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HOMOGENEOUS SPACES, DYNAMICS, COSMOLOGY: GEOMETRIC
FLOWS AND RATIONAL DYNAMICS

ABDELGHANI ZEGHIB

ABSTRACT. The Ricci flow is a parabolic evolution equation in the spaceof Rie-
mannian metrics of a smooth manifold. To some extent, Einstein equations give rise
to a similar hyperbolic evolution. The present text is an introductory exposition to
Bianchi-Ricci and Bianchi-Einstein flows, that is, the restricted finitely dimensional
dynamical systems, obtained by considering homogeneous metrics.

1. INTRODUCTION

These notes are variations around the homogeneous space

Xn = Sym+
n = GL(n,R)/O(n)

that is, the space ofn × n positive definite symmetric matrices, and sometimes, its
subspace of those matrices with determinant 1,

Yn = SSym+
n = SL(n,R)/SO(n)

Besides their striking beauty, these spaces modelize many structures and support
fascinating geometry and dynamics. It is surely very interesting to investigate in-
terplays between these aspects. We will not do it systematically here, but rather
briefly note some of them1. Our modest remark here is that “Bianchi” Ricci flows
and Bianchi cosmologies are better seen as natural dynamical systems (i.e. differen-
tial equations) onXn, respectively of first and second orders. To be more precise,
Bianchi spaces are special homogeneous Riemannian spaces,those given by left in-
variant metrics on Lie groups. For a given Lie groupG, the space of such metrics
is identified withXn, n = dimG. The Ricci flow acting of the space of Riemann-
ian metrics on a manifold, becomes here a (gradient-like) flow on Xn. Similarly,
the Cauchy problem for the (vaccum) Einstein equations becomes here a dynamical
system onTXn. The groupG acts preserving all these dynamical systems.

1We would like to emphasis on that this is a preliminary short non-finished work. This explains
in particular why many proofs are left as exercises. Also, this text may be considered as expository,
although the method here does not follow any existing approach.
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References.There are now abundant references on the Ricci flow techniques, since
their use by Perelman in his program on the geometrization conjecture on 3-manifolds.
We may quote as an example [10] as an interesting recent reference. The “toy” ho-
mogeneous case (with which we are dealing here) was in particular investigated in
[13, 14].

The history of cosmology from a relativistic point of view, i.e. applying Einstein
equations, is very old, and was in fact usually considered within a homogeneous
framework, even an isotropic one, as in the standard big-bang model [12, 24, 25].
Even, concrete interplay between cosmology and the mathematical theory of dynam-
ical systems, were involved in the literature, but this seems to be not well known by
“mathematicians” (which gives motivation for our text here). As recent references,
we may quote [2, 21, 20].

For the general material on homogeneous spaces, we quote [6,9, 17, 18].
Finally, in these proceedings, recommended references would include [15, 22].

2. A MULTIFACETED SPACE

The general linear groupGL(n,R) acts transitively on the space of positive scalar
products onRn, the stabilizer of the canonical scalar product being the orthogonal
groupO(n). This space is therefore identified to the homogeneous spaceGL(n,R)/O(n).
It will be sometimes more convenient to deal with a reduced variant:

Yn = SL(n,R)/SO(n)

which then represents conformal scalar products, or equivalently, scalar products with
unit volume (i.e. their unit ball has volume 1 with respect tothe canonical volume).

For a more intrinsic treatment, we start with a real vector spaceE, and consider
Sym(E) the space of its quadratic forms. Inside it, we have the open subspace of all
non-degenerate onesSym∗(E), andSym+(E) (orX(E)) the open cone of positive
definite ones. We also get spaces of conformal structures by taking quotient byR
acting by homothety; in particularSSym+(E) (or Y (E)) will denote the space of
conformal positive definite structures. In the case ofE = R

n, we use the notations:

Symn, Sym
∗
n, Sym

+
n (= Xn), SSym

+
n (= Yn)

They are identified to subspaces of symmetric matrices{A = A∗ ∈ Mnn}. The
last three spaces correspond respectively to:detA 6= 0, A has positive eigenvalues,
and positive eigenvalues withdetA = 1.

Exercise 2.1.Show that theGL(n,R)-action onSymn is given byg.A = (g∗)−1Ag
(whereg∗ is the transpose ofg).

2.0.1. A metric on the space of metrics.A Euclidean structureq on a vector space
E induces similar ones on associated spaces, in particular onthe dualE∗ and on
E∗⊗E∗. If (ei) is aq-orthonormal basis, then its dual basis(e∗i ) is also orthonormal,
and also is the basis(e∗i ⊗ e∗j).
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Now, sinceSym+
n is open inSymn, its tangent space at any pointq is naturally

identified toSymn, which is thus endowed with the scalar product〈, 〉q. Therefore,
Sym+

n becomes (tautologically) a Riemannian space.

Exercise 2.2.Show that

〈p, p〉q = tr(q−1pq−1p) (= tr(pq−1pq−1))(1)

(wherep ∈ Tq(Sym
+
n )is identified with a matrix∈ Symn).

- Show thatSym+
n is isometric to the productR∗

+ × Yn, more precisely, one has
an isometry:A ∈ Sym+

n 7→ (log detA, A
detA) ∈ (R, ncan)× Yn (where can stands

for the canonical metric ofR).
– Show thatq 7→ q−1 is an isometry, that is,Yn as well asXn are Riemannian

symmetric spaces.

Exercise 2.3.For n = 1, Yn is R
∗
+ endowed withdx

2

x2 .
- Y2 is “a hyperbolic plane”, i.e. a homogeneous simply connected surface with

(constant) negative curvature. Compute this constant. Does this correspond to a
classical model of the hyperbolic plane?

- Show that theSL(n,R)-action onYn factors through a faithful action ofPSL(n,R).

2.0.2. Symmetric matrices vs quadratic forms.We guess it is worthwhile to seize the
opportunity and clarify the relationship between quadratic forms and their represen-
tations as matrices. LetE be a vector space, and as aboveSym(E) andSym+(E)
its spaces of quadratic forms, and those which are positive definite, respectively. A
basis(ei) of E yields a matricial representation isomorphism

P ∈ Sym(E) 7→ p = (P (ei), P (ej))ij ∈ Symn(= Sym(Rn))

Justified by a latter use (see§8), the restriction toSym+(E), will be denoted by:
Q ∈ Sym+(E) 7→ q ∈ Sym+

n .
In fact, these representations depend only on the scalar product onE for which the

given basis is orthonormal.
Now, given(Q,P ) ∈ Sym+(E) × Sym(E), that is a pair of a scalar product to-

gether with a quadratic form onE, one associates aQ-autoadjoint endomorphismf :
E → E, representingP by means ofQ, that isP (x, y) = Q(x, f(y)) = Q(f(x), y),
whereP andQ are understood here as symmetric bilinear forms.

Fact 2.4. Given(Q,P ) and their associates(q, p), the endormorphismf has a ma-
trix representationA = q−1p.

Conversely, givenQ and aQ-autoadjoint endomorphismf , its corresponding qua-
dratic formP has a matrix representationp = qA.

2.1. Flats. Let B = (ei) be a basis ofE. Theflat FB ⊂ Sym+(E) is the space of
scalar products onE for whichB is orthogonal. It is parametrized by n positive reals
xi, its elements have the form:Σxie∗i ⊗ e∗i .
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Exercise 2.5.Show that the metric induced onFB is given byΣi
dx2

i

x2

i

, and that

(t1, . . . , tn) ∈ (Rn, can) 7→ Σexp(ti)e
∗
i ⊗ e∗i ∈ FB

is an isometric immersion.
Prove that:
- FB is totally geodesic inSym+(E).(Hint: make use of the isometries ofSym+

n ,
p 7→ σ∗

i pσi, whereσi is the reflection fixing all theej , j 6= i, andσi(ei) = −ei).
- GL(E) acts transitively on the set of flats of the formFB (Hint: relate this to the

simultaneous diagonalization of quadratic forms).
- Any geodesic ofSym+(E) is contained in someFB.

3. AN INDIVIDUAL LEFT INVARIANT METRIC

Standard references for this section and the following one are [6, 9, 17, 18].

3.0.1. Equation of Killing fileds.Let (M, 〈, 〉) be a pseudo-Riemannian manifold.
A Killing field X is a vector field that generates a (local) flow of isometries. Any
vector fieldX has a covariant derivative which is an endomorphism ofTM defined
by: DxX : u ∈ TxM 7→ ∇uX(x) ∈ TxM , where∇ is the Levi-Civita connection
of the metric.

Fact 3.1. X is a Killing field, iff, DxX is skew-symmetric with respect to〈, 〉x, for
anyx ∈ M .

Proof. Let us first recall that this is the case for the Euclidean space: in fact, this
is equivalent to that the Lie algebra of the orthogonal groupis the space of skew-
symmetric matrices.

In the general case, assumex generic, that is,X(x) 6= 0, and considerN a small
transverse submanifold (toX atx). Let Y andZ be two vector fields defined onN ,
and extend them on open neighborhood ofx, by applying the flow ofX, that is by
definition: [X,Y ] = [X,Z] = 0.

If X is Killing, then〈Y,Z〉 is constant alongX: X.〈Y,Z〉 = 0. Thus, by definition
of the Levi-Civita connection,〈∇XY,Z〉+ 〈Y,∇XZ〉 = 0. Apply the commutations
∇XY = ∇YX, ∇XZ = ∇ZX, to get:0 = 〈∇Y X,Z〉+ 〈Y,∇ZX〉, that isDxX is
skew-symmetric.

It is also easy to use those arguments backwards, that is, ifDxX skew-symmetric
for anyx, thenX is a Killing field. �

3.0.2. Three Killing fields.Let now X,Y andZ be three Killing fields . Apply
skew-symmetry for all their covariant derivatives, and get(at the end of substitutions)
the following formula:

(2) 2〈∇XY,Z〉 = 〈[X,Y ], Z〉+ 〈[Y,Z],X〉 − 〈[Z,X], Y 〉
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Remark 3.2. Observe the beauty (= symmetry) and easiness of the formula!

Remark 3.3. Recall Koszul’s formula for the Levi-Civita connection:

2〈∇Y Z,X〉 = Y 〈Z,X〉 + Z〈X,Y 〉 −X〈Y,Z〉−
〈Y, [Z,X]〉 + 〈Z, [X,Y ]〉+ 〈X, [Y,Z]〉(3)

It implies the previous formula of three Killing fields. Conversely, this last for-
mula yields Koszul’s one for any combination of Killing fields with coefficients (non-
necessarily constant) functions onM . In particular (2) yields (3) ifM is homoge-
neous. In fact, as (2) holds asX,Y andZ are pointwise Killing at order 1, (2) yields
(3) also in the general non-homogeneous case.

3.1. Left invariant metrics. We are interested now on Riemannian metrics on a Lie
groupG which are left invariant, i.e anyleft translationx 7→ gx is isometric. This
is in particular the case of any flowφt(x) = gtx, where{gt} is a one-parameter
subgroup ofG. Its infinitesimal generatorX(x) = ∂φt

∂t (x)|t=0 is a Killing field. This
is aright invariant vector field:X(g) = X(1)g.

Therefore,a left invariant metric is exactly a metric admitting the right invariant
fields as Killing fields.

Another characterization is thata left invariant metric is one for which left invari-
ant fields have a constant length.(but they are not necessarily Killing).

Such a metric is equivalent to giving a scalar product on the tangent space of one
point in G, sayT1G, i.e. the Lie algebra ofG. We keep the same notation〈, 〉 for
both the metric onG and the scalar product on its Lie algebraG.

Here, to be precise, we define the Lie algebraG as the space of rightinvariant
vector field onG. (The other choice, i.e. that of left invariant vector fields, would
induce modification of signs in some formulae).

From the formula of three Killing fields, one sees that the connection onG is
expressed by means of the scalar product onG and the Lie bracket. In other words,
one can forget the groupG and see all things on the Lie algebra. For instance the
Riemann curvature tensor is a 4-tensor onG. The Ricci curvature is just a symmetric
endomorphism ofG.

3.2. The connection. Any Lie group has a canonical torsion free connection defined
for right invariant vector fields by:

∇XY =
1

2
[X,Y ].

Any other left invariant connection can be written∇XY = 1
2 [X,Y ] + C(X,Y ),

whereC : G × G → G is a bilinear map, and the connection is torsion free, iff,
C(X,Y ) = C(Y,X). In the case of the Levi-Civita connection of a metric, one
deduces from the formula of three Killing fields
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2〈C(X,Y ), Z〉 = 〈[X,Z], Y 〉+ 〈X, [Y,Z]〉
= 〈ad∗XY,Z〉+ 〈ad∗Y X,Z〉(4)

(Here as usuallyaduv = [u, v], andad∗ is its adjoint with respect to〈, 〉).
It then follows:

(5) ∇XY =
1

2
([X,Y ] + ad∗XY + ad∗Y X

3.2.1. Sectional curvature.The following formulae for various curvatures follow
from Eq. (4), see for instance [6] for detailed proofs.

〈R(X,Y )Y,X〉 = − 3

4
〈[X,Y ], [X,Y ]〉 − 1

2
〈[X, [X,Y ], Y 〉

− 1

2
〈[Y, [Y,X],X]〉 + 〈C(X,Y ), C(X,Y )〉

− 〈C(X,X), C(Y, Y )〉+ 〈Y, [[X,Y ],X]〉

3.2.2. Ricci curvature.The tensorC disappears in the expression of the Ricci and
scalar curvatures!

Ric(X,X) = − 1

2
B(X,X) − 〈[Z,X],X〉

− 1

2
Σi|[X, ei]|2 +

1

4
Σij〈[ei, ej ],X〉2(6)

where,
• B is the Killing form ofG, that is the bilinear form(X,Y ) 7→ tr(adXadY ),
• (ei) is any orthonormal basis of(G, 〈, 〉),
• and finally,Z is the vector ofG defined by〈Z, Y 〉 = trace(adY ), that is, it

measures the unimodularity defect ofG by means of〈, 〉.

3.2.3. Scalar curvature.

r = −1

4
Σij|[ei, ej ]|2 −

1

2
ΣiB(ei, ei)− |Z|2(7)

3.3. Warning: left vs right. A metric is bi-invariant i.e. invariant under both left
and right translations ofG if and only if its associated scalar product is invariant
under theAd representation. In this case, the connection is the canonical one given
by ∇XY = 1

2 [X,Y ], for X andY right-invariant vector fields. As said above, this
torsion free connection exists on any Lie group, but does notin general derive from a
Riemannian or a pseudo-Riemannian metric (i.e. it is not a Levi Civita connection).
Its geodesics trough the neutral element are one-parametergroups, and its curvature
is given byR(X,Y )Z = 1

4 [[X,Y ], Z], and has a Ricci curvatureRic(X,Y ) =
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1
4B(X,Y ), whereB is the Killing form (recall that a connection, not necessarily
pseudo-Riemannian, has a Ricci curvature,Ric(X,Y ) = tr(Z 7→ R(X,Z)Y ).

3.3.1. Other quantities.The following fact, left as an exercise, gives characterization
of bi-invariant metrics:

Fact 3.4. A left invariant metric is right invariant (and hence bi-invariant) iff it sat-
isfies one of the following conditions:

(1) For any right invariant (Killing) fieldX, 〈X,X〉 is constant onG.
(2) The orbits of any suchX are geodesic
(3) The orbit of1 (∈ G) under any suchX is a one parameter group.

All this suggests the possibility to define other quantitiesessentially equivalent to
the Ricci curvature. Say, in the bi-invariant case, the Ricci curvature is essentially the
Killing form, and hence, in the general left invariant case,the remaining partRe (of
the Ricci curvature) is an obstruction to the constancy of〈X,X〉, or (equivalently)
an obstruction for one parameter groups to be geodesic. A naive construction goes
as follows. ForX a right invariant vector field, letlX : x ∈ G 7→ 〈X(x),X(x)〉, its
length function, anddlX1 its differential at1. DefineRe(X,X) = tr(dlX1 ⊗ dlX1 )...

4. CURVATURE MAPPINGS ONXn

4.1. All scalar products together: The spaceSym+(G) et al. We are now consid-
ering all left invariant Riemannian metrics onG. As said above the space of such
metrics can be identified withSym+(G), the space of positive definite scalar prod-
ucts onG. Let Sym(G) be the space of all quadratic forms onG. Then, the above
formula for the Ricci curvature determines a map:

Ric : Sym+(G) → Sym(G)

4.2. Aut(G)-action on Sym+(G). Not only interior automorphisms ofG, but also
“exterior” ones, i.e. general automorphisms act onSym(G). Their groupAut(G) is
sometimes identified withAut(G), assuming implicitly thatG is simply connected.
Of course, this action is compatible with all mappings that will be discussed below.

4.3. All Lie algebras together. We can now go a step further and deal with all Lie
algebras of a given dimensionn. As vector spaces they are identified withRn. The
space of quadratic forms and the positive definite one areSymn andSym+

n . In short,
for any Lie algebraG (endowed with a basis allowing one to identify it withRn), we
have a Ricci and a scalar curvature mapping, involving the bracket structure ofG:

RicG : Sym+
n → Symn
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rG : Sym+
n → R

4.4. Formulae. The Lie algebraG has a basis(ei). An element ofSymn is denoted
by p = (xij)1≤,i,j,≤n. The structure constantsCk

ij , are defined by[ei, ej ] = Ck
ijek.

(Here and everywhere in this paper, if a letter is repeated asa lower and an upper
index, likek is the last equation, we use the Einstein summation convention, for
example,aji bj stands forΣja

j
i bj, etc...).

From Formula (6), we have:

RicG : q = (xab) ∈ Sym+
n 7→ p = (Xab) ∈ Symn

Where:

Xab = −1

2
Bab −

1

2
Ck
aiC

l
bjxklx

ij +
1

4
Cp
ikC

q
jlxpaxqbx

ijxkl +
1

2
Eab(8)

and,Bab = Cj
aiC

i
bj is the matrix representing the Killing form,(xij) is the inverse

matrix of (xij), and

Eab = Cj
ijx

is(C l
saxlb + C l

sbxla)

This last term depends onq, but vanishes identically ifG is unimodular. So, assuming
G unimodular will simplify and shorten the formula.

4.5. Parameter. To simplify, we will restrict ourselves to unimodular algebras, and
so(Eab) disappears. Any Lie algebra is defined by a system(Ck

ij) which furthermore
satisfies the Jacobi identity. We can then consider a mapping,

Ric : (
−→
C , q) = ((Ck

ij), (xab)) ∈ R
n3 × Sym+

n 7→ p = (Xab) ∈ Symn

Xab = −1

2
Cj
aiC

i
bj −

1

2
Ck
aiC

l
bjxklx

ij +
1

4
Cp
ikC

q
jlxpaxqbx

ijxkl(9)

This map is equivariant with respect to theGL(n,R) × GL(n,R)-action on the
source and theGL(n,R)-action on the target.

5. THREE-DIMENSIONAL CASE: BIANCHI GEOMETRIES (OF CLASSA)

A Bianchi space(or geometry) is a homogeneous Riemannian 3-manifold to-
gether with a transitive free action of a Lie group. This is therefore equivalent to
giving a left invariant Riemannian metric on a 3-dimensional Lie group. These groups
have been classified by Bianchi (see for instance [9, 20]). They split into classes A
and B, according to they are unimodular or not. To simplify wewill consider here
only class A.
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5.0.1. Milnor (or Bracket cyclic) bases of a 3-dimensional Lie algebra. Let G(a,b,c)

be the Lie algebra generated by{u, v, w} with relations:

[u, v] = aw, [v,w] = bu, [w, u] = cv

It is easy to show that this is actually a Lie algebra, i.e. that the Jacobi identity is
satisfied.

Conversely, a basisB = {u, v, w} of a Lie algebraG is called aMilnor basis
([9]) if it satisfies the previous relations:[u, v] = aw, [v,w] = bu, [w, u] = cv. In
particular,G is then isomorphic toG(a,b,c).

5.1. Invariance of Milnor flats under Ric. Let us recall here that in dimension 3,
giving the Ricci curvature is equivalent to giving the full Riemann curvature tensor
(in higher dimension, Ricci is too weaker than Riemann).

Recall that theflat FB determined byB is the space of scalar products onG for
whichB is orthogonal.

We will say thatFB is aMilnor flat if B is a Milnor basis.
The flatFB is parametrized by 3 positive realsx, y andz, where:

x = 〈u, u〉, y = 〈v, v〉, andz = 〈w,w〉.

The corresponding metric will be denoted by(x, y, z) ∈ (R+)3

Define theextended flatFB to be the set of all quadratic forms which are diagonal
in the basisB, i.e. they have the same form as elements ofFB, but x, y andz are
allowed to be any real numbers.

One uses the orthonormal basis{ u√
x
, v√

y ,
w√
z
} for the metric(x, y, z), and com-

putes from Formula (6) (or (9)),



































Ric(u, u) =

Ric(v, v) =

Ric(w,w) =

1
2(b

2 x2

yz − a2 z
y − c2 y

z ) + ac

1
2(c

2 y2

xz − a2 z
x − b2 xz ) + ab

1
2 (a

2 z2

xy − b2 x
y − c2 y

x) + bc

(10)

In fact,Ric is diagonal in the basisB, i.e. Ric(u, v) = . . . = 0. We can on the
other hand perform some simplification, for instance, forRic(u, u) we have:

1

2
(b2

x2

yz
− a2

z

y
− c2

y

z
) + ac =

1

2yz
(b2x2 − c2y2 − a2z2 + 2acyz)

=
1

2yz
(b2x2 − (cy − az)2)
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Proposition 5.1. Consider a 3-Lie algebraG, and a Milnor flatFB ⊂ Sym+
3 . Then,

the Ricci map sends:

(x, y, z) ∈ FB 7→ (X,Y,Z) ∈ FB

and is given by:































X =

Y =

Z =

1
2yz (b

2x2 − (cy − az)2)

1
2xz (c

2y2 − (az − bx)2)

1
2xy (a

2z2 − (bx− cy)2)

(11)

Remark 5.2. Observe the complete symmetry of these equations: there is for in-
stance “a duality”x 7→ b: everywhere the coefficient ofx (resp.x2) is b (resp. b2).
Recall that the coordinatex correponds to the vectoru, and they are both related to the
coefficientb, by the fact that the unique bracket proportional tou is [v,w] = bu. The
same observation applies to the other variables, followinga same correspondence:
(x, y, z) 7→ (b, c, a).

5.2. Scalar curvature. Similarly, from Formula (7), we infer:

r =
1

2xyz
(−b2x2 − c2y2 − a2z2 + 2acyz + 2abxz + 2bcxy).(12)

6. STRUCTURE OF UNIMODULAR L IE ALGEBRAS IN DIMENSION 3

Proposition 6.1. Any unimodular 3-Lie algebra has a Milnor basis. More precisely
(a, b, c) ∈ R

3 7→ G(a,b,c) ∈ L gives a parametrization of the space of unimodular 3-
Lie algebrasL. The diagonal action ofR∗3 onR

3, and that of the permutation group
S3 by permutation of coordinates, preserve the isomorphism classes of algebras.

In fact, this is equivalent to the more precise:

Corollary 6.2. There is six isomorphism classes of unimodular 3-algebras,repre-
sented as follows, where below+ (resp. −) means any positive (resp. negative)
number, e.g.+1 (resp.−1).

(1) (0, 0, 0): the abelian algebraR3.
(2) (0, 0,+): the Lie algebra ofG = Heis, the Heisenberg group.
(3) (0,−,+): the Lie algebra ofG = Euc, the group of rigid motions of the

Euclidean plane (i.e. the isometry group of the affine Euclidean plane). It is
a semi-direct productR ⋉ R

2, whereR acts onR2, by
(

cos t − sin t
sin t cos t

)

.
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(4) (0,+,+): the algebra of the groupG = SOL, the group of rigid motions
of the Minkowski plane (i.e. the Minkowski space of dimension 1 + 1), G =
R ⋉ R

2, whereR acts onR2 by
(

et 0
0 e−t

)

.

(5) (−,+,+): sl(2,R).
(6) (+,+,+): so(3).

They are labeled respectively, Bianchi:I, II, V II0, V I0, V III andIX.

Proof. (see [17]). In dimension 3, there are exactly two semi-simple Lie algebras,
so(3) and sl(2,R), and there are no semi-simple Lie algebra of dimension≤ 2.
Therefore, if a 3-algebraG is not semisimple, then it contains no semisimple algebra,
that is,G is solvable.

AssumeG contains an (abelian) ideal isomorphic toR2. Take any supplementary
one dimensional subspace (hence a subalgebra)R. Then,G writes as a semi-direct
product ofR acting onR2. SinceG is assumed to be unimodular, this action is via
a one parameter group ofSL(2,R). These one parameter groups split into: elliptic,
parabolic and hyperbolic types. We obtain respectively:Euc, Heis andSOL.

It suffices therefore to show the existence of such an idealR
2. For this, let us

remark that there exists always an abelian ideal of dimension 1, sayA ∼= R. Indeed,
if the commutator ideal has dimension 2, then since it is solvable, its commutator has
dimension 1 or 0...

Now, sinceG acts onA, the KernelL has at least dimension 2 and containsA.
Let us consider here the casedimL = 2, since the dimension 3 case is easier. By
definition (of the Kernel) this is an ideal, and since it has dimension 2 and has a
non-trivial center (it containsA), then it is abelian. �

7. SUMMARY ; FURTHER COMMENTS

In this section, we present a general setup where the previous constructions can be
defined. In other words, we “summarize” how one associates toa Lie group various
rational dynamical systems.

7.1. A rational map. (§4.4). LetG be a Lie algebra of dimensionn, with a basis
(ei), such that[ei, ej ] = Ck

ijek, and assume to simplify that it is unimodular. Then,
we have a rational map:

RicG : (xab) ∈ Sym+
n 7→ (Xab) ∈ Symn

Xab = −1

2
Bab −

1

2
Ck
aiC

l
bjxklx

ij +
1

4
Cp
ikC

q
jlxpaxqbx

ijxkl(13)

as well as a rational (scalar curvature) function:

rG : (xab) ∈ Sym+
n 7→ Xabx

ab(14)
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(recall that(xij) is the inverse matrix of(xij)).

7.2. Aut(G)-equivariance. Both RicG andrG are respectively equivariant and in-
variant under theAut(G)-action onSymn (identified withSym(G), the space of
quadratic forms onG).

7.3. Extensions. Actually, everything extends to left invariant pseudo-Riemannian
metrics onG, or equivalently toSym∗(G) the space of non-degenerate quadratic
forms onG. The same formulae allow one to calculate the Ricci and scalar curvature
of such metrics.

• Now, the formulae may have sense even for some degenerate quadratic forms!

• We can also consider complex quadratic forms on the complexification of G.
They form a spaceSym(G) ⊗ C identified withSymn(C), the space of symmetric
complex matrices. In other words, to a Lie groupG of dimensionn is associated
anAut(G)-equivariant rational transformationRicG onSymn(C). We also have an
Aut(G)-invariant meromorphic functionrG.

• RicG can be written as a rational vectorial map( Pi

Qi
)i : C

n(n+1)/2 → C
n(n+1)/2

wherePi andQi are homogeneous polynomials of a same degree2n (onn(n+1)/2
variables).

• From this, one gets a rational transformation of the projective spaceCPn(n+1)/2−1 ∼=
PSymn(C). We will denote it byRicG, to emphasize that it is the extension to the
complex projective space. For instance, ifn = 3, then we have a rational map on
CP 5.

• RicG is equivariant under scalar multiplication. In fact, as this follows from
its defining formula,RicG is polynomial when restricted to matrices withdet = 1.
Therefore, a representative ofRicG (on the projective space) is the polynomial map
(Pi)i (of degree2n).

•RicG is invariant under the (algebraic) action of (the complexification of)Aut(G)
onCPn(n+1)/2−1(∼= PSym(G)⊗C). It then determines a map on the quotient space.
It depends however on the meaning to give to such a quotient space (byAut(G)). As
an algebraic action, it has a poor dynamics, and a nice quotient space can be thus con-
structed for it. There is in particular a notion of “algebraic quotient”. In dimension
n = 3, the algebraic quotient space has dimension5− 3, more exactly, it is a (singu-
lar) compact complex surfaceSG, say. We have then associated to a 3-dimensional
Lie group a rational map on a compact complex surfaceSG. This map seems to have
a “poor dynamics”, for instance, it has in general a vanishing entropy. We guess
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nevertheless that (other) “dynamical invariants” of it cancharacterize the groupG
(i.e. two different groups have different invariants). It is also worthwhile to see what
happens in higher dimension case.

7.4. Forget invariance. In the formula definingRicG, we can consider any system
of parameters(Ck

ij), not necessarily satisfying the Jacobi identity of Lie algebras. We
obtain a big family of rational transformations generalizing those associated to Lie
groups. In this case, various dynamical types may appear. Wethink it is worthwhile
to investigate the structure of this parameter space, and tounderstand inside it, the
(algebraic) set of Lie algebras, the algebraic actions on it...

7.5. Cross sections, Flats.Let us call a cross sectionS for RicG or RicG a sub-
manifold inSym+

n (resp.PSymn(C)) which is invariant underRicG (resp.RicG)
and such thatS meets anyG-orbit in a non-empty discrete set. The last condition im-
plies in particular thatS is transversal (at least in a topological sense) to theG-orbits.
In fact there are weaker variants of this definition which canbe useful, in particular
in a geometric algebraic context.

• It is in the case whereG is unimodular and has dimension 3 that cross sections
occur easily. In this case, one can in fact find them, as affine (resp. projective)
subspaces forRicG (resp.RicG) of dimension 3 (resp. 2). Indeed, as explained in
§6, the Lie algebra of such a group has a Milnor basisB = {u, v, w} (§5.0.1), and the
flat FB (§2.1), or more formally its “extension”FB, i.e. the space of quadratic forms
diagonalizable inB, is invariant underRicG. In order to see that one gets in this way
a cross section, it remains to show the abundance of Milnor bases as in the following
statement,

Exercise 7.1.Prove that any quadratic form can be digonalized in some Milnor basis
of G. (Hint: this can be done by checking case by case. For instance, for the group
SOL, its Lie algebra is generated byX,Y,Z, with relations[X,Y ] = Y, [X,Z] =
−Z and[Y,Z] = 0. Consideru = X+T , whereT belongs the the planeP generated
by Y andZ. Then, the restriction ofadu onP, satisfiesad2u = −1. Chooseu to be
orthogonal toP (with respect to the given metric). Consider a non-vanishing vector
v ∈ P, and letw = adu(v). Then{u, v, w} is a Milnor basis, because of the fact
ad2u = 1. We claim thatv can be chosen such thatw is orthogonal tov. This is a
calculation in the basis{Y,Z}).

• Let us point out the following polynomial presentation ofRicG. As was said
above,RicG is invariant under scalar multiplication, that is, it suffices to consider
its restriction on unimodular matricesSSymn, in which case, it becomes polyno-
mial. In particular, from§5.1,RicG has the following form as a cubic homogeneous
polynomial map:

RicG : C3 → C
3(15)
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(x, y, z) 7→ 1

2
(x(b2x2 − (cy − az)2), y(c2y2 − (az − bx)2), z(a2z2 − (bx− cy)2)).

7.6. Formula in each case.

7.6.1. Case ofSO(3): a = b = c = 1.

Ric(x, y, z) =
1

2
(x(x2 − (y − z)2), y(y2 − (z − x)2), z(z2 − (x− y)2)).

7.6.2. Case ofSL(2,R): a = b = 1, andc = −1.

Ric(x, y, z) =
1

2
(x(x2 − (y + z)2), y(y2 − (z − x)2), z(z2 − (x+ y)2)).

7.6.3. Case of the Heisenberg groupHeis: a = b = 0, c = 1

Ric(x, y, z) =
1

2
y2(−x, y,−z).

7.6.4. Case ofEuc: a = 0, b = −1, c = 1

Ric(x, y, z) =
1

2
(x(x2 − y2), y(y2 − x2),−z(x+ y)2)

7.6.5. Case ofSOL: a = 0, b = c = 1

Ric(x, y, z) =
1

2
(x(x2 − y2), y(y2 − x2),−z(x− y)2)

.

7.7. Bianchi-Ricci flow. Recall that the Ricci flow associated to a compact manifold
M (of finite volume) is an evolution equation on its spaceMet(M) of Riemannian
metrics:

∂gt
∂t

= −2Ric(gt) + 2
< r(gt) >

n
gt

wheren = dimM and< r(g) >=
∫

r(g)dvg/V ol(M,g) is the average scalar
curvature ofg [9].

7.7.1. The vector fieldRicG. Now, if G is ann-dimensional Lie group, then this
gives a classical differential equation on the space of its left invariant Riemannian
metrics, where one takes a punctual value of the scalar curvature instead of its average
(since this scalar curvature is constant). Equivalently, this is a vector field onSym+

n .
In fact, all this is derived from our previous rational mapRicG. SinceSym+

n is an
open set in the vector spaceSymn, the vectorial mapRicG : Sym+

n → Symn can
be alternatively seen as avector field onSym+

n , say,RicG.
Observe thatRicG is invariant under theAut(G)-action onSym+

n (which is
equivalent to the fact thatRicG is equivariant under the (linear) action ofAut(G)).
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Let us denote a generic point ofSym+
n by q, and consider the radial vector field

V(q) = q. The previous differential equation, which we will call theBianchi-Ricci
flow associated toG is the vector field

−2RicG + 2
rG
n
V

7.7.2. Commutation.Consider the bracket[RicG,V] = DVRicG −DRicGV, where
Du denotes the usual derivation in theu-direction. This equals0 − RicG, since,
DVRicG = 0, i.e. the mapRicG is invariant under multiplication; andDV =
Identity, everywhere. Therefore,[RicG,V] = −RicG. Because of this commu-
tation rule (that is, the two vector fields generate a local action of the affine group),
the essential dynamics of the Bianchi-Ricci flow comes from theRicG-part.

7.7.3. Bianchi-Hilbert-Ricci flow.The remark applies to any combination ofRicG
andV: understanding one combination allows one to understand the others. A famous
one isEin = RicG − r

2V, which can be called in this context the “Bianchi-Einstein
flow”, since the tensorRic(g) − r

2g of a Riemannian manifold(M,g) is called Ein-
stein tensor (this is, essentially, the unique combinationof Ric(g) andg which is
divergence free). However, in order to prevent confusion with “Einstein equations”
and some related flows which will be considered below,Ein could be better called
Bianchi-Hibert flow. Indeed, the function

H : p ∈ Sym+
n 7→ r(p)

√

det(p) ∈ R

is the substitute of the classical Hilbert action in the caseof left invariant metrics.
Indeed:

Exercise 7.2.Show thatEin is a gradient vector field. More exactly,Ein = ∇H,
where the gradient∇ is taken with respect to the metric ofSym+

n .

Remark 7.3. The computation can be handled in a more explicit way on a Milnor
flat FB (§5.1), where the Hilbert action has the form:

H(x, y, z) =
1

2
√
xyz

(−b2x2 − c2y2 − a2z2 + 2acyz + 2abxz + 2bcxy)

and the metric is
dx2

x2
+

dy2

y2
+

dz2

z2

7.7.4. Restriction onSSym+
n . The interest of the normalization in the definition of

the Ricci flow is to let it preserving the volume of the Riemannian metric, that is, the
total volume remains constant under evolution. In the case of left invariant metrics,
this is equivalent to the fact that the vector fieldRicG − r

nV is tangent toSSymn.

This in turn is equivalent to the fact, that for anyq ∈ SSymn, RicG(q) − r(q)
n q

is trace free, which follows from the very definition of the scalar curvaturer. This
allows one to justify the following simplification: write equations assumingq ∈
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SSymn, i.e. det(q) = 1, which gives polynomial equation. However, in order
to keep this polynomial natural, do not take reduction of variables from the equation
det(q) = 1. To be more concrete, consider a flatFB, then instead of the rational forms
of RicG(x, y, z) and rG(x, y, z), we assumexyz = 1 which leads to polynomial
forms: §§5.1 and Formula 12 (but we do not go further and eliminate one variable,
sayz = 1

xy ). We can then write the Bianchi-Ricci flow as follows

(16)

−2RicG+2
r

3
V(x, y, z) =































x(23bx(−2bx+ cy + az) + 2
3c

2y2 + 2
3a

2z2 − 4
3acyz)

y(23cy(−2cy + bx+ az) + 2
3b

2x2 + 2
3a

2z2 − 4
3bcxz)

z(23az(−2az + bx+ cy) + 2
3b

2x2 + 2
3c

2y2 − 4
3bcxy)

7.7.5. Differential equations on a projective space.In the same way, we associate
to a Lie groupG anAut(G)-invariant one dimensional complex algebraic foliation
on the projective spacePSymn(C). Here, among combinations of the vector fields
RicG andV, only RicG is relevant, since the radial vector fieldV becomes trivial
on the projective space. In the case of a unimodular 3-group,we have the following
homogeneous cubic differential system onC

3:

(17)































dx
dt =

dy
dt =

dz
dt =

x(b2x2 − (cy − az)2)

y((c2y2 − (az − bx)2)

z(a2z2 − (bx− cy)2)

7.7.6. Dynamics, compactifications.It is the dynamics of the Bianchi-Ricci flow
−2RicG+ 2r

3 V which was investigated in the literature [9, 13]. As we argued above,
this is essentially the same as that of the Einstein-Hilbertfield∇H. But, as a gradient
flow, its dynamics is completely trivial onSym+

n ... The point is to study the behavior
of orbits when they go to an infinity boundary∂∞Sym+

n . There is however several
ways to attach such a boundary to (the non-positively curvedRiemannian symmetric
space)Sym+

n . One naturally wants to interpret ideal points as collapsedRiemann-
ian metrics. With respect to this, the Hadamard compactification seems to be the
most pertinent (see for instance [16]). On the other hand, the advantage of algebraic
compactifications (e.g. the projective space) is to extend the dynamics...
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8. HAMILTONIAN DYNAMICS ON Sym+
n

After consideration of some maps and vector fields, we are nowgoing to study
second order differential equations onSym+

n , the prototype of which is the geodesic
flow of Sym+

n , and then the “Einstein flow” associated to a Lie group.

8.1. Geodesic flow.Write the metric onSym+
n as:L(q, p) = 〈p, p〉q = tr(q−1pq−1p).

SinceSym+
n is open inSymn, its tangent bundle trivializesTSym+

n = Sym+
n ×

Symn. We will use the usual notations∂L∂q , ∂L
∂p for the horizontal and vertical differ-

entialsdpL anddqL.
We have:

∂L

∂q
(δq) = tr(−q−1(δq)q−1pq−1p−q−1pq−1(δq)q−1p) = −2tr((δq)q−1pq−1pq−1)

whereδq is a horizontal tangent vector, i.e. an element ofSymn.

∂L

∂p
(δp) = 2tr((δp)q−1pq−1).

Now, write: q = q(t), p(t) = q̇ = ∂q
∂t , and compute

∂

∂t

∂L

∂p
(δp) = 2tr((δp)q−1[−2q̇q−1q̇ + q̈]q−1).

The Euler-Lagrange equation is obtained by takingδq = δp = A, and writing for
anyA,

∂

∂t

∂L

∂p
A− ∂L

∂q
A = 0.

This reads:

tr(2Aq−1(−q̇q−1q̇ + q̈)q−1) = 0, ∀A ∈ Symn.

and therefore,

Fact 8.1. The equation of geodesics ofSym+
n is the second order matricial equation

onSym+
n :

q̈ = q̇q−1q̇

or equivalently (in the phase space):

(18)

{

q̇ =
ṗ =

p
pq−1p.
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8.2. Other pseudo-Riemannian and Finsler metrics onSym+
n . There is a canon-

ical GL(n,R)-invariant formω onSym+
n :

ωq(p) = tr(q−1p).

We can then associate to any realsα andβ a Lagrangian:

Lα,β(q, p) = α(ωq(p))
2 + β〈p, p〉q = α(tr(q−1p))2 + βtr(q−1pq−1p).

For genericα andβ, this is a homogeneous pseudo-Riemannian metric, but it can
degenerate for some values.

Similarly, there are homogeneous Finsler metrics:

Fα,β(q, p) = αωq(p) + β
√

〈p, p〉q = α(tr(q−1p)) + β
√

tr(q−1pq−1p.

Exercise 8.2.Write the Euler-Lagrange equation forLα,β andFα,β .
- Solve the geodesic equation forSym2.

9. EINSTEIN EQUATIONS IN A GAUSS GAUGE

Cylinders. Let M be a differentiablen-manifold endowed with a family of Rie-
mannian metricsgt, t is a ”time” parameter lying in an intervalI. Consider the
Lorentz manifoldM̄ = I ×M endowed with the metric

〈, 〉 = ḡ = −dt2 + gt, i.e. ḡ(t,x) = −dt2 + (gt)x

Such a structure is sometimes called a cylinder. Our purposeis to relate geometric
(e.g. curvature) quantities on̄M andM . For a fixed point(t, x), R, Ric, andr will
denote the Riemann, Ricci and scalar curvatures of(M,gt) atx and∇ its Levi-Civita
connection. The corresponding quantities forM̄ are noted bȳR, R̄ic andr̄ and∇̄.

9.1. Second fundamental form. The (scalar) second fundamental form of{t}×M
is denotedkt (or sometimes simplyk). Actually, the second fundamental form is
defined as a vectorial form:II(X,Y ) equals the orthogonal projection of∇̄XY on
Re0, wheree0 = ∂

∂t .
The scalar second fundamental form is defined by

k(X,Y ) = 〈II(X,Y ), e0〉 = 〈∇̄XY, e0〉.
The Weingarten mapa = ae0 is defined by:

a(X) = −∇̄Xe0.
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We have:

k(X,Y ) = 〈∇̄XY, e0〉 = X〈Y, e0〉 − 〈∇̄Xe0, Y 〉 = 0 + 〈a(X), Y 〉.
In other words,a is the symmetric endomorphism associated tok by means of

the metricg (we will use sometimes the notationat as well asgt andkt, in order to
emphasize the dependence ont).(The definition ofk anda coincides with that in the
Riemannian case. The unique difference is that here,II = −ke0, sincee0 is unit
timelike, i.e.〈e0, e0〉 = −1).

9.2. Geometry of the product. Considere1, . . . , en a frame of vector fields onM ,
that we also consider as horizontal vector fields onM̄ . By definition, they commute
with e0(=

∂
∂t ).

Fact 9.1. We have:

∇̄e0e0 = 0 (the trajectories ofe0 are geodesic),(19)

kt = (−1/2)
∂

∂t
gt,(20)

〈R̄(e0, ei)ei, e0〉 =
∂

∂t
〈at(ei), ei〉+ 〈a2t (ei), ei〉,(21)

R̄ic(e0, e0) =
∂

∂t
tr(at) + tr(a2t ).(22)

Proof. • We have

0 = ∂/∂t〈e0, ei〉 = 〈∇̄e0e0, ei〉+ 〈e0, ∇̄e0ei〉.
But

〈e0, ∇̄e0ei〉 = (1/2)ei.〈e0, e0〉 = 0,

sincee0 andei commute. Therefore〈∇̄e0e0, ei〉 = 0, ∀i.

• We have
∂

∂t
gt(ei, ej) = e0〈ej , ej〉 = 〈∇̄e0ei, ej〉+ 〈∇̄e0ej , ei〉

Sincee0 commutes withei andej , this also equals:

−〈(a(ei), ej〉 − 〈a(ej), ei〉 = −2kt(ei, ej)

• Computation ofR̄(e0, ei)ei, e0〉: Because of the commutation relations, and be-
causee0 is geodesic, we have, by definition of the curvature:

R̄(e0, ei)e0 = −∇̄e0a(ei),

and thus:

〈R̄(e0, ei)e0, ei〉 = −〈∇̄e0a(ei), ei〉 = −e0〈a(ei), ei〉 − 〈a(ei), a(ei)〉,
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and sincea is symmetric, this also equals:

− ∂

∂t
〈a(ei), ei〉 − 〈a2(ei), ei〉

And hence,

〈R̄(e0, ei)ei, e0〉 =
∂

∂t
〈at(ei), ei〉+ 〈a2t (ei), ei〉

• We can assume that at a fixed point(t, x), the basis(ei)i≥1 is orthonormal, and
taking the sum (overi > 0) we get:

R̄ic(e0, e0) =
∂

∂t
tr(at) + tr(a2t ).

�

Remark 9.2. In fact, the meaning of “Gauss gauge” is nothing but thate0 is unit and
has geodesic orbits.

9.3. Gauss equation. It describes the relationship between the sectional curvatures
for R andR̄:

〈R̄(ei, ej)ej , ei〉 = 〈R(ei, ej)ej , ei〉+ k(ei, ei)k(ej , ej)
−k(ei, ej)k(ei, ej)(23)

(observe this difference of sign of thek-term, in comparison with the Riemannian
case).

9.4. Einstein evolution equation forkt. Again, assume(ei) orthonormal, fixi, and
take the sum overj > 0. We first have:

Σjk(ei, ei)k(ej , ej) = k(ei, ei)tr(a) = tr(a)〈(a(ei), ei)〉
and

Σjk(ei, ej)k(ei, ej) = 〈a2(ei), ei)〉
(Indeed in matricial notations,aij = aji = k(ei, ej), and thus(a2)ii = Σjaijaji).

Therefore, if we consider the quadratic forml, defined by:

l(ei, ei) = Σj(k(ei, ei)k(ej , ej)− k(ei, ej)k(ei, ej))

then its associated endomorphism is:

tr(a)a− a2

• R̄ic(ei, ei) equals the trace ofu → R(u, ei)ei. Remember,(ei) is a Lorentz
orthonormal basis, i.e.〈ei, ej〉 = 0, for i 6= j, 〈e0, e0〉 = −1 and〈ej , ej〉 = +1, for
j > 0. It then follows that

R̄(ei, ei) =
∑

j>0

〈R̄(ei, ej)ej , ei〉 − 〈R̄(e0, ei)ei, e0〉



HOMOGENEOUS SPACES, DYNAMICS, COSMOLOGY... 21

• Returning to the Gauss equation (23), and taking the sum overj > 0, we get:

R̄ic(ei, ei) + 〈R̄(e0, ei)ei, e0〉 = Ric(ei, ei) + 〈(tr(a)a− a2)(ei), ei〉
• Replacing〈R̄(e0, ei)e0, ei〉 by its previous value:

R̄ic(ei, ei) +
∂

∂t
〈a(ei), ei〉+ 〈a2(ei), ei〉 = Ric(ei, ei) + 〈(tr(a)a− a2)(ei), ei〉

Equivalently, for anyX,Y ∈ TM :

∂

∂t
kt(X,Y ) = −R̄ic(X,Y ) +Ric(X,Y ) + 〈(tr(at)at − 2a2t )(X), Y 〉.

Fact 9.3. Define the square powerktgtkt to be the quadratic form associated by
means ofgt with the matrixa2t (whereat is the matrix associated tokt via gt). Then:

∂

∂t
kt = −R̄ic+Ric+ trgt(kt)kt − 2ktgtkt.

9.5. Gauss constraints.Consider again the Gauss equation and take the sum over
i, j > 0:

r̄ − 2R̄ic(e0, e0) = r + (trgtkt)
2 − tr(ktgtkt) = r + (trgtkt)

2 − |kt|2gt .

9.6. Matrix equations. We are now going to write equations by means of symmet-
ric matrices associated to the quadratic formsgt andkt (see§2.0.2). For this, we fix
x and a timet0 and choose an orthonormal basis(ei(t0)) of TxM . We denote byqt
(resp.pt) the matrix associated withgt (resp.−2kt), and by ¯rict andrict (or simply
¯ric andric) those associated with̄Ric andRic (recall they are the Ricci curvatures

of respectivelyM̄ , at(t, x), and(M,gt), atx). With this, we have:

• Evolution equations:

(24)







q̇ =

ṗ =

p

−r̄ic+ ric+ 1
4tr(q

−1p)p− 1
2q

−1pq−1p

• Gauss constraints (actually saidHamiltonian constraints)

r̄ − 2 ¯ric(e0, e0) = r + (tr(q−1p))2 − tr(q−1pq−1p)

= r + tr(q−1p)2 − 〈p, p〉q
= r − L−1,1(q, p)

whereL−1,1 is the pseudo-Riemannian metric defined in§8, for the value(α, β) =
(−1, 1)
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10. BIANCHI COSMOLOGY

We will now restrict ourselves to the vacuum case, i.e.M̄ is Ricci-flat: R̄ic = 0,
and thus alsōr = 0. We will also assumeM is a Lie groupG and the metrics on it (i.e.
gt) are left invariant. Therefore such a metric is identified with an elementq ∈ Sym+

n

(n = dimG, the identification ofSym+(G) with Sym+
n comes from a choice of a

basis). Now,ric becomes a mapric : Sym+
n 7→ Symn, andr : Symn 7→ R. We get

the (beautiful) ODE system with constraints:

(25)























q̇ =

ṗ =

L−1,1(q, p) =

p

ric(q) + 1
4tr(q

−1p)p− 1
2q

−1pq−1p

r(q) (Hamiltonian constraint)

Remark 10.1. Observe thatric and r are basic functions, they depend only onq
(and not onp).

10.1. Isometric G-action on M̄ . HereM̄ = I × G, with ḡ = −dt2 + gt. A left
translationx ∈ G 7→ hx is isometric for all the metricsgt, and therefore is isometric
for ḡ as well.

10.2. The Bianchi-Einstein flow along and on a flat.Actually, there are other con-
straints to add to the ODE system above, in order to get what wewill call the Bianchi-
Einstein flow. These (momentum) constraints will be considered below. Before, let
us consider a subsystem of it, the restriction (of everything) to a Milnor flatFB. The
following proposition derives from Formulae (11) and (12).

Proposition 10.2. Let FB be a Milnor flat, andTFB its tangent bundle, a point of
which is denoted by(q, p), q = (x, y, z), p = (x′, y′, z′). TheBianchi-Einstein flow
onFB is the following system of ODE onTFB, together with one algebraic constraint
defined by a Lorentz metric onTFB and a basic function onFB. (The phase space
has thus dimension 5, and is a fiber bundle overFB):
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(26)























































































ẋ =

ẏ =

ż =

ẋ′ =

ẏ′ =

ż′ =

x′

y′

z′

1
2yz (b

2x2 − (cy − az)2) + 1
4(

x′

x + y′

y + z′

z )x
′ − 1

2
x′2

x2

1
2xz (c

2y2 − (az − bx)2) + 1
4 (

x′

x + y′

y + z′

z )y
′ − 1

2
y′2

y2

1
2xy (a

2z2 − (bx− cy)2) + 1
4(

x′

x + y′

y + z′

z )z
′ − 1

2
z′2

z2

The phase space is a hypersurface (maybe singular)N (in TFB) defined by the
Hamiltonian equation:

l(x,y,z)(x
′, y′, z′) = −r(x, y, z)

2
(27)

Wherel is the Lorentz metric (onFB):

(28) l(x,y,z)(x
′, y′, z′) =

x′y′

xy
+

x′z′

xz
+

y′z′

yz
,

andr is given by Formula (12):

r(x, y, z) =
1

2xyz
(−b2x2 − c2y2 − a2z2 + 2acyz + 2abxz + 2bcxy)

Exercise 10.3.Show explicitly that the constraint is preserved by the dynamics, i.e.
the vector field determined by the differential equations istangent to the “submani-
fold” N ⊂ TFB defined by the constraint.

10.3. Codazzi (or Momentum) constraints. The Codazzi equation establishes a
relation between the intrinsic and extrinsic curvatures ofa submanifoldM in a Rie-
manniann manifoldM̄ , and is in fact valid in the general background of pseudo-
Riemannian manifolds provided the induced metric on the submanifold is also pseudo-
Riemannian, i.e. it is not degenerate. More precisely, it states that some “partial
symmetrisation” of the covariant derivative of the second fundamental form (all this
depends only upon data onM) equals the normal part of the Riemann curvature ten-
sor (this depends on̄M ). The equation gives obstructions for a (vectorial) 2-tensor to
be the second fundamental form of a submanifold.
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In the case whereM is aCMC spacelike hypersurface (i.e. with a constant mean
curvature) in a Ricci flat Lorentz manifold̄M , one can deduce from Codazzi equa-
tion, by taking a trace, that the second fundamental formk is a divergence free 2-
tensor. This applies in particular to our case: our hypersurfaces areG-orbits and thus
are CMC.

Let us recall some definitions. Firstly, ifk is a symmetric 2-tensor onM , then its
covariant derivative∇Xk with respect to a vectorX, is a 2-tensor:

(∇Xk)(Y,Z) = Xk(Y,Z) − k(∇XY,Z)− k(Y,∇XZ)

Now divk is a 1-form, the trace of∇k (with respect to the metric ofM ), i.e. if
(ei) is an orthonormal basis:

divk(X) = Σi∇eik(ei,X)

10.3.1. Divergence of left invariant quadratic forms on Lie groups.At first glance
one can guess that left invariant objects are divergence free (with respect to left in-
variant Riemannian metrics). This is however false (apart from some trivial cases).

Let G be a 3-dimensional unimodular Lie group, endowed with a leftinvariant
metric 〈, 〉 = q ∈ Sym+(G), with a Milnor q-orthonormal basis{u, v, w}: [u, v] =
aw, [v,w] = bu and [w, u] = cv (see§5.0.1). The proof of the following facts and
corollaries is left as exercise. Letp ∈ Sym(G) represent a left invariant quadratic
form.

Fact 10.4. LetX,Y andZ be right invariant vector fields, withX(1) = e ∈ G. Let
gt = exp te. Then the derivativeX.p(Y,Z) at 1 ∈ G is given by:

X.p(X,Y ) =
∂

∂t
p(Adgt(Y ), Adgt(Z)) = p([X,Y ], Z) + p(Y, [X,Z))

Fact 10.5. For the basis{u, v, w}, we have:
• ∇uu = ∇vv = ∇ww = 0,
• 2∇uw = (−c+ a− b)v, 2∇vw = (b− a+ c)u ... (Use Formula (2))

Corollary 10.6. Consider the left invariant quadratic form,p12 = du⊗dv+dv⊗du.
Then:
•

u.p12(u, e) + v.p12(v, e) + w.p12(w, e) = −c− a, for e = w

= 0, for e = u, or e = v

• p12(u,∇uw) + p12(v,∇vw) + p12(w,∇ww) = 0
• It then follows thatω = divp12 is such thatω(u) = ω(v) = 0, andω(w) =

−(c+ a), that isω = −(c+ a)dw.
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Corollary 10.7. Let us say a Milnor basis isgeneric if (a + c)(a + b)(b + c) 6= 0.
Then, for a generic Milnor basis, any divergence free left invariant quadratic form
(with respect to the metric for which this basis is orthonormal) is diagonalizable in
this basis.

In other words (keeping the previous notation), along a Milnor flatFB, an element
p ∈ TqSym

+
3 satisfies the momentum constraints, iff,p ∈ Tq(FB) (or in more linear

words,p ∈ FB)

10.4. Cross sections for the Bianchi-Einstein flow.OnTSym+
3 , the groupAut(G)

acts, preserving the Bianchi-Einstein flow (determined byG). A cross section (§7.5)
will play the role of a flow on a quotient space (for theAut(G)-action).

Proposition 10.8. The Bianchi-Einstein flow on a generic Milnor flat is a cross sec-
tion of the full Bianchi-Einstein flow (with constraints) onSym3 endowed with the
Aut(G)-action. Generic flats exist except in the abelian and nilpotent cases, i.e.
whenG is R

3 or the Heisenberg groupHeis.

Proof. Firstly, one easily sees that if there exists a Milnor basis for which a andb
6= 0, then after re-scaling, this basis becomes generic. This exists exactly whenG is
different fromR

3, andHeis. If we are not in these cases, then we can assume, after
re-scaling if necessary, that all Milnor bases are generic.Let B be such a basis, and
(q, p) ∈ TSym+

n , then up to application of an element ofAut(G), q ∈ FB. But since
B is generic, ifp satisfies the momentum constraints, thenp ∈ TFB, which means
thatTFB is a cross section. �

10.4.1. Case ofG = R
3. In the case of the Heisenberg group, there is exactly one

momentum constraint which gives rise to invariant sets of the system. There is no
such constraint in the case ofR

3, where we obtain the following system:

(29)























q̇ =

ṗ =

L−1,1(q, p) =

p

1
4tr(q

−1p)p− 1
2q

−1pq−1p

0 (the lightlike cone bundle ofL−1,1)

The spacetimeM̄ has a metric

ḡ = −dt2 + t2p1du2 + t2p2dv2 + t2p3dv2.

This is called aKasner spacetime (observe that in some cases, e.g.p1 = p2 = p3,
this is just the Minkowski space) [2, 7, 25].

Exercise 10.9.Prove the previous form of̄g and solve the same problem in the case
of the Heisenberg group.
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10.5. Isometry group of M̄ . As said previously, the left action ofG on itself in-
duces, by definition of its metric, an isometric action onM̄ . In fact, if for some level
(M,gt), there are extra-isometries (i.e. other than left translations), then they extend
to M̄ . More precisely, if the metric at some level, sayt = 0, is identified withq0 ∈
Sym+(G), andM̄ corresponds to a point(q0, p0) ∈ TSym+

n = Sym+
n × Symn,

andK ⊂ Aut(G) is the stabilizer of(q0, p0), then, on the one hand,K acts as an
isometric isotropy group for(M,g0) (g0 corresponds toq0). On the other hand,K
preserves the Bianchi-Einstein trajectory of(q0, p0), and thus acts isometrically on
M̄ (as isotropy for any point identified with1 ∈ G).

10.6. An example: Bianchi IX. This meansG = SO(3), or more precisely its
universal cover the sphereS3. In this case, there are Milnor bases witha = b = c =
1. Any other Milnor basis satisfies these equalities, up to re-scaling. Also, all such
bases are equivalent up to conjugacy and re-scaling. Yet, this is the most challenging
case of Bianchi cosmologies (see for instance [21]). As an example,TAUB-NUT
spacetimes are exact solutions of the Bianchi-Einstein equations of classIX. They
are characterized among BianchiIX spacetimes as those having extra-symmetries,
i.e. a non-trivial isotropy, which then must beSO(2) (and thus their isometry group is
S3×SO(2), up to a finite index). Nevertheless, their high complexity (at least among
exact solutions) led people to describe them as “counter-examples to everything”! In
a Milnor flat wherea = b = c = 1, these spacetimes correspond (up to isometry) to
x = y, andx′ = y′. The left invariant metric onG (at any time) corresponds to a
Berger sphere, i.e. (up to isometry) a metric on the sphere derived from the canonical
one, by rescaling the length along the fibers of a Hopf fibration. In other words, the
set of solutions of the Bianchi-Einstein flow, which are Berger spheres at any time, is
closed and invariant, say, the TAUB-NUT set.

10.7. Effect of a non-vanishing cosmological constant.Instead of requiringM̄ to
be Ricci-flat, let us merely assume it to be Einstein, i.e.R̄ic = Λḡ. Its effect is
essentially an additive constant (related toΛ) in all equations and constraints. This
situation does not seem to be systematically investigated in the literature. In partic-
ular, one can wonder whether the introduction ofΛ is “catastrophic” or in contrary
produces only a moderate effect. A similar situation is thatof the paradigmatic exam-
ple in holomrophic dynamics, of the quadratic familyz 7→ z2 + c. Here the variation
of the parameterc generates a chaotic dynamics as well as a fractal geometry [4].

10.8. Wick rotation. HereM̂ = I × M is endowed with the Riemannian metric
ĝ = +dt2 + gt. Writing R̄ic = 0, yields:
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(30)























∂
∂tgt = −2kt

∂
∂tkt = −Ric+ trgt(kt)kt − 2ktgtkt

0 = r + |kt|2gt − (trgtkt)
2 (Constraint)

For instance, this allows one to construct examples of Riemannian Ricci flat man-
ifolds, of co-homogeneity 1, i.e. their isometry group has codimension 1 orbits.

Notice that the (true) Einstein equations (i.e. without symmetries) can not be
solved in a Riemannian context (they cannot be transformed to a hyperbolic PDE
system). Maybe, this Bianchi situation can give insights onthe reasons behind this
fact.

Finally, it does not seem there exists a “true Wick rotation”, i.e. some corre-
spondence between solutions of Bianchi-Einstein equations in the Lorentzian and
Riemannian cases. (Compare with [5]).

10.9. Orthonormal frames approach vs Metric approach. As a result of a search
on fundamental references in this area, “dynamical systemsand cosmology”, one
can get at least [7, 19] and [20] which are surely the most known and recent synthesis
in this “emerging” domain. The authors adopted there an “orthonormal frames ap-
proach” in opposite to our “metric approach” here (see explanations therein). They
obtained the following system of quadratic polynomial differential equations onR5.

(31)

Σ′
+ = −(2− q)Σ+ − S+

Σ′
− = −(2− q)Σ− − S−

N ′
1 = (q − 4Σ+)N1

N ′
2 = (q + 2Σ+ + 2

√
3Σ−)N2

N ′
3 = (q + 2Σ+ − 2

√
3Σ−)N3

where:

S+ = 1
6

[

(N2 −N3)
2 −N1 (2N1 −N2 −N3)

]

S− = 1
2
√
3
(N3 −N2) (N1 −N2 −N3)

q = 1
2(3γ − 2)(1 −K) + 3

2(2 − γ)(Σ2
+ +Σ2

−)

K = 1
12

[

N2
1 +N2

2 +N2
3 − 2 (N1N2 +N2N3 +N3N1)

]

Hereγ is a parameter:2/3 < γ < 2. (See for instance [22]).
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10.9.1. Comparison.This system of differential equations must be “equivalent”to
our equations (§10.2) on the tangent bundle of a Milnor flat, which was a rational
differential system onR6 with one constraint. A formal definition of equivalency
of approaches is that the two systems are “bi-rationally equivalent”. However, the
transformation of our system to this polynomial system is byno means obvious.
This last system was not a priori motivated by simplifying our more “naive” one,
but rather by considering another point of view in considering Einstein equations.
Instead of studying the evolution with time of the metrics onspacelike slices, one
considers the evolution of brackets oforthonormalframes on these slices. The gauge
freedom is more subtle in this case, but still this method is very clever, as shown by
the simplified form of the equations here. In our Bianchi case, i.e. where spacelike
slices are Lie groups with left invariant metrics, one can very roughly say that the
bi-rational equivalence comes from the projection mapMil(G) → Sym(G), where
Mil(G) is the space of Milnor bases ofG. The next step is to lift the Einstein equation
(including a gauge choice) toMil(G) (more precisely an associated bundle) and to
take the quotient by theG-action!

10.10. Further remarks. This beauty ofSymn appeals one to go beyond..., but
as we said, our contribution here is essentially preliminary and expository. Let us
mention some facts that were not considered here (with the hope to give details on
some of them in the future).

10.10.1. Variants ofSym+
n . First, one can generalize the discussion fromSym+

n

to Sym∗
n, the space of all pseudo-Euclidean products, i.e. non-degenerate quadratic

forms. Everything extends there, a pseudo-Riemannian metric (on Sym∗
n), Ricci

maps, Bianchi-Einstein flows...
The components ofSym∗

n are spaces of quadratic forms of a given signature. As
for Sym+

n , each component is a pseudo-Riemannian symmetric space andplays a
universal role in its class.

• Complex case.The same is true for complex spaces:Sym∗
n(C), the space of

complex non-degenerate quadratic forms onC
n, is a holomorphic symmetric space...

•Projectivization.Taking the associated projective spaces will send all thesespaces
into compact ones, and hence compactify them, by attaching various boundaries, with
more or less nice interpretations. A natural requirement isthat ideal points corre-
spond to collapsing of Riemannian metrics, say in the Gromovsense [11] (restricted
here to homogeneous spaces). By algebraicity, all differential equations extend to the
projective spaces.
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• Fiberwise constructions.If E → B is a vector fiber bundle, then one can asso-
ciate to itSym+(E)...

• Configuration spaces.Another interesting aspect ofSym+
n is its configuration

space aspect. We mention here the case of “ hydrodynamics”, where a geometric
formalism (a Riemannian metric, its geodesic flow...) was developed (see for instance
[3]) following similar ideas as those presented here. Thereare also other non-linear
and infinite dimensional situations, in particular a spaceSym∗(E) associated to a
Hilbert spaceE could be exciting!

10.10.2. Geodesic flows of left invariant metrics.For a Lie groupG, Sym+(G)
plays a role of a parameter space of its left invariant metrics. The geodesic flow
of any such metric onG is a second order quadratic ODE system onG [1]. It is
intersting to study the dependence on parameter of the qualitative properties of these
geodesic flows.

10.10.3. (Locally) Homogeneous, but “non-simply homogeneous” spaces. Instead
of left invariant metrics on Lie groups, one can consider general homogeneous spaces,
say, those endowed with an isometric transitive, but not necessarily free action of
a given groupG. More important is the case of locally homogeneous spaces, i.e.
when the metric varies in the space of all those locally modeled on a fixed spaceX
endowed with a (non-fixed)G-invariant metric (butG is fixed). Here,G does not
act (it acts only locally, as a pseudogroup). As an example, we have the Robertson-
Walker-Friedman-Lemaitre spacetimes [12, 18, 24], which are warped products̄M =
T ×w N , ḡ = −dt2 + w(t)g, whereN has a constant curvature.

10.10.4. Dimension2+1. So far, only the Gauss gauge has been considered. Maybe,
this is because of its “deterministic character”, i.e. it gives rise to autonomous dif-
ferential equations, instead of non-autonomous ones, as inthe generic case. There
are however other situations where interesting gauges are available. As an example,
in ’t Hooft’s theory of systems of particles in dimension2 + 1 [23], one has a flat
polyhedral surface with singularities, evolving (locally) in a Minkowski space. The
gauge here is fixed by the fact that time is locally equivalentto a “linear time” in the
Minkowski space. In particular the time levels remain flat polyhedral. By considera-
tion of suitable spaces of such surfaces, one may be convinced there is a configuration
space approach similar to our situation here.

10.10.5. Non-empty spaces.Recall thatM̄ = I × M is a perfect fluid, ifR̄ic =
(p+ ρ)dt2 + pḡ, wherep is the pressure andρ is the density [12, 18, 24]. A Bianchi-
Einstein flow can be defined in this case, whenp andρ are functions onTSym+

n ,
or more reasonably, when they are basic functions, i.e. theydepend on the coordi-
nateq ∈ Sym+

n alone. Robertson-Walker spacetimes are examples of perfect fluids
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(strictly speaking, they would be covered by our approach, once we consider general
locally homogeneous spaces, as discussed above).

10.10.6. Quantization of the Bianchi-Einstein flow.We strongly believe this is a nat-
ural case that can be treated by a quantum gravity theory (seefor instance [8]), that
is, a reasonable quantization of the Bianchi-Einstein flow should be possible...

10.10.7. A modified Einstein equation.World would be perhaps simpler if the Ein-
stein equation onTSym+

n were given by the mechanical system determined by the
Riemannian metric〈, 〉 on Sym+

n as a kinetic energy, and the Hilbert actionH as a
potential energy. Recall [1] that solutions of such a mechanical system are curves
q(t) ∈ Sym+

n , satisfying

∇q′(t)q
′(t) = −∇H(q(t))

(∇ is the Riemannian-connection and∇H is the Riemannian gradient ofH). Other
more “realistic” modified equations are obtained by replacing the Riemannian metric
by a pseudo-Riemannian or a Finsler one of the formLα,β or Fα,β (§8).
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