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Empirical likelihood confidence bands for mean functions of

recurrent events with competing risks and a terminal event

Jean-Yves Dauxois ∗ Alexis Flesch † Davit Varron ‡

June 23, 2011

Abstract

In this paper, we study recurrent events with competing risks in the presence of a terminal
event and a censorship. We focus our attention on the mean functions which give the mean
number of events of a specific type that have occured up to a time t. Using empirical likelihood
ratio techniques, we are able to build confidence bands for these functions. We have a data
set of nosocomial infections in an intensive care unit of a french hospital. For each patient,
we know if and when he caught an infection, what infection it was (septicemia, urinary tract
infection...), if and when he died and when he left the hospital. Our model fits this context
and will be used to build confidence bands for one type of nosocomial infection and even a
confidence tube for two types.

Keywords: Censoring, competing risks, confidence bands, empirical likelihood, empirical pro-
cesses, recurrent events, terminal event

1 Introduction

In this paper we are considering a data set on nosocomial infections contracted by more than 7867
patients in an intensive care unit of a French hospital over a decade. This data set has already
been introduced and studied by Dauxois & Sencey (2009). For each patient, we know if and when
he contracted a nosocomial infection and what type of infection it was: pneumonia, septicemia,
urinary tract infection, etc... Each type of infection can affect the same patient several times. We
also know if and when he died, and if not, when he left the hospital. This leads us to working on
recurrent events with competing risks under random censorship and with a terminal event. The
aim of this paper is to build confidence bands for the mean number of infections of one or more
types over time. This will be achieved using empirical likelihood and empirical processes methods.

Recurrent events models are useful in many fields, like in Social Science for recurrent periods
of unemployment, in Reliability for recurrent occurences of failure on the same device or also in
Biostatistics as in our case study of nosocomial infections, etc...

Many statistical methods have been used over the last decades to study recurrent events based
on Markov models, Martingale theory or Poisson processes. Andersen et al. (1993) give a tour of
these methods. Lawless & Nadeau (1995) and Lawless (1995) considered the mean function, which
gives the mean number of events that have occurred up to a time t. Wang & Wells (1998), Lin
et al. (1999), Lin & Ying (2001), Cai & Schaubel (2004a) and more recently Du (2009) focused on
the gap time distribution. More recently, Cook & Lawless (2007) issued a book on the analysis of
recurrent events.

In some situations, a terminal event may stop the recurrent event process, as in our data set
where the death of the patient is clearly dependent on the infections he suffered from, or when
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a patient leaves the hospital. The end of observation can also be due to an independent right
censoring mechanism, specifically, as in our case, when the study comes to an end. Note that in
other contexts, other causes of independent censoring can be observed like in the case of lost to
follow up. Papers considering recurrent events with a terminal event and independent censoring
are among others Cook et al. (2009) and Cai & Schaubel (2004b).

Finally, there are some situations where the observed events are of multiple types. It is the
case in our data set since several types of nosocomial infections can affect a patient: pneumonia,
septicemia, urinary tract infection, etc... In the same manner, the failure of a device can be caused
by multiple mechanical parts. As an example, the engine, the gearbox or the tires can be a cause of
failure for cars. This is also true for recurrent unemployment: one can loose his job for numerous
different reasons. It is thus interesting to consider competing risks in a setup of recurrent events,
as seen in Dauxois & Sencey (2009).

Empirical likelihood was first introduced by Thomas & Grunkemeier (1975) in a setup of survival
analysis. Owen (1990) generalized their concept to obtain confidence regions for the mean of an
i.i.d. sample with finite variance. One of the advantages of this approach is that one doesn’t need
to estimate the variance to build the region. Moreover, the shape of those regions strongly depend
on the geometry of the data whereas classical central limit theorem gives ellipse-shaped confidence
regions. Since Owen (1990), a lot of results on empirical likelihood have been published, and a few
concern survival analysis. For example, Adimari (1997) and Ren (2001) used empirical likelihood
to study the mean under random censorship. Owen (2001) issued a book on empirical likelihood,
and, more recently, Hjort et al. (2004) gave a generalization of Owen’s result which will be used in
this article.

Our aim in this paper is to build confidence bands for the mean functions of a multiple-type
recurrent events process with terminal event and under right censoring. In order to do so, we use
results from Hjort et al. (2004) and empirical processes methods, available for example in Pollard
(1990), Pakes & Pollard (1989) and Bilias et al. (1997).

In section 2, we introduce the model and the empirical likelihood ratio for a specific mean
function of a recurrent event process. The asymptotic distribution of the empirical likelihood ratio
is obtained in section 3 and then we generalize this result to the empirical likelihood ratio for two
specific mean functions. Finally, in section 4, we apply our results to the data set of nosocomial
infections and obtain confidence bands for the mean functions.

2 Notations

For seek of simplicity, we shall suppose that only two types of events are observed, as the general-
ization is straightforward. For j = 1, 2, we write N⋆

j (t) the total number of events of type j that
have occured up to time t. We suppose that the counting processes N⋆

j are almost surely bounded
by a constant B. We also suppose the presence of a terminal event D a priori dependent on the
N⋆

j ’s after which the counting processes can’t jump. Finally, we suppose that the observation of
the processes is subject to a censorship C which is independant on the N⋆

j ’s and D.
Write X = D ∧ C the time after which the process doesn’t jump anymore and δ = I(D ≤ C),

where I(·) denotes the indicator function. This last random variable informs us on whether it was
the terminating event that stopped the process or the censorship. If we write Y (t) = I(X ≥ t) and
Nj(t) = N⋆

j (t∧C) for t ≥ 0 and j = 1, 2, then the observed data are i.i.d. replicates (Ni,j(t), Xi, δi),
for i = 1, . . . , n and j = 1, 2, of (Nj(t), X, δ), for t ∈ [0, τ ] where τ is a fixed constant chosen so
that P(C > τ)P(X > τ) > 0.

In order to build confidence regions for the mean functions t 7→ µj(t) = E(N⋆
j (t)), we use the

estimators µ̂j(t) from Dauxois & Sencey (2009):

µ̂j(t) =
1

n

n∑

i=1

∫ t

0

Ŝ(u−)

Ȳ (u)
dNi,j(u),

where Ŝ is the Kaplan-Meier estimator of S, the survival function of D (see, for example, Andersen

et al. (1993) for a definition of Ŝ) and Ȳ (t) = 1
n

∑n
i=1 Yi(t). We then apply empirical likelihood

methods. Formally, write for all t in [0, τ ]:
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ELn(µj , t) := max

{
n∏

i=1

npi, µ̂j,p(t) = µj(t), pi ≥ 0 and

n∑

i=1

pi = 1

}
,

where:

µ̂j,p(t) :=

∫ t

0

Ŝ(u−)dR̂j,p(u),

R̂j,p(t) :=

n∑

i=1

∫ t

0

pi
dNi,j(u)

Ȳ (u)
.

Straight calculus shows that:

µ̂j,p(t) = µj(t) ⇐⇒
n∑

i=1

pi

(∫ t

0

Ŝ(u−)

Ȳ (u)
dNi,j(u) − µj(t)

)
= 0.

Following notations in Hjort et al. (2004), we write:

ĥ(u) =
Ŝ(u−)

Ȳ (u)
and mi,j(Ni,j , µj , ĥ, t) =

∫ t

0

ĥ(u)dNi,j(u) − µj(t).

ELn can now be rewritten as in Hjort et al. (2004):

ELn(µj , ĥ, t) = max

{
n∏

i=1

npi,

n∑

i=1

pimi,j(Ni,j , µj , ĥ, t) = 0, pi ≥ 0 and

n∑

i=1

pi = 1

}
.

Finally, define:

Mn,j(µj , ĥ, t) =
1

n

n∑

i=1

mi,j(Ni,j , µj , ĥ, t) and Sn,j(µj , ĥ, t) =
1

n

n∑

i=1

mi,j(Ni,j , µj , ĥ, t)2.

When no confusion is possible, we will denote by mi,j(t) and m̂i,j(t) the functions:

mi,j(t) = mi,j(Ni,j , µj , h, t) =

∫ t

0

S(u−)

EY (u)
dNi,j(u) − µj(t),

m̂i,j(t) = mi,j(Ni,j , µj , ĥ, t) =

∫ t

0

ĥ(u)dNi,j(u) − µj(t).

One can easily show that E mi,j(t) = 0 for all t ∈ [0, τ ].

3 Main result

3.1 Convergence of the margins

We will need the following result which is easily obtained from Theorem 2 of Dauxois & Sencey
(2009):

Theorem 1. For j = 1, 2, as n → ∞,

√
n (µ̂j(·) − µj(·)) D−→ Gj(·),

in the Skorohod space D[0, τ ], where Gj(·) is a mean-zero Gaussian process.

We can now state our main result: under a classical variance condition we establish the weak
convergence of the empirical likelihood ratio.
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Theorem 2. Suppose that both Vj(t) := Var mi,j(t) and E|mi,j(t)| are bounded away from zero
and infinity on [τ1, τ ], for some real constant τ1 > 0. Then:

−2 log ELn(µj , ĥ, ·) D−→ G2
j (·)V −1

j (·), when n → +∞,

in the Skorohod space D[τ1, τ ].

Proof. This result is mainly based on the section 2.3 in Hjort et al. (2004). It is then sufficient to
show that their conditions (A0⋆) to (A3⋆) are true, that is:

(A0⋆) : P(∃t ∈ [τ1, τ ] : ELn(µj(t), ĥ, t) = 0) −→ 0, as n → ∞.

(A1⋆) :
√

n Mn,j(µj , ĥ, ·) D−→ G(·), as n → ∞.

(A2⋆) : sup
t∈[τ1,τ ]

|Sn,j(µj , ĥ, t) − Vj(t)| P−→ 0, as n → ∞.

(A3⋆) : max
1≤i≤n

‖mi,j(Ni, µj , ĥ, t)‖∞ = op(n
1/2),

where ‖ · ‖∞ denotes the supremum norm on D[τ1, τ ].
Proof of (A0⋆). It is sufficient to show that almost surely:

lim
n→∞

inf
t∈[τ1,τ ]

1

n

n∑

i=1

I(m̂i,j(t) > 0) > 0 and lim
n→∞

sup
t∈[τ1,τ ]

1

n

n∑

i=1

I(m̂i,j(t) > 0) < 1. (1)

Let us first consider the left inequality. Note that we have almost surely, for all η > 0 and t ∈ [τ1, τ ],

I(|m̂i,j(t) − mi,j(t)| > η) ≤ I

(
B

∥∥∥∥∥
Ŝ(u−)

Ȳ (u)
− S(u−)

EY1(u)

∥∥∥∥∥
∞

> η

)
.

Thus, almost surely for all t in [τ1, τ ]:

1

n

n∑

i=1

I(m̂i,j(t) > 0) ≥ 1

n

n∑

i=1

(I(mi,j(t) > η) − I(|m̂i,j(t) − mi,j(t)| > η))

≥ 1

n

n∑

i=1

I(mi,j(t) > η) − I

(
B

∥∥∥∥∥
Ŝ(u−)

Ȳ (u)
− S(u−)

EY1(u)

∥∥∥∥∥
∞

> η

)
.

We know that ‖EY (u) − Ȳ (u)‖∞ and ‖S(u−) − Ŝ(u−)‖∞ converge to 0 when n → +∞ from
Glivenko-Cantelli Theorem and the uniform consistency of the Kaplan-Meier estimator (see e.g.
Theorem IV.3.1 of Andersen et al. (1993)) respectively. Thus, the second indicator function tends
to zero and it is sufficient to show that there exists η > 0 such that inft∈[τ1,τ ] P(mi,j(t) > η) > 0.
To this effect, let:

η =
1

2
inf

t∈[τ1,τ ]
E(mi,j(t)I(mi,j(t) ≥ 0)) =

1

4
inf

t∈[τ1,τ ]
E|mi,j(t)| > 0.

This last equality is a consequence of E mi,j(t) = 0 for all t ∈ [τ1, τ ]. Cauchy-Schwarz inequality
yields:

P(mi,j(t) ≥ η) ≥ 1

E(mi,j(t)2)
E

2(mi,j(t)I(mi,j(t) ≥ η))

=
1

E(mi,j(t)2)

(
E(mi,j(t)I(mi,j(t) ≥ 0)) − |E(mi,j(t)I(mi,j(t) ≥ 0))

− E(mi,j(t)I(mi,j(t) ≥ η))|
)2

≥ 1

E(mi,j(t)2)
(2η − η)2

=
η2

E(mi,j(t)2)
,
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which is, from our assumptions on E |mi,j(t)| and Var (mi,j(t)), bounded away from 0 for all
t ∈ [τ1, τ ].

To show the second inequation in (1), remark that:

lim
n→∞

sup
t∈[τ1,τ ]

1

n

n∑

i=1

I(m̂i,j(t) > 0) < 1 ⇐⇒ lim
n→∞

inf
t∈[τ1,τ ]

1

n

n∑

i=1

I(m̂i,j(t) ≤ 0) > 0,

and conclude by using the same arguments as previously.

Proof of (A1⋆). Recall that Mn,j(µj(t), ĥ, t) = 1
n

∑n
i=1 mi,j(Ni,j , µj , ĥ, t). Then, by Theorem 1:

√
n Mn,j(µj , ĥ, ·) =

√
n (µ̂j(·) − µ(·)) D−→ Gj(·), as n → +∞.

Proof of (A2⋆). Recall that Sn,j(µj , ĥ, t) = 1
n

∑n
i=1 mi,j(Ni, µj , ĥ, t)2. Hence:

Sn,j(µj , ĥ, t) =
1

n

n∑

i=1

(
Ai,j(t)

2 + 2Ai,j(t)mi,j(t) + mi,j(t)
2
)
,

where:

Ai,j(t) =

∫ t

0

(
Ŝ(u−)

Ȳ (u)
− S(u−)

EY (u)

)
dNi,j(u).

• Step 1. We shall show that: ‖ 1
n

∑n
i=1 mi,j(t)

2 − Vj(t)‖∞ P→ 0 as n → ∞.

Write fi,j(ω, t) := mi,j(t)
2 and Fj

nω = {(f1,j(ω, t), . . . , fn,j(ω, t)), t ∈ [τ1, τ ]}. Write also:

gi,j(ω, t) =

∫ t

0

S(u−)

EY1(u)
dNi,j(ω, u),

and

Gj
nω = {(g1,j(ω, t), . . . , gn,j(ω, t)), t ∈ [τ1, τ ]}.

Then, almost surely:

|gi,j(ω, t)| =

∣∣∣∣
∫ t

0

1

P(C ≥ u)
dNi,j(ω, u)

∣∣∣∣

≤ 1

P(C ≥ τ)

∫ τ

0

dNi,j(ω, u)

≤ B

P(C ≥ τ)
.

Hence, the class Gj
nω is euclidean (see Pollard (1990) pp. 38 for a definition of euclidean). In-

deed, as the gi,j ’s are non decreasing, the class is of pseudo-dimension 1 (see Bilias et al. (1997)).
Conclude by using Theorem 4.8 from Pollard (1990). The same arguments apply to the class
Hj

n = {(µj(t), . . . , µj(t)), t ∈ [τ1, τ ]}, as |µj(t)| ≤ B. Now, notice that Fj
nω ⊂ (Gj

nω − Hj
n)2. As

euclidean classes are stable under addition and multiplication (see Pakes & Pollard (1989)), Fj
nω

is euclidean. Thus, since mi,j(t) is a mean zero process:

sup
t∈[τ1,τ ]

∣∣∣∣∣
1

n

n∑

i=1

fi,j(t, ω) − Efi,j(t, ·)
∣∣∣∣∣

a.s.−→ 0, as n → +∞.

• Step 2. Let us show that: ‖ 1
n

∑n
i=1 Ai,j(t)

2‖∞ P→ 0, as n → +∞.
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Rewrite Ai,j(t) as:

Ai,j(t) =

∫ t

0

1

Ȳ (u)EY (u)

(
Ŝ(u−)(EY (u) − Ȳ (u)) − Ȳ (u)(S(u−) − Ŝ(u−))

)
dNi,j(u).

But, from our hypothesis on τ we have:

inf
t∈[τ1,τ ]

EY (t) = P(D ≥ τ)P(C ≥ τ) > 0,

and:

Ȳ (u) =
1

n

n∑

i=1

I(Xi ≥ u) ≥ Ȳ (τ),

where the last term is well-known to converge almost surely to P(D ≥ τ)P(C ≥ τ) > 0. Thus,
almost surely:

∥∥∥∥∥
1

n

n∑

i=1

Ai,j(t)
2

∥∥∥∥∥
∞

≤
(
‖EY (u) − Ȳ (u)‖∞ + ‖S(u−) − Ŝ(u−)‖∞

Ȳ (τ)EY (τ)

)2

B2,

since Ni,j is bounded by B. The above inequality and the convergence of both ‖EY (u) − Ȳ (u)‖∞
and ‖S(u−) − Ŝ(u−)‖∞ yield the expected convergence of step 2.

• Step 3. Show that: ‖ 2
n

∑n
i=1 Ai,j(t)mi,j(t)‖∞ P→ 0, as n → +∞.

The same arguments as in Step 2 apply to show that ‖ 1
n

∑n
i=1 Ai,j(t)‖∞ P→ 0. Conclude by noticing

that:

max
1≤i≤n

‖mi,j(t)‖∞ ≤ max
1≤i≤n

(∫ τ

0

S(u−)

EY (u)
dNi,j(u) + µj(τ)

)
≤ B

EY (τ)
+ B.

Proof of (A3⋆). First, notice that:

‖mi,j(Ni, µj , ĥ, t)‖∞ =

∥∥∥∥∥

∫ t

0

Ŝ(u−)

Ȳ (u)
dNi,j(u) − µj(t)

∥∥∥∥∥
∞

≤
∫ τ

0

1

Ȳ (u)
dNi,j(u) + µj(τ)

≤ B

Ȳ (τ)
+ B.

It is easily seen that this last sum of two terms is almost surely op(n
1/2) since Ȳ (τ) converges

almost surely to E Y (τ) > 0 when n → +∞. Thus, condition (A3⋆) is fullfilled which completes
the proof of Theorem 2.

3.2 Joint convergence

In this section we will state a corollary of our Theorem 2 where we consider the profile empirical
likelihood ratio function for both mean functions µ1 and µ2. This latter is defined as:

ELn(µ, ĥ, t) = max

{
n∏

i=1

npi,

n∑

i=1

pimi(Ni, µ, ĥ, t) = 0, pi ≥ 0 and

n∑

i=1

pi = 1

}
,

where

mi(Ni, µ, ĥ, t) = (mi,j(Ni,j , µj , ĥ, t))j=1,2.
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As before, when no confusion is possible, let us write:

mi(t) = (mi,j(Ni,j , µj , h, t))j=1,2 =

(∫ t

0

S(u−)

EY (u)
dNi,j(u) − µj(t)

)

j=1,2

,

m̂i(t) = (mi,j(Ni,j , µj , ĥ, t))j=1,2 =

(∫ t

0

ĥ(u)dNi,j(u) − µj(t)

)

j=1,2

.

Before stating the corollary of our Theorem 2, recall the following result from Dauxois & Sencey
(2009):

Theorem 3. As n → ∞,
√

n

(
µ̂1 − µ1

µ̂2 − µ2

)
D−→
(

G1

G2

)
=: G.

Corollary 4. Suppose that the eigenvalues of V (t), the covariance matrix of mi(t), are uniformly
bounded away from zero and infinity on [τ1, τ ] for some real constant τ1 > 0. Suppose also that
E|mi(t)| is uniformly bounded away from zero and infinity on the same interval (where the absolute
value is taken composant-wise). Then:

−2 log ELn(µ, ĥ, ·) D−→ G(·)tV −1(·)G(·), as n → +∞,

in the Skorohod space D[τ1, τ ].

Proof. Although the quantities Mn and Sn from last section have to be adapted to the vectorial
case, the proof is very similar to the one of Theorem 2. Let:

Mn(µ, ĥ, t) =
1

n

n∑

i=1

mi(Ni, µ, ĥ, t) and Sn(µ, ĥ, t) =
1

n

n∑

i=1

mi(Ni, µ, ĥ, t)⊗2,

where x⊗2 := xxt. It is then easily seen that hypotheses (A1⋆) and (A3⋆), after straightforward
adaptation to the multivariate case, are verified.

(A0⋆): P(∃t ∈ [τ1, τ ] : ELn(µ, ĥ, t) = 0) −→ 0, as n → ∞.
It is sufficient to show that almost surely, as n → ∞, every half-space around 0 is occupied by the
m̂i’s. Formally, it is sufficient to show that, almost surely:

lim
n→∞

inf
t∈[τ1,τ ],θ∈Θ

1

n

n∑

i=1

I(〈m̂i(t), θ〉 > 0) > 0, (2)

where Θ is the unit sphere of R
2. To show (2), remark that for η > 0, Cauchy-Shwarz’s inequality

yields:
|〈m̂i(t) − mi(t), θ〉| > η ⇒ ‖m̂i(t) − mi(t)‖2 > η,

where ‖ · ‖2 denotes the euclidean norm. Thus:

1

n

n∑

i=1

I(〈m̂i(t), θ〉 > 0) ≥ 1

n

n∑

i=1

I(〈mi(t), θ〉 > η) − 1

n

n∑

i=1

I(‖m̂i(t) − mi(t)‖2 > η). (3)

But, we have shown that the last term in (3) converges to 0 as n → ∞ in probability. Let now
Ti(t, θ) := 〈mi(t), θ〉. We know from our hypotheses that VarTi(t, θ) = 〈V (t)θ, θ〉 is uniformly
bounded away from 0 and infinity on [τ1, τ ] × Θ. It is also true for E |Ti(t, θ)|. We can then
conclude by applying the same proof as in Theorem 2 to the random variable Ti(t, θ) instead of
mi,j(t).

(A2⋆): supt∈[τ1,τ ] |Sn(µ, ĥ, t) − V (t)| P−→ 0.
Notice that:

Sn(µ, ĥ, t) =
1

n

n∑

i=1

(
m2

i,1 mi,1mi,2

mi,2mi,1 m2
i,2

)
,
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where mi,j is short for mi,j(Ni, µj , ĥ, t). We have already shown the convergence of the diagonal
terms in the proof of Theorem 2. Using similar arguments one can show that, in probability:

sup
t∈[τ1,τ ]

∣∣∣∣∣
1

n

n∑

i=1

mi,1(t)mi,2(t) − Cov(m1(t), m2(t))

∣∣∣∣∣ −→
n→∞

0.

4 Application to nosocomial infections

4.1 Algorithm in dimension 1

In this section, we will apply our results to the data set of nosocomial infections mentioned in
section 1. We will restrict our attention to pneumonies, septicemias and urinary tract infections,
as those are the most frequent infections in the data set: for example, 373 patients experienced a
total amount of 463 pneumonies during their stay. Using Theorem 2, one can build simultaneous
confidence band for the mean function of each type of infection. We shall then describe the
algorithm used to obtain a 95% confidence band for the mean function of one type of infection.
Using the same notations as before, we have n = 7867 and max1≤i≤n Xi = 380. First of all, we
approximate the 95%-quantile of the limiting law by bootstrap. To this effect, we draw (Z⋆

1 , . . . , Z⋆
n)

uniformly in {Z1, . . . , Zn}, where Zi := (Ni, Xi, δi). Then, for each day k in {0, . . . , 380}, we

compute −2 log ELn(µ̂(k), ĥ⋆, k) and we store the supremum (over k) of those values. Finally, we
repeat this 1000 times, sort the values and take the 950-th as our 95%-estimated quantile û95.
Then, for each day k in J0, 380K, we determine by dichotomy the convex set Ck for which we have:

∀y ∈ Ck , −2 log ELn(y, ĥ, k) ≤ û95.

Notice that the confidence band stays the same after the last jump: for example, no patient
contracted a pneumonia after the 125-th day as can be seen on the Figure 1. Notice also that the
confidence band is not centered around µ̂: unlike central limit theorem, empirical likelihood builds
confidence regions whose shape strongly depends on the geometry of the data.

4.2 Algorithm in dimension 2

As pointed out in section 3.2, our result still holds for more than one type of events. We thus
built a confidence tube for (µ1, µ2) where µ1 is the mean number of pneumonies and µ2 the mean
number of septicemias. In this context, the number of patients who experienced either pneumonies
or septicemias is 547, with 71 patients experiencing both types of infections at least one time.
The total number of pneumonies is 463 (373 patients experienced it) and the total amount of
septicemias is 289. For the 3D graph to be more readable, we projected it on a plane, eliminating
the dimension corresponding to time. Each convex set corresponds to a day, the first day being
at the bottom left corner and the last day at the upper right corner. As in dimension 1, one can
notice that this confidence tube is not elliptic as would be expected had we used the central limit
theorem. Once again, this is due to empirical likelihood.
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Figure 1: Nosocomial data set. Estimated specific mean function and associated 95% empirical
likelihood confidence bands for a) pneumonia, b) septicemia and c) urinary tract infection.
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Figure 2: Nosocomial data set. Estimated 95% empirical likelihood confidence tube for the mean
number of pneumonies and septicemias along with µ̂
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