filtering algorithms and finally we will
show results on real EEG data.

2 Differential Geometry in Space of SPD Matrices

2.1 Definitions and Properties

This section exposes some definitions and properties of differential geometry
in the Riemannian manifold of SPD matrices. More sophisticated explanations
can be found in the reference [7].
A Riemannian manifold is a differentiable manifold in which the tangent space
at each point is a finite-dimensional Euclidean space. We denote by S(n) =
{S ∈ M(n),ST = S} the space of all n × n symmetric matrices in the space of
square matrices and denote by P (n) = {P ∈ S(n),P > 0} the set of all n × n
symmetric positive-definite (SPD) matrices. The Riemannian distance between
two SPD matrices P1 and P2 in P (n) is given by [7] :

δR(P1,P2) = ‖Log
(
P−11 P2

)
‖F =

[
n∑
i=1

log2 λi

]1/2
(1)

where the λi’s are the real strictly positive eigenvalues of P−11 P2 and ‖.‖F is the
Frobenius norm of a matrix. In Eq (1),the operator Log (.) is the logarithm of a
matrix. Given that SPD matrices are diagonalizable and invertible, Log (P) can
be computed by diagonalization of P : Log (P) = Vlog(D)V−1 with log(D) the
logarithm of each element of D where D and V are respectively the diagonal
matrix of eigenvalues and the matrix of eigenvectors of P. The geometric mean
in the Riemannian sense, i.e. associated with the metric defined in Eq (1), of m
given SPD matrices P1, . . . ,Pm is defined as [7] :

G (P1, . . . ,Pm) = argmin
P∈P (n)

m∑
i=1

δ2R (P,Pi) (2)

There is no closed-form expression for such mean computation, but iterative
algorithms can be employed, as demonstrated in section 2.2.
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The shortest path between two points in the Riemannian space of SPD ma-
trices is defined by the geodesic γ(t) with t ∈ [0, 1] :

γ(t) = P
1/2
1

(
P
−1/2
1 P2P

−1/2
1

)t
P

1/2
1 (3)

Identically to the matrix logarithm, the power of SPD matrices can be computed
using a diagonalization : Pt = VDtV−1.

2.2 Tangent Space

In complete Riemannian space, given a point P ∈ P (n), it is possible for every
point Pi ∈ P (n), to identify a tangent vector Si ∈ S(n) such as Si = γ̇(0)
with γ(t) the geodesic between P and Pi. The Riemannian Log map operator
LogP : P (n)→ S(n) achieves the mapping LogP(Pi) = Si.

TP, the tangent space at P, is the space defined by the whole set of tangent
vector Si, here S(n). In this tangent space, the metric is flat and allows us to use
arithmetic mean and other classical tools. The Riemannian Exp map operator
ExpP(Si) = Pi allows to go back in the original space of SPD matrices P (n) in
a one-to-one mapping. Both operators are crucial in the manipulation of SPD
matrices as we will discover. Using the affine-invariant metric [7], we have the
expressions:

ExpP(Si) = P1/2Exp
(
P−1/2SiP

−1/2
)

P1/2 (4)

LogP(Pi) = P1/2Log
(
P−1/2PiP

−1/2
)

P1/2 (5)

We can refer to [4] for efficient computation. Figure 1 illustrates these operations.

Fig. 1. Tangent space of the manifoldM at point P, Si the tangent vector of Pi and
γ(t) the geodesic between P and Pi.

The mean of m SPD matrices can be obtained using the concept of tangent
space. Using Riemannian Log map, we first project the whole dataset in tangent
space. In this Euclidean space, the arithmetic mean is the correct average esti-
mate and can be easily computed. Finally we project the obtained arithmetic
mean into SPD space using Riemannian exponential map. After few iterations,
we obtain the geometric mean of SPD matrices. Algorithm 1 explains this pro-
cess.
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Algorithm 1 Mean of m SPD matrices
Input: Ω a set of m SPD matrices Pi ∈ P (n) and ε > 0.
Output: PΩ the estimated mean in P (n).

1: Initialise P
(1)
Ω = 1

m

∑m
i=1 Pi

2: repeat
3: S = 1

m

∑m
i=1 LogP

(t)
Ω

(Pi) {Arithmetic mean in tangent space}

4: P
(t+1)
Ω = Exp

P
(t)
Ω

(S)

5: until ‖S‖F < ε

3 Classifying on Riemannian Manifold

We denote by E ∈ Rn×t a given EEG recording epoch with n electrodes and
t samples. The spatial sample covariance matrix is proportional to : P = EET

for centered-data matrix is, by construction, lying in P (n). The goal in BCI is
to determine what mental task is associated with a segment of data, or in other
terms, determine the class ωi ∈ {1, 2} of the observation Ei or equivalently its
spatial covariance matrix Pi. In motor imagery BCI paradigm, the mental task
would be for instance, the recognition of either left- and right-hand imagery
movements [8]. This binary classification problem is usually tackled using su-
pervised learning where the patient undergoes first a training session where the
correspondence {Ei, ωi} is known by experiment design, so as to produce de-
cision rules for next unknown test sessions [2]. Taking into account covariance
matrices as elements of Riemannian space of SPD matrices, spatial information
is directly accessible and classification can be performed without preprocessing,
in our approach. Based on the concept presented in section 2, a very simple al-
gorithm, given in Algorithm 2, is proposed for illustration purpose. It is merely
based on the computation of Riemannian distances to classify a new epoch.

Algorithm 2 Simple classification based on Riemannian distance
Input: Ω a set of m SPD matrices Pi ∈ P (n).
Input: ωi ∈ {1, 2} the class of Pi.
Input: Px a SPD matrix of unknown class.
Output: ωx the estimated class of test covariance matrixPx.
1: PΩ1 = G(Pi) with {i|ωi = 1} {Riemannian mean for class 1}
2: PΩ2 = G(Pi) with {i|ωi = 2} {Reimannian mean for class 2}
3: d = δ(Px,PΩ1)− δ(Px,PΩ2)
4: if d ≤ 0 then
5: ωx = 1
6: else
7: ωx = 2
8: end if
9: return ωx
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As it can be observed, the whole algorithm 2 relies on the computation of
both intra-class SPD means (PΩ1

,PΩ2
) and the shortest Riemannian distance

between the test covariance matrix and the two intra-class SPD means. The
main limitation of this approach is that it may exist a large part of distance
between the two matrices which is not class-related i.e. the class-related infor-
mation contained in distance can vanish in front of noise.

Therefore, it is preferable to perform some filtering over SPD matrices be-
fore applying Algorithm 2. Our approach is inspired by the principal geodesics
analysis (PGA) method of Fletcher et. al. [4]. We search first the geodesics
that support class-related information and perform filtering along this line in
Riemann space to discard irrelevant information. To compute these filters, we
propose a supervised algorithm named FGDA for Fisher Geodesic Discriminant
Analysis. This algorithm is an extension of Fisher Linear Discriminant Analysis
to the tangent space and is given by Algorithm 3.

Algorithm 3 FGDA Filters
Inputs: Ω a set of m SPD matrices Pi ∈ P (n), ωi ∈ {1, 2} the class of Pi, K number
of selected components.
Outputs: W̃k, k = 1, . . .K ∈ <n(n+1)/2, PΩ.
1: PΩ = G(Pi) {Compute Riemannian mean of the whole set}
2: for i = 1 to m do
3: Si = LogPΩ

(Pi) {Apply Riemannian Log map}
4: S̃i = vec(Si) {Keep upper triangular matrix in vector form n(n+ 1)/2}
5: end for
6: W̃ = LDA(S̃i) {compute the projection vectors using the Fisher LDA criterion}
7: Select the first K vectors W̃k

In order to project data in tangent space, we compute the Riemannian mean
PΩ . PΩ is the point where the tangent vectors Si will be computed, different
points can be used [5], however the use of the Riemannian mean minimizes the
approximation caused by the projection in the tangent space of the dataset. After
performing data projection into the tangent space, the step 6 of this algorithm
compute the different projection vectors using the Fisher LDA criterion [9]. This
is a maximisation of the ratio of the between-class scatter matrix Σb and the
within-class scatter matrix Σw and can be solved easily by eigenvector decom-
position of Σ−1w Σb [9]. Interestingly, the exponential map of these filters gives
the main geodesics issued from PΩ .

Typically, the number K of selected components is low. We could consider
that the all class-related information is contained within the first five compo-
nents. The filtering operation is explained in Algorithm 4. Step 2 computes the
variation mode and projection using least-squares estimate. We search S̃x sup-
ported by the K components W̃, given by Algorithm 4, which best fit with
Sx. We call this operation a filtering operation because there is no dimensional
reduction.
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Algorithm 4 Geodesic Filtering
Inputs: Px, PΩ, W̃ = [W̃1 . . .W̃K ] ∈ <n(n+1)/2×K .
Output: P̃x

1: Sx = LogPΩ
(Px) {Apply Riemannian Log map}

2: S̃x = W̃
(
W̃TW̃

)−1

W̃T vec (Sx) {Filtering operation}

3: P̃x = ExpPΩ

(
unvec

(
S̃x
))

{Apply Riemannian Exp map}

4: return P̃x

Finally, the core algorithm of this work is presented in Algorithm 5. First
we compute FGDA filters on training dataset with Algorithm 3 , then we apply
those filters on the dataset with Algorithm 4 and finally we use Algorithm 2 to
obtain classes of filtered test data. It is also possible to apply a LDA classifier in
tangent space without going back to original space. The LDA classifer uses only
the first component and gives the same results as our complete method when
taking one component.

Algorithm 5 Classification, filtered version
Inputs: Ω a set of m SPD matrices Pi ∈ P (n), ωi ∈ [1 : 2] the class of Pi, K number
of kept components.
Input : Px the SPD matrix to classify
Output: ωx the class of Px

1: Compute FGDA filters (Algorithm 3)
2: Filter all SPD matrices Pi,Px (Algorithm 4)
3: Classify the filtered SPD matrices (Algorithm 2)
4: return ωx

Figure 2 represents these different manipulations over a simulated dataset.
2× 2 covariance matrices are generated according to two Wishart distributions,
one for each classes. First, data are projected in tangent space using Log. map
operator (Fig 2.D). Next, LDA components are computed and applied to the data
(two components for Fig 2.E, only one for Fig 2.F). Finally, data are wrapped
back to the original space with Exp. map operator (Fig 2.B and Fig 2.C).

4 Classification Results in BCI

4.1 Introduction

In order to evaluate the performances of the proposed methods, we compare them
to an implementation of a reference method [8]. This latter method represents the
classical signal processing chain in asynchronous BCI. It is composed of frequency
filtering, spatial filtering (using CSP approach), Log Variance feature extraction
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Fig. 2. Manipulations in tangent and original space of 2× 2 covariance matrices

and finally Fisher’s LDA classification. Datasets IVa of BCI competition III [10]
are used for analysis. Only 9 electrodes are used (F3, FZ , F4, C3, CZ , C4, P3, PZ ,
P4). This subset of electrodes can represent a typical case of an every-day use
BCI. A (10− 30 Hz) band-pass filter has been applied on the original signals for
all subjects. This dataset is composed by 5 subjects who performed 280 trials of
right-hand or right-foot motor imagery. It was provided by Fraunhofer FIRST,
Intelligent Data Analysis Group. We use 10-fold cross-validation to evaluate
properly the performance.

4.2 Classification Results

Results are given for both filtered (Algo 5) and unfiltered (Algo 2) version of
the proposed classification algorithm based on Riemannian distance. We com-
pare both methods with a reference method as described in Section 4.1. In the
results, we kept only 4 FGDA filters for the filtered method and 6 CSP filters
for the reference methods. Classification error rates are given in Table 1. The fil-
tered version method (Algo 5) outperforms our implementation of the reference
algorithm for almost all the subjects. The unfiltered version (Algo 2) is worst
than the reference method but shows good results considering its simplicity. Be-
cause a high inter-subject variability, results are not really significant. However,
we have benchmark our algorithms on several datasets and we can say that the
Riemannian approach is effective and shows very good results in difficult cases
(i.e. noisy dataset, small amount of data, multi-class).

5 Conclusion
We have presented an useful framework for working in space of SPD matrices,
illustrating it with simple methods and giving results that show how promising
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User Reference Algo 2 Algo 5
aa 26 28.9 22.5
al 3.2 3.9 2.8
av 34.2 39.6 34.2
aw 6.4 11 7.4
ay 7.4 12.1 7.1
Mean 15.5± 13.8 19.1± 14.7 14.8± 13.6

Table 1. Classification Error rate. 10-fold Cross-validation

it is. This approach could be generalized to other signal processing methods in
BCI or elsewhere. Methods can be developed to work natively in space of SPD
matrices like our Algorithm 2 or in tangent space like Algorithm 3. The Euclidean
Tangent Space allows us to use classical methods with the only limitation of the
high number of dimension involved. In this work, FGDA is limited by the trend
to over-fitting of the LDA algorithm, when the dimension is close to the number
of trials. To avoid this effect a regularized LDA or a variable selection approach
can be used. Furthermore, it is not always necessary to go back in SPD space,
since the tangent space and original space are linked through Log. and Exp. map
operators. Finally the main limitation of these methods is the computation time,
Riemannian mean requires a large number of diagonalization of n× n matrices
and and it becomes computationally expensive when n is large (> 50).

References

1. M.A Lebedev and M. A L Nicolelis. Brain-machine interfaces: past, present and
future. Trends in Neurosciences, September 2006.

2. M. van Gerven, J. Farquhar, R. Schaefer, R. Vlek, J. Geuze, A. Nijholt, N.Ramsey,
P. Haselager, L. Vuurpijl, S. Gielen, and P. Desain. The brain-computer interface
cycle. Journal of Neural Engineering, August 2009.

3. J. R. Wolpaw, N.Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M.
Vaughan. Brain-computer interfaces for communication and control. Clinical Neu-
rophysiology, 2002.

4. P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces:
Statistics of diffusion tensors. In Computer Vision and Mathematical Methods in
Medical and Biomedical Image Analysis. 2004.

5. O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on rie-
mannian manifolds. Pattern Analysis and Machine Intelligence, 2008.

6. F. Barbaresco. Interactions between symmetric cone and information geometries:
Bruhat-Tits and siegel spaces models for high resolution autoregressive doppler
imagery. In Emerging Trends in Visual Computing. Springer-Verlag, 2009.

7. M. Moakher. A differential geometric approach to the geometric mean of symmetric
Positive-Definite matrices. SIAM J. Matrix Anal. Appl., 26, 2005.

8. B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Muller. Optimizing
spatial filters for robust EEG Single-Trial analysis. Signal Processing Magazine,
IEEE, 2008.

9. R. O. Duda, P. E. Hart, and D.G. Stork. Pattern Classification, chapter 3.8.2,
pages 117–124. J. Wiley & Sons Inc, 2nd revised edition edition, November 2000.

10. BCI competition III, dataset IVa. http://ida.first.fhg.de/projects/bci/competition_iii.


