
HAL Id: hal-00602600
https://hal.science/hal-00602600

Submitted on 23 Jun 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genetic polymorphism and its potential relation to
environmental stress in five populations of the European

flounder Platichthys flesus, along the French Atlantic
Coast

J. Marchand, E. Evrard, B. Guinand, J. Cachot, L. Quiniou, Jean Laroche

To cite this version:
J. Marchand, E. Evrard, B. Guinand, J. Cachot, L. Quiniou, et al.. Genetic polymorphism and its
potential relation to environmental stress in five populations of the European flounder Platichthys
flesus, along the French Atlantic Coast. Marine Environmental Research, 2010, 70 (2), pp.201.
�10.1016/j.marenvres.2010.05.002�. �hal-00602600�

https://hal.science/hal-00602600
https://hal.archives-ouvertes.fr


Accepted Manuscript

Title: Genetic polymorphism and its potential relation to environmental stress in five
populations of the European flounder Platichthys flesus, along the French Atlantic
Coast

Authors: J. Marchand, E. Evrard, B. Guinand, J. Cachot, L. Quiniou, J. Laroche

PII: S0141-1136(10)00069-3

DOI: 10.1016/j.marenvres.2010.05.002

Reference: MERE 3449

To appear in: Marine Environmental Research

Received Date: 15 February 2010

Revised Date: 5 May 2010

Accepted Date: 7 May 2010

Please cite this article as: Marchand, J., Evrard, E., Guinand, B., Cachot, J., Quiniou, L., Laroche,
J. Genetic polymorphism and its potential relation to environmental stress in five populations of the
European flounder Platichthys flesus, along the French Atlantic Coast, Marine Environmental Research
(2010), doi: 10.1016/j.marenvres.2010.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.marenvres.2010.05.002


M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Genetic polymorphism and its potential relation to 
environmental stress in five populations of the European 

flounder Platichthys flesus, along the French Atlantic 
Coast 

 

 

 

 

Marchand J.1*, Evrard E.2, Guinand B.3, Cachot J.4, Quiniou L.2, Laroche J.2 

 
1 Université du Maine, EA 2160 Mer, Molécule, Santé, Le Mans F-72085, France 
2 Université Européenne de Bretagne, UMR-CNRS-IRD 6539, Institut Universitaire Européen 

de la Mer, Place Nicolas Copernic, Technopôle Brest-Iroise, F-29280 Plouzané, France 
3 Université Montpellier 2, UMR CNRS 5554, Equipe Biologie Intégrative, place Eugène 

Bataillon, cc63 – Bât 24  1er étage, 34095 Montpellier Cedex 5, France 
4 Institut des Sciences Moléculaires (ISM), UMR CNRS 5255, Groupe LPTC, Université 

Bordeaux 1, 33405 Talence, France. 

 

 

*Corresponding author: 

Justine Marchand 

EA 2160 Mer, Molécule, Santé 

Université du Maine, UFR Sciences et Techniques 

Avenue Olivier Messiaen 

72085 Le Mans Cedex 9 

FRANCE 

Tel: +33.2.43.83.32.50 

Fax: +33.2.43.83.39.17 

E-mail: justine.marchand@univ-lemans.fr 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Abstract 

 

In this study, new DNA markers were explored for the flounder Platichthys flesus. 

cDNA and genomic sequences of the genes encoding the glyceraldehyde-3-phosphate-

deshydrogenase (GAPDH), the cytosolic creatine kinase (CK), the prostaglandin D synthase 

(PGDS) and the betain homocystein methyltransferase (BHMT) were characterized. The 

tumour suppressor p53 gene structure was already described. A PCR-SSCP (Single Strand 

Conformation Polymorphism) analysis was finally conducted to study the genetic 

polymorphism of different populations of flounders collected along the French Atlantic coast. 

Four highly contaminated French estuaries (Seine, Vilaine, Loire and Gironde) were sampled 

and compared to a reference estuary (Ster) to explore possible selective effect of the 

environment on specific allelic frequencies. Our results showed that two loci p53and PGDS, 

could be potential markers of chemical stress: p53A allele frequency increased in 

contaminated systems compared to the reference system. In the Vilaine estuary, PGDS 

polymorphism could be related to pesticide stress. 
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1. Introduction 

 

Coastal ecosystems have been subjected for several decades to increased 

anthropogenic pollution (hydrocarbons, pesticides…) and to other environmental stressors 

(hypoxia, temperature increase, eutrophication …). Some of these stressors are known to 

induce modifications of the genetic structure of populations living in these environments  

(Gillespie and Guttman, 1993; Moraga et al., 2002; Tanguy et al., 2002), retaining the fittest 

genotypes in the perturbated systems and thus conducting to changes in allelic frequencies 

(Ma et al., 2000; Bickham et al., 2000). Moreover, modifications of the genetic variability 

within and between populations may reduce their adaptability to new environments. Allelic 

variation at any loci that contribute to a modification of the phenotype could be acted upon by 

selection (Carvalho, 1993). Therefore, specific genotypes may be selected in natural 

populations because they contribute to the resistance to the toxic effects of pollutants; the 

relative proportion of these “resistant” genotypes may increase in chronically contaminated 

populations (Heithaus and Laushman, 1997; Larno et al., 2001). 

Allozyme markers have been extensively studied on aquatic organisms, particularly to 

evaluate the impact of chemical stress on the genetic structure of fish populations living in 

heavily contaminated rivers (Gillespie and Guttman, 1993, 1999; Benton et al., 1994; Foré et 

al., 1995; Heithaus and Laushman, 1997). But few studies focused directly on the genetic 

polymorphism of specific candidate genes, at the DNA level. Thus, the aim of this study was 

to characterize new nuclear genetic markers in the European flounder Platichthys flesus. We 

analyzed the variability of five genes: the glyceraldehyde-3-phosphate deshydrogenase 

(GAPDH), the cytosolic creatine kinase (CK), the prostaglandin D synthase (PGDS), the 

betain homocystein methyltransferase (BHMT) and the p53 genes. Four of them (GAPDH, 

CK, PGDS and BHMT) were partially isolated in a previous work performed on flounders 

exposed to different pesticides, and differentially regulated during the exposition (Marchand 

et al., 2006). The tumour suppressor gene p53 was characterized previously (Cachot et al., 

1998, 2000) 

The glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzyme is a classical 

glycolytic protein playing an essential role in the carbohydrate metabolism. Firstly, the 

GAPDH mRNA level has been commonly used as an invariant internal standard for various 

gene expression assays, considering that this gene would be constitutively expressed. 

However from the last decade, it was demonstrated that GAPDH could be a multifunctional 
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modulator implicated in diverse cellular pathways, especially those involved in induced 

apoptosis and neurodegenerative disorders (Chuang et al., 2005; Sirover, 2005).  

Creatine kinase (CK) enzymes, specifically located in sites of energy demand or 

production, are linked to a phosphocreatine/creatine circuit found in particular cells. Two CK 

isoforms may be found in vertebrate skeletal muscle: a cytosolic isoform (designated MM-

CK) and a mitochondrial isoform (designated Mt-CK) (Wallimann et al., 1992). 

Phosphocreatine production, catalyzed by Mt-CK, is favoured at the mitochondrial membrane 

level. The reverse reaction is favoured at sites of ATP utilization and is catalyzed by MM-CK 

(Hochachka et al., 1983; Wallimann et al., 1992). Transgenic mice whose skeletal muscles are 

deficient in MM-CK are incapable of burst activity (van Deursen et al., 1993).  

The betaine homocysteine methyltransferase (BHMT) enzyme catalyzes a key reaction 

at the convergence of the folate and the methionine cycles. This enzyme plays an important 

functional role in homocysteine remethylation (Li et al., 2008). Homocysteine is a highly 

reactive compound; highest concentrations inducing oxidative damage (Refsum et al., 1998). 

As many different methyltransferases (Hodgson and Levi, 1992), BHMT may possibly act as 

a phase II metabolizing enzyme. Despite intense interest in elevated circulating homocysteine 

levels as a possible risk factor for human cardiovascular disease, osteoporosis, dementia, and 

complications of pregnancy (Hermann, 2006), surprisingly little is known with regard to 

common genetic variation, even in humans.  

The lipocalin-type prostaglandin D synthase (L-PGDS) is a bifunctional protein 

possessing both the ability to synthesize prostaglandins and to serve as a carrier protein for 

lipophilic molecules (Fujimori et al., 2006). L-PGDS has been extensively studied in 

mammalian species, whereas little is known about non-mammalian forms. L-PGDS 

concentrations are useful for the diagnosis of several profound disorders (neurological, 

cardiovascular, and renal) and multiple sclerosis and cancers in humans (Su et al., 2001; Hirai 

et al., 2001; Chen et al., 2004). Moreover, Vogel (2000) showed that not only endogenous 

stimuli but also drugs and environmental chemicals can activate prostaglandin D synthase 

expression, especially in certain target tissues that possess low CYP monooxygenase activity. 

In particular, Hodgson and Levi (1991, 1992) showed that pesticides may be metabolized by 

prostaglandin synthetase. 

To our knowledge very few studies have been published on the DNA polymorphism 

of the four previous genes and most concerned humans (Tso et al., 1985; Greenblatt et al., 

1994; Li et al., 2008).  
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The last studied gene is the tumour suppressor p53 gene. The human homologue 

encodes a 53 kDa transcription factor which regulates cell cycle, apoptosis and DNA integrity 

in response to stress factors such as DNA damage, oncogene activation or hypoxia (see 

Pluquet and Hainaut, 2001). To date, this gene has been partially or completely sequenced in 

about eighteen fish species including the European flounder (Cachot et al., 1998). Although 

the p53 gene sequence has diverged in the course of vertebrate evolution (Cachot et al., 2000), 

some of the critical functions are conserved. Indeed, fish p53 acts as a transcription factor 

which inhibits cell growth (Langheinrich et al., 2002; Cachot et al., 2004) and promotes 

apoptosis in response to DNA-damage induction (Langheinrich et al., 2002; Berghmans et al., 

2005). In contrast to human, fish p53 gene is infrequently mutated in sporadic and 

chemically-induced tumours (Cachot et al., 2000; Franklin et al., 2000; Sueiro et al., 2000). 

In this study, the isolation and characterization of the full-length cDNA and genomic 

sequence that encodes P. flesus GAPDH, CK, BHMT and PGDS are described, the p53 gene 

sequence being already described by Cachot et al. (2000). A PCR-SSCP (Single Strand 

Conformation Polymorphism) study was finally conducted to study the genetic polymorphism 

of different populations of flounders collected along the French Atlantic coast and to explore 

possible selective effects of the environment on specific allelic frequencies.  

 

 

2. Materials and methods 

 

Biological model 

The European flounder Platichthys flesus (L.) is a benthic flatfish commonly 

distributed in the East Atlantic Ocean. During its juvenile period, it lives in estuaries and 

brackish waters. This species has been used for several decades as a sentinel species for 

pollution monitoring in the North-East Atlantic (Vethaak et al., 2009). 

 

DNA markers 

cDNA characterization  

The characterization of four P. flesus cDNA sequences was performed: the 

glyceraldehyde-3-phosphate deshydrogenase (GAPDH), the creatine kinase (CK), the 

prostaglandin D synthase (PGDS) and the betain homocystein methyltransferase (BHMT). 

The procedures for the generation of cDNA of the 5’ and 3’ untranslated regions (UTRs) for 
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these four sequences were carried out according to the commercial protocol for the rapid 

amplification of 3’/5’ cDNA ends (5’/3’ RACE Kit, Roche, Mannheim, Germany), using 

specific primers. Primers were designed based on the partial cDNA sequences of P. flesus 

GAPDH, CK, PGDS and BHMT previously identified (Marchand et al., 2006): Table 1. Total 

RNA was extracted from the hepatopancreas and the muscle of P. flesus according to the 

method based on extraction in guanidium isothiocyanate (Strohman et al., 1977). cDNA was 

synthesized from 20µg of RNA using the oligo dT race primer (Table 1), 2mM dNTPs, and 

M-MLV reverse transcriptase (Promega, Madison, WI, USA), and was then purified using the 

Wizard® DNA Clean-Up System (Promega).  

200 ng of reverse-transcribed products were used for the PCR amplification of the 

3’UTRs in a final volume of 25µl with 1x reaction buffer (Interchim), 1.5mM MgCl2, 

0.04mM dNTPs mixture, 1µM of the race primer and the specific reverse primer R1 (Table 1), 

0.25U of Taq Uptitherm DNA polymerase (Interchim) and submitted to the following 

program in a thermocycler (Applied Biosystems): 94°C for 2 min, followed by 35 cycles at 

94°C for 30 s, Ta°C for 30 s and 72°C for 1 min and an additional step at 72°C for 10 min. 

Amplification of the 5’ UTRs were carried out according to the following procedure: 

200 ng of reverse transcription product was treated with terminal deoxynucleotidyl transferase 

(Promega, Madison, WI, USA) and dATP to generate a polyA tail at the 5’ end. A first PCR 

amplification was performed on this product  with 1µM of the oligo dT race primer and the 

specific forward primer F1 (Table 1) and submitted to the following program: 94°C for 2 min, 

followed by 15 cycles at 94°C for 15 s, Ta°C for 30 s with an increase of 0.2°C per cycle, 

72°C for 2 min, then 25 cycles at 94°C for 15 s, Ta+3°C for 30 s, 72°C for 2 min, and a final 

step at 72°C for 10 min. A second PCR amplification was performed using 1µl of the 

amplification products, 1µM of the race primer and the specific forward primer 2 (Table 1), 

and submitted to the program cited above. 

PCR products were analyzed on a 1X TAE (Tris-Acetate-EDTA)/1% agarose gel (130 

Volts for 1 hour), visualized with UV light after staining with ethidium bromide, excised from 

agarose and purified using the QIAEX II Gel Extraction Kit (Qiagen) following the 

manufacturer’s instructions. Purified PCR products were then ligated to the pGEM-T easy 

plasmid vector (Promega) and transfected into Escherichia coli DH5α strain. Recombinant 

bacteria were identified by blue/white screening and white colonies were grown in Luria-

Bertani medium (with 100 mg.L-1 ampicillin) from which the vector was extracted using an 

alkaline lysis plasmid preparation. Size screening was performed by PCR amplification using 

T7 and SP6 universal primers and selected clones were sequenced using a LiCOR IR2 
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(Sciencetech, Lincoln, NE, USA) and the Thermo Sequenase Primer Cycle Sequencing Kit 

(GE Healthcare Europe, Freiburg, Germany). Sequences obtained were then subjected to a 

homology search through the BLASTX program available at the NCBI Genbank 

biocomputing site (http://www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al., 1990). The 

deduced amino acid sequences were obtained using the translate software available at the 

ExPASy (Expert Protein Analysis System) server of the Swiss Institute of Bioinformatics 

(http://www.expasy.org/tools/). Their molecular weight and isoelectric point were calculated 

using the MWCALC software (Infobiogen, France). Entire cDNA sequences obtained were 

deposited in the NCBI Genbank biocomputing site.  

 

Gene characterization 

Genomic DNA was extracted from fin tissue. About 100mg of fin were placed in 

extraction buffer (0.3 M Tris, pH 8, 0.02 M ethylene diamine tetra-acetic acid [EDTA], 0.1M 

NaCl) together with sodium dodecyl sulphate (SDS) and proteinase K at a final concentration 

of 0.6% and 0.1 mg.ml-1, respectively. The mixture was then incubated at 55°C until complete 

dissolution of tissue. NaCl was then added to a final concentration of 1.3 M. After 

homogeneisation, samples were centrifuged at 3000g at 20°C for 10 min. The supernatant was 

taken and two phenol/chloroform/isoamyl alcohol (25:24:1) extractions performed. DNA was 

precipitated with absolute ethanol, recovered by centrifugation 30min at 12000g at 4°C, 

rinsed with 70° ethanol, dried and dissolved in 1mL of TE buffer (10 mM Tris, pH8, 1 mM 

EDTA). 

The different gene sequences were amplified using primers combinations based on the 

cDNA sequences identified previously (Table 2). Two hundred nanograms of genomic DNA, 

1.5mM MgCl2, 0.04mM dNTPs mixture, 1µM of each primer and  0.25U of Taq Uptitherm 

DNA polymerase  were submitted to the following amplification: 94°C for 5 min, followed by 

40 cycles at 94°C for 30 s, Ta°C for 40 s, 72°C for 1 min 30 s, and a final step at 72°C for 10 

min. Cloning and sequencing were performed according to the procedures described 

previously and the gene sequences were deduced from the overlapping fragments sequenced 

and deposited in the NCBI Genbank biocomputing site.  

 

PCR-SSCP (Single Strand Conformation Polymorphism) analysis 

The SSCP analysis is one of the simplest, most reliable and most sensitive method for 

detection of mutations based on PCR (Sheffield et al., 1993) and this technique allows the 

detection of 99% of the mutations from fragments of 200 to 300 bp length (Orita et al., 1989). 
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For each gene, primers were designed to amplify each exon (except the too short exons) or 

two adjacent exons. We have optimized the technique to detect only single nucleotide 

polymorphisms (SNPs). Afterwards, a selection of SNPs was made, based on the 

polymorphism level and on the reproducibility of the band patterns. We have thus chosen: 

exon 3/4 for the GAPDH gene, exon 5/6 for the CK gene, exon 3 for the BHMT, exon 4/5 for 

the PGDS gene and exon 5 for the p53 gene (Y08919). Primers used for these amplifications 

are presented in Table 3. All PCR amplifications were performed in a volume of 25µL 

containing 1× Taq polymerase buffer, 2mM MgCl2, 40µM deoxynucleotides (dNTPs), 1µM 

of each primer, 0.5 units of Taq Uptitherm DNA polymerase and about 100 ng of total 

genomic DNA and submitted to the following program: 94°C for 5 min, 40 cycles of 30 s at 

94°C, 40 s at Ta°C, and 1 min 30 s at 72°C, with a final elongation of 10 min at 72°C. The 

PCR products were then combined with 20µl of loading buffer (bromophenol blue, xylem 

cyanol, saccharose), heated for 5 min at 95°C, then rapidly chilled on ice to melt and retain 

single strand DNA. After loading on a neutral 8% polyacrylamide gel (37.5:1, acrylamide: 

bisacrylamide), the samples were electrophoresized at a constant voltage (120 V) in a 0.6× 

TBE buffer, for 16-20 h at either ambient temperature (PGDS and p53) or 4°C (GAPDH, CK 

and BHMT). After electrophoresis, the gels were stained with ethidium bromide and 

visualised under ultraviolet light. Single strand DNA bands from the PCR products visualized 

on the gel were gel-purified by diffusion into water by freezing at −20◦C and thawing. 

Double-strand DNAs were obtained from these recovered DNAs by PCR amplification using 

the same primers as for SSCP. PCR products were then purified, cloned and sequenced as 

described above. The SWISS Model 3.5 software available via the ExPASy server (Schwede 

et al., 2003) was used to determine the secondary structure of the different variants when non-

synonymous changes occurred. 

 

Studied sites and sample processing 

Adult flounders were collected in four French polluted estuaries (Gironde, Loire, 

Seine and Vilaine) and one moderately contaminated estuary (Ster) considered as the 

‘reference site’ (low domestic, agricultural and industrial effluents) (Marchand et al., 2003; 

Figure 1). The Gironde, Loire, Seine and Vilaine estuaries are subjected to strong 

anthropogenic influences and are chronically polluted by mixtures of chemicals. The Seine 

undergoes a diffuse contamination (complex mixture of organic chemicals) similar to the one 

reported in heavily polluted estuaries of North America (Munschy et al., 1997; Cachot et al., 

2006). The chemical stress of the Loire estuary is rather similar but the level of organic 
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pollutant concentrations is however three times lower than the level found in the Seine estuary 

(Marchand et al., 2003). The Gironde estuary is mainly characterized by high levels of heavy 

metals such as zinc, cadmium and copper (RNO, 2001; Marchand et al., 2003) and water 

analyses carried out in the Vilaine estuary, between 1996 and 1999, displayed particularly 

high levels of pesticides (especially atrazine, diuron and isoproturon) (Forget, 1998; SAGE 

Vilaine, 2000) as a result of intensive agriculture. The Vilaine estuary (and the Loire to a 

lesser extent) is also known to experience hypoxic events (Menesguen et al., 2001). 

A recent study underlined that chemical concentrations detected in flounder tissues 

allowed to consider the Ster estuary as a reference site, displaying a low level of contaminants 

(PCBs, PAH metabolite, metals) compared to other estuaries (Evrard et al., 2010). 

Furthermore, several studies confirmed that the average flounder growth rate was consistently 

higher in the Ster estuary compared to the polluted systems: Seine, Vilaine, Loire, Gironde 

(Laroche et al., 2002; Marchand et al., 2003, 2004; Evrard et al., 2010). As no North–South 

increase of the growth rate was observed over the contaminated estuaries, we suggest that 

globally the thermal regimes of these systems are not significantly different. 

Forty flounders from each estuary were caught in winter (January and February 2003) 

by gillnets (Ster) and trawling operations (Gironde, Loire, Seine and Vilaine). The average 

sex ratio (males/females) and age (otolith observation) were estimated for the Ster, the 

Gironde, the Loire, the Seine and the Vilaine respectively: 0.29 and 2.7±0.3 years; 0.48 and 

2.6±0.2 years; 0.14 and 2.7±0.2 years; 0.29 and 2.7±0.3 years; 0.58 and 1.2±0.2 years. Muscle 

and hepatopancreas were collected from each individual, flash-frozen in liquid nitrogen for 

RNA extraction (cDNA characterization), brought back to the laboratory and stored at -80°C 

until use. Fragments of fin were also preserved in alcohol for DNA extraction. 

 

 

Genetic analysis 

Statistical and population genetic analysis 

The population genetic parameters (allelic frequencies for each locus, observed 

heterozygosity (Ho), expected heterozygosity (He) based on Hardy-Weinberg equilibrium) 

were calculated per population with the GeneClass2 software (Piry et al., 2004). Allelic 

frequencies were analysed with χ² conformity tests to detect potential heterogeneity between 

contaminated and uncontaminated populations. Differences in heterozygosity between the 

polluted and control sites were evaluated with a paired t-test using the locus as unit of 

replication (Leberg, 1992). Deviation from Hardy-Weinberg equilibrium was determined 
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within each population for each locus by computing the inbreeding coefficient Fis with the 

GENETIX 4.05 software (Belkhir et al., 2004). The significance of Fis was tested with the 

GENEPOP 3.2 software (Raymond and Rousset, 1995) using the Markov chain method 

(10 000 dememorisation steps, 1000 batches, 3000 iterations) to obtain unbiased estimates of 

the exact p-value (Guo and Thompson, 1992).  

The genetic differentiation was assessed using Wright’s FST (Wright, 1969) and exact 

tests of population differentiation (Raymond and Rousset, 1995). Single and multi-locus 

global FST was estimated using Weir and Cockerham’s θ (Weir and Cockerham, 1984) with 

the GENETIX 4.05 software (Belkhir et al., 2004) and tested by permutated data sets (5000). 

Single and multi-locus global exact test of population differentiation was calculated with the 

GENEPOP 3.2 software (Raymond and Rousset, 1995) using a Markov chain method (10 000 

dememorisation steps, 1000 batches, 3000 iterations). Furthermore, Fst by locus was assessed 

for each pair of locations. Control of the false discovery rate (FDR test) was carried out in 

multiple testing (Benjamini and Yekutieli, 2001). 

 

 

3. Results 

 

Molecular characterization 

The accession numbers for the different cDNA and DNA sequences are presented in 

Table 4 as well as the length of the coding region (and the corresponding amino acids, 

molecular weight and isoelectric point), the length of the 5’ and 3’ UTR sequences and the 

size of the corresponding gene. The exon/intron structure for each gene is presented in Figure 

2. All the introns of the different genes start and end with the consensus GT and AG splicing 

signals. 

For the GAPDH cDNA, the typical eukaryotic GAPDH signature ASCTTNCL related 

to the substrate binding was found from the amino acid positions 148 to 155 (Sirover, 1999). 

Amino acids putatively related to the NAD+ binding (D and E in amino acid positions 37 and 

315) and the sites putatively related to the inorganic phosphate binding were also found (S, T, 

D and T in positions 149, 151, 196 and 209) in the GAPDH sequence of Platichthys flesus 

(Aoki et al., 2000; Liaud et al., 2000). For the cytosolic CK cDNA, lysine (K) charge clamp 

residues (Hornemann et al., 2000) were found in the CK sequence of Platichthys flesus in 

amino acid positions 105 and 116. These residues have been implicated in binding of 

mammalian MM-CK to the sarcomere M-line (Hornemann et al., 2000), allowing MM-CK to 
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be coupled directly to myosin ATPase activity (Wallimann and Eppenberger, 1985). The 

consensus sequence AATAAA was also present in the four sequences described in this study, 

respectively 20bp, 12bp, 16bp and 15 bp upstream from the polyadenylation site for GAPDH, 

CK, BHMT and PGDS. 

 

Polymorphism analysis 

Genetic variability within population  

PCR-SSCP analysis performed at 5 loci in 189 flounders from four different estuaries 

allowed us to characterize: 5 alleles for GAPDH and PGDS, 4 alleles for CK and 2 alleles for 

BHMT and p53. Allelic frequencies and multi-locus heterozygosities are presented in Table 5. 

For GAPDH locus, a decrease of A allele frequency and an increase of B allele frequency 

were observed in the Gironde population compared to the Ster population, this trend being 

however not significant (p>0.05). A moderate decrease in the CK A allele frequency was 

observed in the Gironde estuary with respect to the reference site (Ster). The p53 A allele 

frequency was globally higher (p>0.05) in contaminated populations (Gironde, Loire, Seine 

and Vilaine) compared to the “reference” site (Ster); this increase ranging from 12.4% 

(Gironde and Loire) to 13.7% (Seine). In the Vilaine estuary, a mean increase of 10% in 

BHMT and PGDS A allele frequencies was observed compared to the Ster estuary whereas a 

12.5% decrease in PGDS A allele frequency was observed for Seine compared to Ster. A 10% 

decrease in PGDS B allele frequency was also observed in Vilaine and Gironde estuaries 

compared to the reference site (Ster).   

Mean observed heterozygosities were globally higher in the Ster and Gironde 

populations (Ho=0.36 and 0.39 respectively) than in the Loire, Seine and Vilaine populations 

(Ho=0.32, 0.34, 0.29 respectively), but not significantly different (all t-values < 1.48, p>0.05, 

with 4 df). A significant heterozygote deficit (Fis>0, p<0.01) was detected for GAPDH locus 

in all estuaries (Table 6). Globally, no significant departure from Hardy-Weinberg 

equilibrium was detected for the other loci. However a moderate heterozygote deficit for p53 

locus was observed for the Seine and Loire populations (p>0.05), whereas a moderate 

heterozygote excess was observed in the Vilaine and Gironde populations (p>0.05) (Table 6). 

Moreover, a marked but un-significant heterozygote deficit was observed for the BHMT locus 

in the Loire estuary. No departure from Hardy-Weinberg equilibrium was observed for the 

PGDS locus (Table 6).  
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Genetic differentiation between populations   

On the whole data set (Table 7), multi-locus Fst estimation indicated a moderate level 

of genetic differentiation (Fst = 0.005, p>0.05) between populations, confirmed by a non-

significant exact test of genic differentiation (p=0.07). Single locus Fst and exact tests 

suggested that particular loci (CK, p53 and principally PGDS) could explain a possible 

differentiation between populations (Table 7).  

The estimation of Fst by locus and by pair of estuaries indicated that several pairs of 

populations displayed genetic differentiation (Table 8). For GAPDH, a genetic differentiation 

was observed between the Gironde and Loire populations as well as between the Gironde and 

Seine populations (p<0.05). For CK, a differentiation was detected between the Seine and 

Gironde populations (p<0.05). For p53, a general differentiation was found between the Ster 

(reference site) and the four contaminated populations (Table 8), but this trend was however 

not significant (p>0.05). For BHMT, the genetic differentiation was better marked between 

Ster and Vilaine populations, than between Gironde / Vilaine or Seine / Vilaine (Table 8). For 

PGDS locus, a significant differentiation was observed between Seine and Vilaine and 

between Seine and Gironde (p<0.05) (Table 8). However, after performing a FDR test on the 

levels of differentiation detected by locus and by pair of populations, the differentiations for 

the PGDS locus remained significant. 

 

Allele sequencing 

The sequences of the different alleles revealed both exonic and intronic polymorphism 

(Figure 3). Mutations detected for GAPDH, CK, BHMT and p53 were all identified as 1) 

synonymous (silent) mutations (no amino acid replacement) and/or 2) mutations in the non-

coding regions (introns). On the contrary, 3 out of the 5 alleles detected in the PGDS locus (B, 

C and E alleles) displayed a fragment with a polymorphism resulting in a modification of the 

corresponding amino acid, the sequence of allele A being used as a reference: valine was 

changed by alanine for allele B, aspartic acid by glutamic acid for allele C, and valine by 

isoleucine for allele E (Figure 3). The SWISS Model 3.5 was used to determine the secondary 

structure of the different PGDS variants but revealed no difference. 

 

4. Discussion 

 

Molecular characterization 
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The exon/intron structures obtained for the different genes in this study were 

compared to the very few known gene structures available in the databases (essentially 

mammal’s sequences). Sequences of the creatine kinase gene (MM-CK gene) from 

Platichthys stellatus (GU324256) and Homo sapiens (NC_000019) show the same structure 

than the sequence identified for P. flesus, with 7 exons (same length) and 6 introns, the length 

of the introns being however slightly different for P. stellatus and largely different for H. 

sapiens compared to P. flesus sequence. Indeed, the DNA sequence length of H. sapiens 

reaches 16463 bp compared to 2369 bp and 3091 bp for respectively P. flesus and P. stellatus. 

The comparison of the GAPDH gene between P. flesus and H. sapiens (NG_007073) shows 

the same structure with 11 short exons (however not of the same length). The coding 

sequence length differs between the two species (999 and 1226 bp respectively for P. flesus 

and H. sapiens) a well as the length of the gene (4086 and 11908 bp respectively). The BHMT 

and PGDS genes also show the same structure between P. flesus and H. sapiens (NC_000005 

and NC_000009 for respectively BHMT and PGDS), the length of the genes being however 

largely different: 2534 bp and 20510 bp for the BHMT gene and 1465 bp and 4239 bp for the 

PGDS gene for P. flesus and H. sapiens respectively. 

 

Genetic variability within populations 

Flounder populations showed limited departure from Hardy-Weinberg equilibrium, 

except for the GAPDH locus, where strong heterozygote deficits were observed. These 

deficiencies for GAPDH locus may be explained by technical artefacts such as the existence 

of null allele and/or the poor allele discrimination (Lundy et al., 1999); these deficiencies 

being observed in all five studied populations.  

Other loci displayed limited values of heterozygote excess or deficit, although not at a 

significant level. The CK locus appeared to be at Hardy-Weinberg equilibrium, as Fis values 

were very close to zero. For the three other loci (p53, BHMT, PGDS), only some populations 

showed heterozygote excess or deficit. This situation is not indicative of a Wahlund effect, 

since populations that deviate from Hardy–Weinberg expectations are different according to 

the loci. Non random reproduction and small size of the natural populations are also unlikely, 

because flounder population sizes are generally considered as important in large estuaries of 

the French coast (Masson, 1988). Strong genetic mixing occurs generally during the 

reproduction period by the gathering of individuals for spawning (Berrebi, 1988; Masson, 

1988; Borsa et al., 1997), thus non random reproduction is unlikely. A sampling bias could be 

at the origin of these differences, but the existence of a selective pressure acting on these three 
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loci (p53, BHMT, PGDS) in contaminated areas could be also suggested, as it was in previous 

studies focusing on the same fish species and in the same estuaries (Laroche et al., 2002; 

Marchand et al., 2004). In these last studies, several allozyme loci were probably submitted to 

a selective pressure induced by the chemical stress. 

 

Genetic differentiation 

We hypothesised the presence of null alleles for GAPDH locus, thus the genetic 

differentiation linked to this loci is probably biased. Consequently, the previous loci will not 

be individually considered in the following discussion on the genetic differentiation. 

Global multi-locus estimation of Fst between populations indicated a low level of 

genetic differentiation, with PGDS explaining the majority of this differentiation. This result 

suggests a high gene flow between populations. Since the marine environment is generally 

considered as a highly dispersive environment, low levels of genetic structure are commonly 

observed for marine species (Ward et al., 1994; Graves, 1998; Waples, 1998). For the 

flounder, the possible gathering of adults stemming from different areas in spawning 

aggregations at the mouth of the estuaries, combined with the high dispersal potential of its 

pelagic eggs and larvae (several weeks in the plankton), may explain effective connection 

between populations (Borsa et al., 1997). The previous authors also found a weak pattern of 

differentiation by distance for flounder populations from the South-Western Baltic Sea to 

Southern Portugal with allozyme markers. However, the weak genetic structure detected in 

our study, may also be linked, as for allozymes, to a reduced genetic variability of our DNA 

markers showing a limited allelic diversity (between two and five).. Moreover, the genetic 

differentiation detected between the Gironde and the Seine estuaries, particularly at the CK 

and PGDS loci, may be more related to the geographical distance than to a differential 

pollution context, since these estuaries are the most distant over the whole data set. 

However, considering neutral markers like microsatellites, flatfish populations are 

generally weakly structured over large geographical distances in the North East Atlantic; this 

trend was particularly observed for the flounder (Hemmer-Hansen et al., 2007a), the plaice 

(Hoarau et al., 2002) and the sole (Rolland et al., 2007). Thus, we suggest that the patterns of 

genetic structuration detected for the flounder in our study are probably more linked to local 

selection of contrasted environments on the candidate genes than to the consequence of 

geographical distance between estuaries (i.e. possible isolation by distance, or different 

history of colonization). A convergent hypothesis was formulated by Hemmer-Hansen et al. 

(2007b) working on the genetic structure of flounder populations in the northern part of the 
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species distribution, and considering a candidate gene (Hsc 70) and microsatellites; they 

concluded that the genetic structure among Atlantic and western Baltic Sea samples was more 

related to alternative factor (environmental gradient) than to the geographical distance itself. 

Despite the low global multi-locus genetic differentiation, the single locus 

differentiation between pairs of populations and the distribution of allelic frequencies give a 

more subtle vision of the genetic structure. The genetic differentiation, considering a 

particular locus and the different pairs of populations could be linked to the potential selective 

pressure of the cocktails of contaminants, the analysis of pollutants in fish tissues displaying 

contrasted patterns of contamination (1) between the reference and the contaminated 

estuaries, and (2) between the contaminated estuaries (Evrard et al., 2010). One sequence 

polymorphism was identified at codon 134 of the p53 locus. It was identified previously as 

well as twenty one other polymorphisms in P. flesus from different locations (Cachot et al., 

2000, Franklin et al., 2000). Pairwise Fst values for the p53 locus indicated that a genetic 

differentiation was observed between the Ster estuary (reference site) and the other 

contaminated estuaries (however non-significant). This difference might be related to the 

chemical stress and potentially reflects the existence of pollutants acting as selective agents in 

chronically contaminated populations in large estuaries. The distribution of allelic frequencies 

highlighted several convergences between contaminated sites compared to the reference site; 

thus an increase of the frequency of the A allele was observed in contaminated estuaries with 

respect to the Ster. As p53 is a crucial protein involved in cell growth control and 

maintenance of genome integrity, individuals carrying the p53 A allele could potentially be 

selected by chemical pressure. The hypothesis of a possible “resistant character” associated to 

the p53 A allele in contaminated systems is formulated. The selective pressure may select A 

alleles: (1) directly, through their differential efficiency (particular alleles being more efficient 

than others) or (2) indirectly, through hitchhiking phenomenon (linkage disequilibrium, e.g. 

non-random, interdependent, arrangement of alleles at different loci). The polymorphism 

observed at exon 4 conducts to silent mutations, privileging thus the hypothesis of a 

hitchhiking phenomenon acting on this locus. Nevertheless, such hypothesis should be 

supported by larger sample sizes and temporal replicates to strengthen the results. Genotype-

phenotype coupling as well as gene expression on p53 should also be performed in the future, 

to explore the functional role of the p53 polymorphism.  

 

For the PGDS locus, a significant genetic differentiation between estuaries was found. 

Moreover, an increase of the A allele at this locus is observed in the Vilaine estuary compared 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
to the Ster and to other estuaries. PGDS is an enzyme involved in important metabolic 

processes i.e. the synthesis of prostaglandins (Inoue, 2008) and some authors underlined that 

it may be involved in xenobiotics detoxification (Vogel, 2000).  Given that the Vilaine estuary 

is submitted to a pesticide stress due to intensive agricultural practises and because PGDS is 

differentially expressed in response to pesticides exposure (Marchand et al., 2006), it is 

hypothesized that the cocktail of pesticides of this estuary acts as a selective agent on the 

PGDS locus, favouring the A allele. Mutations detected for PGDS lead to amino acid changes 

but however no difference in the secondary structure of the different variants was detected; 

indeed, valine, alanine and isoleucine (alleles A, B and E) belong to non-polar hydrophobic 

amino acids and acid aspartic and acid glutamic (allele C) are both acidic polar amino acids. 

Selective pressure potentially detected on this locus may thus act indirectly on the different 

protein sequences through hitchhiking phenomenon as it is hypothesized for p53.  

 

 
Perspectives 

New investigations are developed now in our laboratory, on the previous flounder 

populations stemming from environmentally contrasted estuaries; the main objective is to 

confirm the possible selective effects of the contaminants on the candidate genes investigated 

in this study: (1) by increasing the sample sizes of each population as well as examining 

temporal replicates to strengthen the results found in this study, (2) by comparing the genetic 

structure of the populations found with the previous candidate genes versus the structure 

found with neutral markers like microsatellites; neutral loci across the genome will be 

similarly affected by demography and the evolutionary history of populations, and loci under 

selection will behave differently and therefore reveal ‘outlier’ patterns of variation (Luikart et 

al., 2003); and (3) by exploring thoroughly the possible couplings between genotypes and 

phenotypes (associated gene expression, load of contaminants, DNA damages, liver 

pathologies) in the field.  
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Table 1: Primers designed for cDNA amplifications. The F and R letters found in the Primer 
name indicate respectively forward (F) and reverse (R) primers; Ta: annealing temperatures of 
the different primers. 
 

Primer name Primer sequence Ta (°C) 
GAPDH F1 5'-GTGTCTTCACCACCATTGAGAAGGC-3' 61 
GAPDH R1 5'-ATTGGCTGCTCGGTTTACTCCTTGGC-3' 65 

CK F1 5'-GGTTCTGACCAAGGAGCTGTATGGC-3' 62 
CK R1 5'-GGACACGGCTGGACAGAACATAGTTG-3' 62 

PGDS F1 5'-ACGTTGTCGGCTATGCCTCCAACG-3' 65 
PGDS R1 5'-CGGCTGAGGAGGTTGTTGAGGATG-3' 64 
BHMT F 1 5'- ACACTGGGAAACAGAGATGGCACCT-3' 62 
BHMT R 1 5'-TCCAGTGATACTGAGTGTCTGACCC-3' 57 

Oligo dt Race primer 5’-GACCACGCGTATCGATGTCGACT(16)-3’ 72 
Race primer 5’-GACCACGCGTATCGATGTCGACT-3’ 61 

 
 
 
 
 
Table 2: Primers designed for gene amplifications (F: forward, R: reverse and Ta: annealing 
temperature). 
 

Primer name Primer sequence Ta (°C) 
Fragment 
amplified 

GAPDH F2 5'-ATGGTGAAAGTTGGTATCAATGG-3' 55 1993 bp 
GAPDH R2 5'-CTCAATGGTGGTGAAGACACCGGTGG-3' 65  
GAPDH F 3 5'-GTGTCTTCACCACCATTGAGAAGGCC-3' 63 677 bp 
GAPDH R3 5'-TGGGATGATGTTCTGGCTGGCACCGC-3' 66  
GAPDH F4 5'-AACATCATCCCAGCTTCAACTGGTGCCGC-3' 66 1060 bp 
GAPDH R4 5'-ATTGGCTGCTCGGTTTACTCCTTGGC-3' 63  

CK F2 5'-ATGCCTTTCGGAAACACCCACAACA-3' 59 1963 bp 
CK R2 5'-AGATGAGATTGTTCCTCTCTACTT-3' 55  

PGDS F2 5'-AGCAACATGATGAACTCGCT-3' 52 1123 bp 
PGDS R2 5'-TCAGGCCCGGTGACATTGGA-3' 58  
BHMT F 2 5'-CACTGGGAAACAGAGATGGCA-3' 57 1085 bp 
BHMT R 2 5'-AAGATGCCCTTCACTTCTGTCTC -3' 57  
BHMT F 3 5'- GAGACAGAAGTGAAGGGCATCTT -3' 57 938 bp 
BHMT R 3 5’- GTGTGCATCTCCAGACCAGCG-3’ 60  
BHMT F 4 5'- AGAGAGGCCTACAAGGCTGGA-3' 59 487 bp 
BHMT R 4 5'- TTGACCGAGGACACTCTCGC -3' 58  
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Table 3: Primers designed for PCR-SSCP amplifications (F: Forward, R: Reverse and Ta: 
annealing temperature). 
 

Primer name Primer sequence Ta (°C) 
Fragment 
amplified 

GAPDH F5 5'-CCTTGTCTCCTCCCTCTTTAG-3' 56 380 bp 
GAPDH R5 5'-GTTGAGGACTGAGTACGTAC-3'   

CK F3 5'-TCCTCTTTCTTATTTAACAG-3' 55 364 bp 
CK R3 5'-AGATGAGATTGTTCCTCTCTACTT-3'   

PGDS F3 5'-TGTGTATTCCTGCTTTATCAG-3' 58 371 bp 
PGDS R3 5'-GCATTGATTCAAAAGCGTCTG-3'   
BHMT F 4 5'-TGTGTTATTTTCAATAGTGCG-3' 58 151 bp 
BHMT R 4 5'-ATACAGTGGTTGAACACTTAC-3'   

p53 F 5’-GGCTTTCTCCCCGTGTTTCTCTCAG-3’ 55 221 bp 
p53 R 5’-TACACTGATCACTTTACTTAC-3’   

 
 
 
 
 
 
Table 4: Molecular characterization 
 

Gene name GAPDH CK PGDS BHMT 
cDNA accession number AJ937522 FN432387 FN432388 FN432389 
DNA accession number AJ937521 FN432390 FN432391 FN432392 

Coding region length (bp) 999 1146 540 1206 
Number of amino acids 332 381 179 401 
Molecular weight (kDa) 35.87 43 20.15 43.98 

Isoelectric point 8.27 6.22 5.86 7.22 
5’UTR length (bp) 73 93 25 67 
3’UTR length (bp) 329 331 343 176 
DNA length (bp) 4086 2369 1465 2534 

Number of introns 10 6 5 7 
Number of exons 11 7 6 8 

 
 
 
 
 
 
 
 
 
 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 
 
 
 
 
Table 5: Allelic frequencies for each location and each locus. N = number of fish per estuary; 
Ho: mean observed heterozygosity; He: mean expected heterozygosity. 
 
 
 
 
 
              Ster         Gironde             Loire            Seine          Vilaine 
 
 
N      40    40    39    40    30 
Ho    0,360  0,390  0,323  0,340  0,287 
He    0,376  0,411  0,386  0,393  0,315 
 
Locus           Allele 
 
GAPDH A  0,675  0,563  0,667  0,637  0,683 
  B  0,163  0,300  0,128  0,138  0,167 
  C  0,125  0,138  0,205  0,188  0,150 
  D  0,013  0,000  0,000  0,025  0,000 
  E  0,025  0,000  0,000  0,013  0,000 
   
CK   A  0,887  0,813  0,872  0,925  0,917 
  B  0,050  0,050  0,051  0,063  0,033 
  C  0,063  0,087  0,038  0,000  0,033 
  D  0,000  0,050  0,038  0,013  0,017 
 
p53  A  0,388  0,512  0,513  0,525  0,517 
  B  0,613  0,487  0,487  0,475  0,483 
 
BHMT3  A  0,825  0,850  0,872  0,850  0,933 
  B  0,175  0,150  0,128  0,150  0,067 
 
PGDS  A  0,738  0,775  0,679  0,613  0,833 
  B  0,263  0,163  0,295  0,338  0,150 
  C  0,000  0,050  0,013  0,037  0,017 
  D  0,000  0,013  0,013  0,000  0,000 
  E  0,000  0,000  0,000  0,013  0,000 
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Table 6: Estimation of inbreeding coefficient (Fis) by locus for each location. Significance of 
Fis was assessed by Fisher’s exact tests. Bold values indicated significant p-values, with ** 
for p<0.01 and *** for p<0.001. 

 
 
 
Ster  Gironde Loire  Vilaine Seine 

 
 
GAPDH   0.363***  0.358**  0.494***  0.529***  0.591*** 
 
CK    -0.080  -0.057  -0.081  -0.043  -0.056 
 
P53   -0.093  -0.138   0.089  -0.252   0.110 
 
BHMT  -0.026   0.032   0.323  -0.054   0.032 
 
PGDS   -0.085  -0.067  -0.067   0.074  -0.215 
 
 
 
 
 
 
Table 7: Single and multi-locus global assessment of genetic differentiation between estuaries 
using (1) Fst estimated with Weir & Cockerham’s ∂ and tested using 5000 permutations (* 
p<0.05) and (2) exact test (p-values) of genetic differentiation tested with the Markov chain 
method, using 3000 iterations.  
 
 
 
 
  Multilocus GAPDH CK      p53  BHMT PGDS 
   
 
 
θ  0.005  -0.001  0.005      0.002 -0.003  0.021*  
 
Exact test  0.07   0.184  0.213      0.372 0.415  0.031  
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Table 8: Estimation of single-locus pairwise θ values with associated significance in bold. * 
for p<0.05. 
 
 

 
θ 
 

GAPDH P53 CK BHMT PGDS 

Ster – Seine -0,01278 0,02507 0,00442 -0,01035 0,01445 

Ster – Vilaine -0,0198 0,0213 -0,00766 0,03744* 0,01737 

Ster - Gironde 0,01252 0,02025 0,00452 -0,01035 0,00676 

Ster - Loire -0,00986 0,01883 -0,0065 -0,00586 -0,00614 

Seine – Vilaine -0,01828 -0,01399 -0,00705 0,01928 0,08133 * 

Seine – Gironde 0,01258 * -0,01216 0,0333 * -0,01307 0,05131 * 

Seine – Loire -0,01796 -0,01382 0,00177 -0,01298 -0,00337 

Vilaine – Gironde 0,00891 -0,01196 0,01537 0,01928 -0,00726 

Vilaine - Loire -0,01778 -0,01404 -0,00682 0,00276 0,04219 

Gironde - Loire 0,02263 * -0,01249 -0,00118 -0,01298 0,02149 
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Figure captions 

 

Figure 1 Sampling sites: contaminated estuaries (Seine, Vilaine, Loire, Gironde) and 

reference estuary (Ster)  

 

Figure 2: Molecular structure (exons/introns) of the 5 genes characterized: A) GAPDH, B) 

CK, C) BHMT, and D) PGDS. The length of each exon and intron is indicated below (bp). 

Fragments amplified by SSCP are also indicated. 

 

Figure 3: Sequences of the different alleles detected for the 5 locus studied. 
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