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Abstract 

Thin films deposited on misfitting substrates exhibit distortions produced by the 

superposition of coherency strains and the elastic fields of interfacial defects. These 

distortions become homogeneous strains,ε , and rotations,φ , beyond a characteristic 

distance from the interface, z, and are partitioned between the film and substrate. 

Residual strain arises when the density of interfacial defects is insufficient to 

compensate the intrinsic coherency strain, and is partitioned in a manner depending 

on the relative thicknesses of the two layers, d. However, rotations are not partitioned 

in this way.  Expressions for the magnitude and partitioning ofε  and φ  are derived 

for the case of elastically isotropic materials. Calculated values are shown to be in 

excellent agreement with experimental measurements for a variety of technologically 

relevant cases. 

1. Introduction 

Thin deposited films are widely exploited in modern technology. These films are 

often partially coherent, exhibiting arrays of dislocations at the interface between the 

misfitting film and its substrate. Such dislocations may accommodate coherency 

strains to some extent, but may also give rise to crystal rotations. Both these features 

affect the physical properties of a film, and a great deal of research has been directed 
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at elucidating this. Understanding the role of dislocations in mitigating coherency 

strains was pioneered by Frank and van der Merwe in 1949 [1], and several reviews 

summarize the current position [2-5]. Rigid body rotations of hetero-epitaxial films 

away from the nominal orientation relationship were first reported by Igarishi in 1971 

[6]: he attributed the rotations to dislocations in the interface with Burgers vector 

components inclined to the interface, thereby producing a small-angle tilt wall 

superposed on an underlying misfit array. Since that time numerous observations of 

rotated films have been reported and their consequences discussed [7-15].  

This paper focuses on two aspects of coherency strains and rotations in a thin film, B, 

deposited on a substrate A: characteristic distances and partitioning. In the immediate 

vicinity of an interface (parallel to the plane x,y ) the strain field has a complex form. 

However, at distances greater than mz any residual misfit strain (i.e. coherency strain 

uncompensated after the introduction of misfit dislocations) becomes constant. 

Moreover, these strains are partitioned along y into A

yyε and B

yyε . (Superscripts A and B 

refer to values of strain or rotation partitioned to the A and B crystals). Similarly, 

rotational distortions adopt constant values at distances greater than φz , and are 

partitioned to the values Aφ and Bφ . The characteristic distances mz and φz , as well as 

the partitioning into A

yyε and B

yyε  and Aφ and Bφ , arise from the superposition of the 

elastic fields of the defects at the interface on the initial coherency strain in the film. 

Here, we compare the values of mz and φz ; in general these depend on the elastic 

properties of A and B [16], but we consider only the isotropic homogeneous case for 

illustration [17].  The partitioned values A

yyε and B

yyε are known to depend on the 

relative thicknesses of A and B, A
d and B

d [18]. However, in general, the partitioning 

into Aφ and Bφ does not depend on A
d and B

d , as has become clear only recently from 

studies of interfaces in phase transformations [19, 20]. Finally, we do not consider the 

plastic deformation that may lead to the interfaces we describe.  Instead we deal with 

the properties of static interfaces once they have formed.  

Coherent precipitates or martensite plates are subjected to biaxial stresses and strains 

arising from coherency.  In addition, matrix compatibility constraints often lead to 

added stresses acting normal to the interface.   However in the topological model [19, 

20] or the closely related phenomenological theory of phase transformations [21, 22], 
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accommodation effects are treated separately and the models are applied to an infinite 

bicrystal with free surfaces normal to the interface.  Hence, the models yield plane 

stress solutions that are directly applicable to the thin film case treated here.  The 

details of rotational partitioning have only recently been considered in phase 

transformations and have not been treated in terms of characteristic distances for thin 

films, the basis for the present work.  For simplicity, we treat the case of isotropic, 

homogeneous elasticity.    The results are qualitatively similar to those for the 

anisotropic elastic case, or the nonlinear elastic case in atomistic simulations.  

There have been many analyses of the stresses and properties of planar coherent 

interfaces and their relaxation by misfit dislocations, reviewed in [2-5]. .Our focus 

here is on the narrower issue of interfaces with coherent terraces and with steps or 

disconnections relieving misfit, which have received little attention.  The planar 

interface is treated briefly, but as a reference basis for the other cases considered.  

 

2. Interface Defects 

Evidently, the nature of defects at a particular interface is a key factor governing the 

resulting characteristic distances and partitioning. The two principal categories of line 

defects are dislocations and disconnections [23, 24]: the former are line-defects with 

Burgers vector b, whereas the latter have dislocation and step character, b and h. 

Many observations of dislocations have been reported [25-30], some with 

]0,,[ yx bb=b  parallel to the interface, and others with inclined ],,[ zyx bbb=b . Figure 

1(a) is a high-resolution TEM image showing the two types in an epitaxial interface 

between a deposited GaAs film and a Si substrate [31]. Figure 1(b) is a schematic 

illustration of the extra {111} planes terminating at the cores of these dislocations [2]. 

Figure 1(c) is a schematic illustration of the formation of a disconnection when a 

surface step on a )2101(  32OAl−α substrate is overgrown by the incompatible surface 

step on a Si film [15]. The step height, h, is defined as the smaller of the two free 

surface step heights, Si in this case, and the b is equal to the difference between the 

translation vectors indicated in the figure. Accommodation of coherency strains and 

production of crystal rotations arise from arrays of defects, and three distinct 

situations are considered, as depicted in figure 2. Figure 2(a) depicts  
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(a) 

 

(b) 

 

(c) 

°90°60
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Figure 1 (a) High – resolution TEM micrograph along <110> showing stacking faults, 

thin twins, 90º and 60 º ½<110> misfit dislocations in a (001) GaAs layer on Si [31]. 

(b) Schematic illustration of the extra {111} planes in the 90º and 60 º dislocations 

indicated in (a) [2]. (c) Schematic illustration of the formation of a disconnection 

when a surface step on a )2101(  32OAl−α substrate  is overgrown by an incompatible 

surface step on a (001)Si film [15]. 

(b,0)a)

b)

c)

(b,h)

(b,0)

0,0 == φθ

0,0 ≠= φθ

0,0 ≠≠ φθ

 

Figure 2 Schematic illustration of three principal interface topologies. 

 

an interface where an array of dislocations with in-plane b accommodates misfit. 

Here, neither the substrate nor film surfaces are stepped, leading to an interface which 

remains parallel to x,y, designated 0=θ . Furthermore, since the dislocations exhibit 

no components zb , no rotational distortions arise, hence 0=φ . In figure 2(b) the 

dislocations arrive at the interface after gliding through the film, B. The resulting 

interfacial dislocations have h=0, but their finite components zb lead to rotations, 

hence 0,0 ≠= φθ . Figure 2(c) illustrates an array of disconnections: here the step 

array induces a rotation of the interface plane, and the finite zb  produces a crystal 

rotation, i.e. 0,0 ≠≠ φθ . An actual interface corresponds either to one of the three 

cases depicted in figure 2, or to a combination that can be treated by superposition. 
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For example, films are often deposited on vicinal substrate surfaces comprising an 

array of equally spaced steps. When overgrown, these steps may become 

disconnections, but this array is unlikely to fully accommodate the misfit. 

Consequently, additional dislocations may be introduced as in figure 2 (a) or (b). The 

characteristic distances and partitioning for these possibilities are addressed in 

sections 3.1 and 3.2 where elastic distortions with 0=φ and 0≠φ  respectively are 

considered.  

3.  Elastic distortions. 

 

 3.1. Misfit without rotation ( 0=φ ). 

 As an example of the simple misfit case, figure 2(a), we consider one parallel 

array of dislocations, with an attendant plane strain elastic field.  Reference states for 

the definition of Burgers vectors are summarized in Appendix A. The general result 

for strain partitioning is given in Appendix B.  For most purposes the simple 

engineering strain of equations (B5) and (B6), which also implies equal partitioning 

of the difference in lattice parameters of the two crystals in the small strain limit, 

suffices. The results for one array are qualitatively similar to the biaxial case with 

intersecting arrays: for the latter the form of Hooke’s law differs and there are Poisson 

fields of one array superposed on the other [3, 32, 33, 34].  For an array of misfit 

dislocations with spacing 0λ , figure 3 (where the perfect crystal atom spacings in the 

y direction are BA
aa > ), the coherency strain can be envisioned as arising from a 

continuous distribution of infinitesimal dislocations.  The integral of this distribution 

per unit length, l , is l/c

yb , and this is numerically equal to the total coherency strain, 

c

yyε  (see Appendix A). For the present case this representation of the distribution leads 

to no loss in rigor. The zero long-range strain condition is satisfied for the equilibrium 

spacing of misfit dislocations, eλ .  Then the Burgers vector of the misfit 

dislocations, m

yb , is equal to )/( l
ec

y λb− , and em zz = .  
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0λ

m

yb

y

z

A

B

c

yb

m
z

 

Figure 3. Misfit dislocations spaced by 0λ at the interface between A and B. The 

curved line represents a constant value of m

yyε ; the strains tend to become constant for 

mzz > . 

 Near the misfit dislocations, r << λ0, their elastic fields approach the rln  field 

present at a distance r from  an isolated dislocation.  For r ~ 0.1 0λ , the field becomes 

the hyperbolic sinh/cosh field of parallel arrays of dislocations [3, 33, 34].  For 

0λ≈> m
zz , the misfit dislocation field rapidly converges to a uniform strain state, 

0/ λε mm

yy b= , other 0=m

ijε , in accord with St. Venant’s principle. The zero long-

range condition is defined when the misfit strain is equal and opposite to the interface 

coherency strain ><∆−= aa
c

yy /ε , where BA
aaa −=∆  and 2/)( BA aaa +>=< .  At 

free surfaces normal to y, there are also varying surface forces and torques to satisfy 

the free surface boundary condition, but the accompanying strains and twists are 

confined to a distance 0λ≈ from the free surface [35] and need not be considered 

here. Beyond this distance, image strains become uniform. For a thin bilayer, these 

lateral strains would produce bending in a free bilayer.  These are eliminated for a thin 

central member of a trilayer, or a thin layer in a multilayer.  

 Figure 4 is a plot of m

yyε  as a function of z on the same size scale as figure 3.  

The figure indicates the uniformity of strain for mzz > .  For figure 4(a), the case of an 

equal layer thickness bicrystal BA
dd = , the Newtonian forces must vanish on a plane 
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normal to y, so that both the misfit and coherency strains are equally partitioned to the 

two layers.  When there is no long-range strain, 2/2/ c

yy

cB

yy

m

yy

mB

yy εεεε −=−== and 

2/2/ c

yy

cA

yy

m

yy

mA

yy εεεε =−=−=  .  The condition c

yy

m

yy εε −=  is the same whether there is 

a factor 2/1  on both sides or not, so the basic equivalence of misfit and coherency 

strain is the same whether one deals with the partitioned strains or the interface 

condition.  For figure 4(b), the force balance leads to the partitioning of long-range 

coherency strains in the form  

 

)/( BABc

yy

cA

yy ddd += εε                    (1a) 

and 

)/( BAAc

yy

cB

yy ddd += εε .                  (1b) 

 

Similar expressions can be written for mA

yyε and mB

yyε . The strains now lie mainly in the 

thin film. The characteristic distance for this partitioning is the smaller of the layer 

thicknesses, here B
d .  Usually, the characteristic distance for strain partitioning, B

d , 

greatly exceeds that for uniformity of strain, mz . For the relaxed, zero long-range 

strain case, the dislocation strains are equal and opposite to the coherency strains 

when em zzz => , and are also of the form in figure 4.  

 

O

m
z

m
z−

m

yyε
O

m
z

m
z−

m

yyε

A

B

a) b)
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Figure 4. Strain m

yyε of misfit dislocation array as a function of z for a fixed value of y. 

The sign and magnitude of m

yyε vary with y but mz remains nominally the same. a) 

equal layer thickness case, BA dd = . b) Thin film case, AB ddd <<= . 

 

3.2 Misfit with rotation ( 0≠φ ). 

 For the inclined dislocation case, the misfit dislocations deposited on the 

interface have both m

yb  and m

zb components, figure 5.  To first order, the m

yb component 

follows the above analysis, cancelling c

yb for the zero long-range strain condition. The 

field of the tilt wall can then be considered to superpose on the misfit dislocation 

array, producing a rotation of the two crystals by an angleφ .  To nonlinear order, the 

presence of the tilt wall changes the length 0λ  for the analysis of sect. 3.1 to 

)2/cos(/0 φλλ =  [36], figure 6.  The misfit condition is expressed in the rotated 'ix  

coordinates: '/' c

yyyb ελ −= .  Actually both λ/'yb and 'c

yyε  are partitioned to the two 

crystals, but the resulting factors of 1/2 cancel.  Here )2/sin()2/cos(' φφ zyy bbb −=  

and )2/(cos' 2 φεε c

yy

c

yy = .  Poisson terms of order )2/(sin 2 φ  are completely negligible 

and nearly cancel for the relaxed arrangement anyway.  Hence the misfit spacing that 

relieves long range stress is  

 

00 //)]2/tan([ λλφε yzy

c

yy bbb ≈−=− .              (2) 

 

The angle φ  is given by the Frank relation 

                                                                                                    

00

1 /)2/(sin2 λλφ zz bb ≈= − ,              (3) 

where the approximate forms are accurate in the limit of smallφ .  Analogous to the 

nonlinear treatment of phase transformations [36], equations (2) and (3) are solved for 

0λ  and φ  by iteration. 0λ is estimated from the approximate form in equation (2) and 

φ  is determined from the exact (3).  This value of φ  is substituted in the exact (2) to 

give a new 0λ  and iteration proceeds.  The convergence is rapid because of the weak 
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dependence of φ  on 0λ .  As shown explicitly in Appendix C, the rotations partition to 

2/φ±  in the two crystals. 

0λ

m

zb

m

yb

c

yb

A

B

 

Figure 5. Crystal dislocations impinge on the interface to relieve misfit. Their Burgers 

vectors are inclined to the interface, having both misfit, m

yb , and tilt, m

zb , components. 

0λ
λ

2/φ

y

z

y’

z’

 

Figure 6. A tilt wall rotates the terrace plane by 2/φ±  and changes the dislocation 

spacing from 0λ to )2/cos(0 φλλ = . The coordinates ''' zyx  are selected to be 

consistent with figure 1. 

 

 As shown in equation C-5 in Appendix C and as depicted in figure 7 there are 

local distortion fields ji xu ∂∂ / , near the dislocations, where the iu  are displacements.  

These comprise both strains, 2/]//[ ijji xuxu ∂∂+∂∂ , and rotations, 

2/]//[ ijji xuxu ∂∂−∂∂ .  As indicated in figure 4, the strains rapidly converge to zero 

in the fully misfit relieved case for ezz > , leaving only the rotations at long-range. For 

ezz > the strains vanish, so force equilibrium is satisfied. Hence, unlike the misfit 
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strains, which depend on the ratio AB dd / , the rotations partition equally to the two 

crystals [37], which each have the planes corresponding to the coherent terrace planes 

rotated by 2/φ  relative to the interface.  A similar result would apply for a layer 

imbedded in a multilayer or a thin central member of a trilayer. With any bending 

subtracted, it would also apply for a bilayer thin film. 

 

0λ
mz

z

m
zb

 

Figure 7. The local distortions of a tilt wall are represented by the curved lines. For 

mzz >  these distortions rapidly converge to pure rotations, partitioned to 2/φ  in each 

crystal. 

 

3.3 Misfit accommodation by disconnections ( 0,0 ≠≠ φθ ). 

            For the offcut disconnection case, figure 2(c), the nucleation mechanism [38, 

39] tends to favor the incorporation of a large misfit component in the disconnection, 

as in figure 1(c), in turn leading to a component bz’ in the habit plane.  For the special 

case of cube on cube deposition, the component bz’ can be very small [40]: we do not 

consider such a case here.  For the offcut case or when some like-sign disconnections 

occur in a local region during growth, when bz’ ≠ 0,  the imposed disconnection 

density may not completely remove misfit and added misfit dislocations might be 

needed. 

 We first consider the disconnections, depicted in figure 8. The added feature is 

that the step height h equals the smaller of the complementary free-surface steps and 

not necessarily the vicinal step height. The steps cause an interface rotation, θ .  Now, 

the misfit balance and the tilt rotations are performed in the rotated coordinates 'ix  as 
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shown in the figure. A nonlinear treatment, analogous to that for misfit dislocations, is 

available for the disconnection case [36].  The equilibrium disconnection spacing that 

produces a long-range dislocation strain equal and opposite to the coherency strain is  

 

00

]tan[]2/tan([tan)]2/tan([

λ

θ

λ

φθθφθ
ε zyzyzyc

yy

bbbb

h

bb +
≈

−+
=

−+
=−

 .           (4) 

 

The angle ϕ is given by  

 











 −−

−
−−−−

= −

2

)2/cos()2/sin(

2

tan)2/cos()]2/sin()2/cos([
sin2 1

φθφθεθφθφθφθ
φ

c

yyyz

h

bb

 

0

1

2

cossin

2

sin]sincos[
sin2

λ

θθεθθθ
z

c

yyyz b

h

bb
≈













−
−

≅ −

.                   (5) 

Here, the successive approximations become accurate in the limit of small φ and 

smallθ , respectively.  Evidently, when θ  is zero, equations (4) and (5) reduce to (2) 

and (3), respectively.  Just as for the misfit dislocation array cases (figure 2a and b), 

the lattice rotations in the disconnection case partition equally when ezz > , in accord 

with equation C-5 in Appendix C, and there is no dependence on the ratio AB dd / .  

When 0λ  is increasingly large, the angle φ  becomes so small as to be negligible. 

 

0λ

c

yb m

yb

m

zb

'm

zb'm

yb

'c

yb

'c

zb

 

 

Figure 8 Schematic illustration showing the disconnection content of an interface, 

with Burgers vector components resolved in the terrace (upper) and habit plane 

(lower) frames [19, 20 ]. The terrace plane is inclined at an angle θ to the horizontal 
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habit plane. Coherency strain is represented by the equivalent “coherency” defect 

content, cyb . The x-axis points out of the page.  

 

 In general the disconnections from vicinal steps do not remove all the 

coherency strain.  The disconnection spacing λ0 is known so equation (2) gives the 

portion of the strain removed (or added), cv

yyε . The difference between this value and 

c

yyε  is the portion of the strain to be removed by misfit dislocations, either in-plane or 

inclined.  The nominal spacing of these defects can be determined from equation (2) 

and (4) in the usual manner.   Actually, while the strain portions are known, and hence 

the numbers of the two types of defects, the spacings λ0 do not remain constant.  The 

spacings rearrange in a somewhat nonuniform manner so that the total strain energy 

of the defects is minimized.  The consequence is that the mz distance where the strain 

becomes uniform is somewhat smaller than the smaller of the two individual uniform 

spacings.  There could be a similar mixture of the two types of misfit dislocations, 

although in that case only the dislocations with in-plane Burgers vectors would 

rearrange to minimize strain energy: The inclined dislocations would be sessile for in-

plane motion.  The determination of the effective value of φz
 
for such superposed 

arrays
 
becomes more complicated.

 

The convergence of the strains to zero is less rapid, reflecting the variation in spacings 

of the two types of defects, but is still of the order of the average spacing of the 

defects.  Hence, φz will still be much less than the characteristic distance, say d
B
, for 

the superposed arrays. In principle, the disconnections could even increase misfit 

strain, although this is not commonly expected. The major role of the vicinal steps is 

to augment island (disc or spherical segment) nucleation there during deposition [38, 

39].  Elastic energy has a role (not considered in detail in the original papers) but 

surface energy is a major factor.  The latter factor may dominate, allowing the 

unfavorable elastic energy nucleus to form.   

  

 Hence, there typically should be no effect of relative layer thicknesses on the 

partitioning of rotations, provided that the layer thickness φ
zd

B > . Other effects, such 

as differing elastic constants, would partition rotations at the larger size scale, 

Page 13 of 28

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

analogous to the misfit strains considered here, but these effects vanish in the 

isotropic elastic case. When φ
zd

B < , i.e. for widely spaced misfit defects (inclined 

dislocations or disconnections), the local rotations become a complicated function of 

position. The net rotation may be less than in the large z limit.  Of course the net 

rotation becomes small when the misfit defects are widely spaced, so this limit does 

not represent a very important case. 

 

4. Applications 

 

One example of each of the three interface types in figure 2 and one case of 

superposed types (a) and (c) are discussed in this section. In each example, no long 

range coherency strain persists, i.e. 0=+ m

yy

c

yy εε . We focus on the characteristic 

distances mz and φz : in the first example only mz  is meaningful: in the second and 

third examples φzzm = : in the fourth example, φzzm ≠ . 

4.1   Misfit dislocation array with in-plane b: 0,0 == φθ  

An example of this case is the growth of (001)GaAs on (001) Si substrates, as 

illustrated in figure1(a) from the work of Xing et al. [31]. The lattice parameters for 

these crystals at room temperature are 0.5653nm and 0.5431nm respectively, 

giving 0401.0−=== cc

xx

c

yy εεε . An orthogonal array of ><1102/1 edge dislocations 

with spacing nmb
c

yy

m

y

e 7656.9/ == ελ  would accommodate this misfit. Using weak-

beam TEM, Eaglesham et al. [41] have observed defect arrays consistent with this 

proposition as shown in figure 9, although 60º  ><1012/1  dislocations were also 

found to be present. Thus, ec
z λ≈  is about 10nm in this high misfit case. No tilting is 

anticipated (provided the zb components of the 60º dislocations sum to zero). 
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Figure 9. Weak beam TEM image showing one array of an orthogonal network of 90° 

½<110> dislocations in (001) GaAs:Si [31]. 

4.2   Misfit dislocation array with out-of-plane b: 0,0 ≠= φθ : 

Du and Flynn used MBE to grow epitaxial films of hcp and fcc materials on bcc 

substrates [14]. Very thin films were observed by X-ray diffraction to be 

homogeneously strained to be commensurate with the substrate, but this coherency 

strain was relieved in thicker deposits. The thicker films were also tilted by values up 

to several degrees: for example, (110) films of Cu grown on (211) substrates of Mo 

were tilted by °±° 1.034.7  about Cu]011[ . This observation can be understood in terms 

of misfit relief along MoCu ]101/[]001[ by equal numbers of Cu]011[2/1  and Cu]110[2/1  

dislocations gliding on Cu)111(  [42]. These defects would lie in the interface 

along Cuy ]001//[ , with zero overall screw component, xb , where Cux ]101//[ . Their 

identical Cuzb ]011[4/1= components produce the tilting. The lattice parameters for Cu 

and Mo are 0.3615nm and 0.3147nm respectively, giving the extremely large misfit 

2079.0)2/1ln( −=∆−= Mo

c

yy aaε  (c.f. 2072.0/ >=<∆ aa ). The Burgers vector 

components are nmab
im

y 2006.02/ == , and nmab Cu

m

z 1278.04/2 −=−= , so the 

approximate forms of equations (2) and (3) give nm9649.00 =λ and 

°= 5889.7φ respectively. With the iteration procedure described in section 3.1 these 

values change to )0041.1,004.1,0057.1( nmnmnm  and )2975.7,2979.7,2860.7( °−°−°− , 

where successive iterations are listed in sequence. This rotation of the deposited film 

by °30.7  is clockwise about Cu]011[ and is near the centre of the experimental 

accuracy range. Thus, mz and φz  are equal to about 1nm in this case. 

 Relevant to the present analysis, when inclined dislocations are present they 

tend to group in areas where only one Burgers vector is present among the possible 

variants.  This would give another size scale in the strain/rotation partitioning. 

However, in crystals of lower symmetry or for interfaces of lower symmetry, there 

may be only one possible inclined-type dislocation.  The same methodology as 

described here would apply to thin films formed by a decomposition to form pearlite 
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or to thin plates formed as in situ composites by solidification or by heavy 

deformation as for wire drawing [43]. 

 

4.3 Misfit disconnection array: 0,0 ≠≠ φθ  

Disconnection arrays have been observed using TEM in parent-martensite interfaces 

[19, 20]. In this case, the disconnections are mobile, and form arrays as in figure 8 

with spacings close to the equilibrium value, eλ . (In general, a second array of 

dislocations, inclined to the disconnection array, is present in the interface for 

complete misfit accommodation).  Figure 10 shows a disconnection array in Ti-

10wt.%Mo [44], and we compute the value of θ  andφ using equations (4) and (5).  

Equation. (4) can be written 

0tan])2/tan()[(tan])2/tan([ 11

2 =++−++ ++
c

yyiyiz

c

yyiziy hbbhbb εθφεθφ .   (6) 

 

One can start with the linear result 1φφ =i , and subsequently solve expression (6) for 

the up-dated 1+iθ . Then the updated 1+iφ  can be found using eq. (5) in the 

form ( )iii f φθφ ,11 ++ = . Convergence is rapid since 1+iφ
 
depends only weakly on iφ . 

For this example hα = 0.2556 nm, hβ = 0.2678 nm and 038.0=c

yyε (the strain 

0086.0=c

xxε has been neglected for simplicity). The values of βααβ ωωφθ ,,,,/ hh  are 

shown in the Table. Evidently, φ  is small in this case and the approximate (linear) 

forms of equations (4) and (5) are satisfactory. In fact, this is the case for most 

martensitic transformations (which involve modest volume changes). The calculated 

values are consistent with experimental observations, though the uncertainties in the 

latter are of the order °±1 and °± 25.0  for ω and φ  respectively in ideal conditions. 

Only in exceptional cases would the non-linear corrections be needed; an example 

would be the martensitic transformation in a hypothetical Ti alloy with the same value 

of c

yyε as above but with αβ hh /  = 1.15, as shown in the Table. A further real example 

arises in Pu-Ga alloys, where °≈ 6φ  and αβ hh /  = 1.2 [45]. The rotation produced in 
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the vicinity of individual disconnections can be discerned in TEM images of defects 

with large values of zb , such as those observed in Ti:TiH interfaces [46]. 

For Ti10wt%Mo, the calculated value of eλ  for disconnections with the smallest b is 

1.26nm [20]. However, the disconnections observed in figure 10 are ‘double’ 

disconnections, (2b, 2h) with double spacing; thus em
zz λφ

2≈= in this case. 

Furthermore, if the LID is considered to be individual twinning dislocations with b 

parallel to [ ]α0211 , their calculated spacing would be 7.16 nm, producing a rotation 

°= 26.0φ  [20]. If these defects accumulate into micro-twins, as is observed 

experimentally [47], the resulting value of φzzm = increases to become equal to the 

average twin spacing. 

 

 

Figure 10. Transmission electron micrograph of a parent-martensite interface in Ti-

10wt.%Mo [44]. The electron beam is oriented parallel to the disconnection array, as 

in figure 8. 

 

Table: Step height ratios and habit plane parameters for “Ti” obtained by the linear 

and non-linear forms of equations (4) and (5). All angles are expressed in degrees. 

  

αβ hh /
 

 

θ  

 

φ  

 

αω
 

 

βω
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Linear 

Non-Linear 

 

1.048 

 

 

10.8609 

10.8727 

 

0.5286 

0.5292 

 

10.5966 

10.6080 

 

11.1252 

11.1373 

 

Linear 

Non-Linear 

 

1.15 

 

 

10.0091 

10.0934 

 

1.5169 

1.5299 

 

9.2507 

9.3284 

 

10.7676 

10.8583 

 

 A special case occurs for some offcut crystals where disconnections form at 

the former free surface steps on the substrate, but no added misfit dislocations form.  

Hence the coherency strain is not completely relaxed.  The above derivations are still 

applicable for this case, but λ replaces λ0 in equation (4) and the corresponding strain 

is only a portion of the equilibrium strain that would completely remove misfit.   

 

4.4 Misfit dislocation array and superposed disconnection array: 0,0 ≠≠ φθ  

 

Aindow and Pond [15] studied the variation of tilting for )111( CdTe and )001( Si 

films on )0001( and )2101(  Al2O3 substrates, respectively. Substrates were cut with a 

range of vicinal angles, vφ , and the resulting tilt of the deposited layer measured by X-

ray diffraction. The observed tilts were found to be consistent with the formation of 

disconnections, as illustrated for the Si: Al2O3 case in figure 1(c). For the range of 

vicinal angles investigated, these defects are widely spaced, and therefore contribute 

minimally to the accommodation of misfit. In the Si: Al2O3 case, misfit was 

accommodated by a non-orthogonal network of ]110[2/1 and ]011[2/1 dislocations with 

spacings about 4nm, as shown in figure 11 [48]. Since their Burgers vectors are 

parallel to  
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Figure 11. Weak beam TEM image of misfit dislocation array in )001( Si deposited 

on )2101(  Al2O3 [48]. 

the substrate terrace planes, they do not contribute to film tilting in the first 

approximation. The CdTe:Al2O3 case is similar, although the misfit dislocation array 

(thought to be a triangular network of in-plane CdTe>< 0112/1  dislocations) was not 

imaged directly. Thus, the observed tilts,φ , are produced by the zb  components of the 

disconnection array, and Aindow and Pond [15] correlated these with measurements 

of the vicinal angle of the substrates, figure 12. Vicinal angles can be expressed 

as vAv h λφ /−= , where vλ is the spacing of the vicinal steps (the minus sign is 

necessary for consistency with the sense ofφ  defined in Appendix C), and A
h  is the 

height of the substrate surface steps. Since vABv

z hhb λλφ /)(/ −=≈ , we can 

write vAB hh φφ )/1( −≈ . Thus the slope of a φ -versus- vφ plot is negative when 

AB
hh >  and positive otherwise. The dashed lines in figure 12 represent the ideal 

relation associated with particular disconnections, and these show excellent agreement 

with the least squares fit to the data, solid line.  
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vφ

φ

 

(a) 

vφ

φ

 

(b) 

Figure 12. Correlation of film tilt angle,φ , with surface vicinal angle, vφ , for (a) 

)111( CdTe on )0001( Al2O3 and (b) )001( Si on )2101(  Al2O3. All angles are in units 

of minutes of arc. Solid lines represent the least-squares best-fit to the data, and the 

dashed lines are the ideal relations for specific disconnections [15]. 

 

The co-existence of a misfit dislocation array and an array of disconnections implies 

that mz and φz are not equal. In the Si case for example, nmz
em

4≈≈ λ , whereas 
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nmz
v

60≈≈ λφ  when '20=vφ . The rotationφ will be partitioned. In the 

approximation of equal partitioning employed here, the interface orientations with 

respect to the terraces in the A and B crystals are 2/φθω +=B and 2/φθω −=A  

respectively [20]. Here, v
h λθ /= , where h is the smaller of A

h  or B
h , and  

φωω =− AB . Thus, for CdTe, B, on alumina, A, vBAB hh λω 2/)( += and 

vBAA hh λω 2/)3( +−= , and for Si, B, on alumina, A, vBAB hh λω 2/)3( −= and 

vBAA hh λω 2/)( += . 

 

5. Discussion 

 

             In the foregoing we have identified the characteristic lengths arising from 

interfacial dislocation and disconnection arrays. When residual strain persists the 

elastic misfit and coherency strains are partitioned according to equation (1), the 

characteristic distance for this partitioning being the smaller of the layer thicknesses, 

here B
d . For the relaxed, zero long-range strain case, the two strains are equal and 

opposite when em zzz => . In this case φzzm = for all three interface types illustrated 

in figure 2. For a “mixed” case, such as )001( Si on )2101(  Al2O3, 
mz is determined 

primarily by misfit dislocation spacing, and φz  by the vicinal step spacing, and 

mzz >φ .  The strain partitioning depends on d
B
 but the rotation partitioning is 

independent of d
B
 provided that d

B
 > z

m
 ≈ z

ϕ
 ≈ λ0 . 

 We have presented the above analysis for the plane strain, single-array case.  

However the characteristic lengths, the focus of the present treatment, would be the 

same for the biaxial strain, intersecting-array case as well.  The characteristic lengths 

would also be similar for an imbedded layer or for a layer within a multilayer.  The 

results also have implications for the phase transformation case.  For lath type 

transformation products or for plate-shaped products with large aspect ratios, the 

rotations produced by interface defects should also be fully partitioned when the plate 

thickness is greater than the defect spacing in the interface. 

 

 While the presence of rotations associated with tilt components of dislocations 

and disconnections have long been known, the present results provide explicit results 
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for expected rotations and their partitioning.  Particularly significant is the finding that 

the critical length scale for achievement of long-range rotation partitioning is distinct 

from that characterizing the partitioning of residual long-range elastic strains.  From a 

practical point of view, the dislocation and disconnection sites should provide local 

charged defect centers that can act as traps for electrons, holes and ionic defects such 

as vacancies while the inhomogeneous strain fields also give weak scattering of the 

electronic defects.  The disconnections have smaller Burgers vectors than the misfit 

dislocations in general and thus represent weaker trapping sites, with concordant 

implications for electronic properties.    

 However, the disconnections and inclined-b dislocations with a misfit 

component carry rotations with them, also giving electron scattering.  Indeed the 

deleterious effect of tilt wall components and accompanying rotations has been 

demonstrated for a high Tc superconductor [49].  Understanding the source and 

magnitudes of the rotations provides an opportunity in thin film design. 

 As an example of a method to control the degree of rotation, research on films 

of Ni on Cu agree with the above trends, but with differences in whether the observed 

misfit dislocations are Lomer dislocations with ½ <110> Burgers vectors lying in the 

interface [25, 27, 28] or with in-plane and out-of-plane Burgers vectors inclined to the 

interface [26, 29]. Recent work [50] has shown that near the critical thickness, the 

dislocations are mainly inclined dislocations of this type and that with increasing 

thickness these convert increasingly to Lomer dislocations. Consistent with this 

finding, in-plane bs predominate in high-misfit cases: e.g. they form at island edges, 

whereas out-of-plane bs arise in 2-D growth films where misfit is lower [2]. Thus 

selecting the degree of misfit is a way to control the degree of rotation at an interface 

in such systems. 

 Both the nonlinear pair of equations (4) and (5), derived from the topological 

model for phase transformations [36], and equations (2) and (3) for the misfit case 

involve simultaneous transcendental equations that must be solved by iteration.  Yet 

in many cases, the linear forms of the equations can be used. Then ϕ in equations (3) 

and (5) is linearly related to 1/λ0 and after substitution into equations (2) and (4), the 

latter can be solved directly for λ0.  This is the basis of the initial linear model for the 

topological model [19, 20], where for the phase transformation case one first solves 
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for θ assuming ϕ to be zero and then superposes the tilt wall array with the attendant 

partitioned rotation ϕ.  

  

 

6. Summary 

 

The strains and rotations arising in thin films deposited on misfitting and/or offcut 

substrates have been quantified for the case of elastically isotropic materials. These 

distortions become homogeneous at distances greater than a characteristic distance 

related to the spacing of interfacial defects, 0λ≈m
z . Strains are partitioned in a 

manner dependent on the ratio AB
dd /  when the interfacial defects present do not 

fully compensate the coherency strain. On the other hand, rotations may be finite even 

in the fully compensated case, and their partitioning does not depend on AB
dd / , 

provided mB
zd >> . Expressions for the magnitude of the strains and rotations are 

derived for topologically distinct interfacial defect arrays, (i) dislocations with b 

parallel to the substrate terrace, )0,0( == φθ (ii) dislocations with b inclined to the 

substrate terrace, )0,0( ≠= φθ  (iii) disconnections )0,0( ≠≠ φθ , and (iv) mixed 

dislocation/disconnection arrays, )0,0( ≠≠ φθ . Case (iv) is unlike the others in the 

sense that two characteristic distances arise, associated with the misfit dislocation and 

disconnection spacings. Non-linear treatments are presented, and shown to correspond 

with simpler linear versions for small values of θ  andφ . The analysis is applied to 

one example of each of the four cases, and excellent agreement is obtained between 

calculated and experimentally observed values.  

 

 

 

Appendix A.  Reference states 

 The reference states are defined by the dichromatic patterns of interfacial 

symmetry theory [20]. The natural dichromatic pattern is created by the union of the 

two crystal lattices with terrace planes aligned to be parallel. The Burgers vectors of 

the interface coherency dislocations are defined with respect to this reference. The 
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coherent dichromatic pattern is the union when the lattices are uniaxially strained into 

coherence on the terraces, and the Burgers vectors and step heights h of 

disconnections and misfit dislocations are defined in this reference state. 

 While we consider the static interface here, the defect content of the interface 

can also be determined from the lattice transformation between the two crystals.  The 

defect content per unit length, c
b , of a coherent interface with respect to the natural 

reference can be calculated from the Frank-Bilby equation as follows 

vABb )(
11 −− −= ncnc

c ,                 (A1) 

where v is a unit length probe vector along the coherent terrace, the 

matrix nc A represents the homogeneous deformation that transforms the natural A-

lattice into the coherent A-lattice, and similarly for nc B . 

 

Appendix B.  Coherency strain 

 The partitioning of coherency strains arises from the condition that the net 

Newtonian force must vanish at equilibrium on a plane normal to the interface.  This 

corresponds to a balance of stresses.  In turn the stresses in general would be given by 

an expression containing first order and higher order displacement derivatives, with 

coefficients corresponding to higher order elastic constants.  In the small strain limit 

only the Hooke’s law, linear term is significant.  The stress is then linear in true strain 

so that the stress balance gives the strain balance  

)/ln()/ln( BiB

yy

AiA

yy aaaa ==−=− εε ,          (B1) 

which
 
yields for the interface strain 

2/1)( BAi aaa = .               (B2) 

Thus i
a is the geometric mean of A

a and B
a .

  
Since 2/)( BA aaa +>=<  is the 

arithmetic mean and BA
aaa −=∆ , we have 

4/)()( 222 aaa i ∆+=>< .             (B3) 
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This is the standard relation between the geometric and arithmetic means.  In the 

small strain limit 

AAABAiA

yy aaaaaaaa 2/)]/(1ln[2/1)/ln(2/1)/ln( ∆−≈∆−===ε ,   (B4) 

and 

BB

yy aa 2/∆−≈ε .             (B5) 

The difference between the magnitudes of these is of order 2)( a∆ and is negligible to 

linear elastic order. Hence to linear elastic order, strain partitioning gives partitioning 

of a∆ , so that one can use the simpler strain definition  

><∆≈=− aa
B

yy

A

yy 2/εε .              (B6) 

To summarize, when all anisotropic and nonlinear elastic effects are absent as well as 

geometric effects associated with differing layer thicknesses, the coherent lattice 

parameter at the interface is always given by the geometric mean, 2/1)( BAi aaa = .  

 An alternative approximation is to set the engineering strains equal, i.e. 

AiABBi aaaaaa /)(/)( −=− . This gives ><= aaaa
BAi

/ , i.e. the square of the 

geometric mean divided by the arithmetic mean [20]. Thus, there will always be a 

slight inequality of lattice parameter changes when there is equal (true or engineering) 

strain partitioning, i.e. )()( BiiA aaaa −≠− ).  However, in the small strain limit the 

difference between these alternatives is negligible, and the simpler arithmetic mean 

can be used; this is the usual assumption in the literature, e.g. [19].  

 

Appendix C. Crystal rotations 

 In order to simplify the following equations, which are understood to apply to 

the ',',' zyx coordinates of figure 7, we drop the primes.  For a single tilt dislocation 

zb  in the array spaced byλ , at the origin in the coordinates of figure 7, the 

displacement fields as given by equation (3-45) in [16], are 
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222 ))(1(2
tan

2 zy

yz

y

zb
u z

y νπ
,                                              (C-1) 

 










+−

+
++

−

−
−=

222

22
22

))(1(4

)(
)ln(

)1(4

)21(

2 zy

zy
zy

b
u z

z νν
ν

π
,                          (C-2) 

where ν  is Poisson’s ratio.  This gives the rotation  










+−

−
+

+

−
=









∂

∂
−

∂

∂
=

222

22

22 ))(1(2

)(

)(22

1

zy

yzz

zy

zb

z

u

y

u zyz
zy νπ

ω .                 (C-3) 

In reduced coordinates λ/zZ =  and λ/yY = , this expression becomes 










+−

−
+

+

−
=

222

22

22 ))(1(2

)(

)(2 ZY

YZZ

ZY

Zbz
zy νπλ

ω .                                          (C-4) 

For the nth dislocation in the array, Y  becomes nY +  and one can sum the rotations 

over the n dislocations from −∞=n  to ∞+  using equations (19-72) and (19-73) in 

[16].  The result is  

 








−−
−

+
−

−
=

2)2cos2)(cosh1(2

)12cos2(cosh

)2cos2(cosh

2sinh

2 YZ

YZZ

YZ

Zbz
zy ππν

πππ
ππ

π
λ

ω .     (C-5) 

The local rotations obviously vary considerably when 1<Z , i.e. when λ<z . For 

large Z  the second term in brackets vanishes and the first term becomes unity.  

Hence, the rotation φ  properly partitions: λφω 2/2/ zzy b−==   for 1>>z  and 

λφω 2/2/ zzy b=−=  for 1−<<z .       

References 

 

[1] F.C. Frank and J.H. van der Merwe, Proc. Roy. Soc. (London) 198 (1949) 

p.205. 

[2] R. Beanland, C.J. Kiely and R.C. Pond, in Handbook on Semiconductors, 

T.S.Moss and S.Mahajan eds., North- Holland, Amsterdam, 1994 p.1149. 

[3] S.C. Jain, A.H. Harker and R.A. Cowley, Phil. Mag. A75 (1997) p.1461. 

[4] E.A. Stach, R. Hull, R.M. Tromp, F.M. Ross, M.C. Reuter and J.C. Bean, Phil. 

Mag. A80 (2000) p. 2159. 

Page 26 of 28

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

[5]  L.B. Freund and S. Suresh, Thin Film Materials, Cambridge University Press, 

Cambridge, 2003. 

[6} O. Igarishi, J. Appl. Phys.42 (1971) p.4035. 

[7] J.Nagai, J. Appl. Phys. 45 (1974) p. 3789. 

[8] G.H.Olsen and R.T.Smith, Phys. Stat. Sol. (a) 31 (1975) p.739. 

[9] O. Igarishi, Jap. J. Appl. Phys.15 (1976) p.1435. 

[10] W.E. Hoke, P.J. Lemonias and R. Traczewski, Appl. Phys.Letts. 44 (1984) 

p.1046. 

[11] J.H. Claassen, S.A. Wolf, S.B. Quadri and L.D. Jones, J.Crystal Growth, 81 

(1987) p.557. 

[12] M.Shigeta, Y.Fujii, A.Ogara, K. Furukawa, A. Suzuki and S. Nakajima, 

J.Crystal Growth 93 (1988) p.766. 

[13] G. Bai, D.N. Jamieson, M.A. Nicolet and T. Vreeland, in Epitaxy of 

Semiconductor Layered Structures, R.T. Tung, L.R. Dawsonand, R.L. Gunshor, 

eds. Materials Research Society Symposium Proceedings 102, Materials Research 

Society , Pittsburgh, 1988 p.259. 

[14] R.Du and C.P. Flynn, J. Cond. Matter 2 (1990) p.1335. 

[15] M. Aindow and R.C. Pond, Phil. Mag. 63 (1991) p.667. 

[16] J. Dundurs, in Mathematical Theory of Dislocations, T. Mura ed.,Am. Soc. 

Mech. Engin., New York, 1969, p. 70. 

[17]. J.P. Hirth, D.M. Barnett and J. Lothe, Phil. Mag. 40A (1979) p.39. 

[18] J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth. 29 (1975) p.273. 

[19] R.C. Pond, S. Celotto and J.P. Hirth, Acta Mater.51 (2003) p.5385. 

[20]  R.C. Pond, X. Ma, Y.W. Chai and J.P. Hirth, in Dislocations in Solids, 

F.R.N. Nabarro and J.P. Hirth, eds., Vol. 13, Elsevier, Amsterdam, 2007, p.225. 

[21] M.S. Wechsler, D.S. Lieberman and T.A. Read, Trans AIME 197 (1953)         

p.1503. 

      [22] J.S. Bowles and J.K. Mackenzie, Acta Metall. 2 (1954) p.129. 

[23] R.C. Pond, in Dislocations in Solids. F.R.N. Nabarro, ed., Vol. 8, North-

Holland, Amterdam, 1989, p.1. 

[24].  J.P. Hirth and R.C. Pond, Acta Mater. 44 (1996) p.4749. 

[25]  J.W. Matthews, Phil. Mag. 13 (1966) p.1207. 

[26]  E.R. Thompson and K.R. Lawless, Appl. Phys. Lett. 9 (1966) p.138. 

[27]  J.W. Matthews and J.L. Crawford, Thin Solid Films 5 ((1970) p.187. 

Page 27 of 28

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

[28]  K. Shinohara and J.P. Hirth, Thin Solid Films 16 (1973) p.346. 

[29]  A.M. Beers and E.J. Mittemeijer, Thin Solid Films 48 (1978) p.367. 

[30]  R. Hull and J.C. Bean, Appl. Phys. Lett. 54 (1989) p.925. 

[31] Y.R. Xing, R.W. Devenish, T.B. Joyce, C.J. Kiely, T. Bullough and P.J. 

Goodhew, Appl. Phys. Letts. 60 (1992) p.616. 

[32]  J.W. Matthews, Phil Mag. 29 (1974) p.797. 

[33]  J.P. Hirth and X. Feng, J. Appl. Phys. 67 (1990) p.3343. 

[34] J.P. Hirth and J. Lothe, Theory of Dislocations, Krieger, Melbourne, FL, 

1992, Chap. 19. 

[35]. K. Shinohara and J. P. Hirth, Phil. Mag. 27 (1973) p.883. 

[36]  R.C. Pond and J.P. Hirth, Phil. Mag. in press. 

[37]  J.P. Hirth, R.C. Pond and J. Lothe, Acta Mater. 54 (2006) p.4237. 

[38] G.A. Bassett, Phil. Mag. 3 (1958) p.72. 

[39] B.K. Chakraverty and G.M. Pound, Acta Metall. 12 (1964) p.851. 

[40] J. Hornstra and W.J. Bartels, J. Cryst. Growth 44 (1978) p. 513. 

[41] D. Eaglesham, M. Aindow and R.C. Pond, Materials Research Society 

Symposium Proceedings, 116, Materials Research Society, Pittsburgh, 1987) 

p.267. 

[42] P.J. Dugdale, R.C. Pond and R. Beanland, Mat. Sci. Forum 126 (1993) p.281. 

[43] K. Han, J.D. Embury, J.J. Petrovic and G.C. Weatherly, Acta Mater. 46 

(1998) p.4691. 

[44] D. Klenov, Ph.D. Thesis, University of Birmingham, U.K., 2002. 

[45] A.J. Schwartz, H. Cynn, K.J.M. Blobaum, M.A. Wall, K.T. Moore, W.J. 

Evans, D.L. Farber, J.R. Jeffries and T.B. Massalski, Prog. in Mat. Sci. 54 (2009) 

p.909. 

[46] J.M. Howe, R.C. Pond and J.P. Hirth, Prog. in Mat. Sci. 54 (2009) p.792. 

[47] C. Hammond and P.M. Kelly, Acta Metall. 17 (1969) p.869. 

[48] M. Aindow, D. Eaglesham and R.C. Pond, Inst. Phys. Conf. Ser. 93, vol. 2 

(1988) p. 405. 

[49]  D. Dimos, P. Chaudhari, J. Mannhart and F.K. Le Goues, Phys. Rev. Lett. 61 

(1988) p.219. 

[50] D. Mitlin, A. Misra, T.E. Mitchell, J.P. Hirth and R.G. Hoagland, Phil. Mag. 

85 (2005) p. 3379. 

Page 28 of 28

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


