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Introduction

Thin deposited films are widely exploited in modern technology. These films are often partially coherent, exhibiting arrays of dislocations at the interface between the misfitting film and its substrate. Such dislocations may accommodate coherency strains to some extent, but may also give rise to crystal rotations. Both these features affect the physical properties of a film, and a great deal of research has been directed at elucidating this. Understanding the role of dislocations in mitigating coherency strains was pioneered by Frank and van der Merwe in 1949 [1], and several reviews summarize the current position [START_REF] Beanland | Handbook on Semiconductors[END_REF][START_REF] Jain | [END_REF][4][START_REF] Freund | Thin Film Materials[END_REF]. Rigid body rotations of hetero-epitaxial films away from the nominal orientation relationship were first reported by Igarishi in 1971 [6]: he attributed the rotations to dislocations in the interface with Burgers vector components inclined to the interface, thereby producing a small-angle tilt wall superposed on an underlying misfit array. Since that time numerous observations of rotated films have been reported and their consequences discussed [7][8][9][10][11][12][START_REF] Bai | Materials Research Society Symposium Proceedings[END_REF][START_REF] Du | [END_REF][15]. This paper focuses on two aspects of coherency strains and rotations in a thin film, B, deposited on a substrate A: characteristic distances and partitioning. In the immediate vicinity of an interface (parallel to the plane x,y ) the strain field has a complex form. However, at distances greater than m z any residual misfit strain (i.e. coherency strain uncompensated after the introduction of misfit dislocations) becomes constant.

Moreover, these strains are partitioned along y into A Here, we compare the values of m z and φ z ; in general these depend on the elastic properties of A and B [START_REF] Dundurs | Mathematical Theory of Dislocations[END_REF], but we consider only the isotropic homogeneous case for illustration [START_REF] Hirth | [END_REF]. The partitioned values A yy ε and B yy ε are known to depend on the relative thicknesses of A and B, A d and B d [18]. However, in general, the partitioning into A φ and B φ does not depend on A d and B d , as has become clear only recently from studies of interfaces in phase transformations [19,[START_REF] Pond | Dislocations in Solids[END_REF]. Finally, we do not consider the plastic deformation that may lead to the interfaces we describe. Instead we deal with the properties of static interfaces once they have formed.

Coherent precipitates or martensite plates are subjected to biaxial stresses and strains arising from coherency. In addition, matrix compatibility constraints often lead to added stresses acting normal to the interface. However in the topological model [19,[START_REF] Pond | Dislocations in Solids[END_REF] or the closely related phenomenological theory of phase transformations [START_REF] Wechsler | [END_REF]22], accommodation effects are treated separately and the models are applied to an infinite bicrystal with free surfaces normal to the interface. Hence, the models yield plane stress solutions that are directly applicable to the thin film case treated here. The details of rotational partitioning have only recently been considered in phase transformations and have not been treated in terms of characteristic distances for thin films, the basis for the present work. For simplicity, we treat the case of isotropic, homogeneous elasticity. The results are qualitatively similar to those for the anisotropic elastic case, or the nonlinear elastic case in atomistic simulations.

There have been many analyses of the stresses and properties of planar coherent interfaces and their relaxation by misfit dislocations, reviewed in [START_REF] Beanland | Handbook on Semiconductors[END_REF][START_REF] Jain | [END_REF][4][START_REF] Freund | Thin Film Materials[END_REF]. .Our focus here is on the narrower issue of interfaces with coherent terraces and with steps or disconnections relieving misfit, which have received little attention. The planar interface is treated briefly, but as a reference basis for the other cases considered.

Interface Defects

Evidently, the nature of defects at a particular interface is a key factor governing the resulting characteristic distances and partitioning. The two principal categories of line defects are dislocations and disconnections [START_REF] Pond | Dislocations in Solids[END_REF][START_REF] Hirth | [END_REF]: the former are line-defects with Burgers vector b, whereas the latter have dislocation and step character, b and h.

Many observations of dislocations have been reported [25][26][27][28][29][30], some with ] 0 , , [ . Figure 1(a) is a high-resolution TEM image showing the two types in an epitaxial interface between a deposited GaAs film and a Si substrate [31]. [15]. For example, films are often deposited on vicinal substrate surfaces comprising an array of equally spaced steps. When overgrown, these steps may become disconnections, but this array is unlikely to fully accommodate the misfit.
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Consequently, additional dislocations may be introduced as in figure 2 3. Elastic distortions.

Misfit without rotation (

0 = φ ).
As an example of the simple misfit case, figure 2(a), we consider one parallel array of dislocations, with an attendant plane strain elastic field. Reference states for the definition of Burgers vectors are summarized in Appendix A. The general result for strain partitioning is given in Appendix B. For most purposes the simple engineering strain of equations (B5) and (B6), which also implies equal partitioning of the difference in lattice parameters of the two crystals in the small strain limit, suffices. The results for one array are qualitatively similar to the biaxial case with intersecting arrays: for the latter the form of Hooke's law differs and there are Poisson fields of one array superposed on the other [START_REF] Jain | [END_REF]32,33,[START_REF] Hirth | Theory of Dislocations[END_REF]. For an array of misfit dislocations with spacing 0 λ , figure 3 (where the perfect crystal atom spacings in the y direction are Near the misfit dislocations, r << λ 0 , their elastic fields approach the r ln field present at a distance r from an isolated dislocation. For r ~ 0.1 0 λ , the field becomes the hyperbolic sinh/cosh field of parallel arrays of dislocations [START_REF] Jain | [END_REF]33,[START_REF] Hirth | Theory of Dislocations[END_REF]. For . At free surfaces normal to y, there are also varying surface forces and torques to satisfy the free surface boundary condition, but the accompanying strains and twists are confined to a distance 0 λ ≈ from the free surface [START_REF] Shinohara | [END_REF] and need not be considered here. Beyond this distance, image strains become uniform. For a thin bilayer, these lateral strains would produce bending in a free bilayer. These are eliminated for a thin central member of a trilayer, or a thin layer in a multilayer. 
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The angle φ is given by the Frank relation
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where the approximate forms are accurate in the limit of smallφ . Analogous to the nonlinear treatment of phase transformations [36], equations ( 2) and (3) are solved for As shown in equation C-5 in Appendix C and as depicted in figure 7 there are local distortion fields
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, near the dislocations, where the i u are displacements.

These comprise both strains,
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, and rotations,
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. As indicated in figure 4, the strains rapidly converge to zero in the fully misfit relieved case for e z z > , leaving only the rotations at long-range. For e z z > the strains vanish, so force equilibrium is satisfied. Hence, unlike the misfit 

Misfit accommodation by disconnections (
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For the offcut disconnection case, figure 2(c), the nucleation mechanism [38,39] tends to favor the incorporation of a large misfit component in the disconnection, as in figure 1(c), in turn leading to a component b z ' in the habit plane. For the special case of cube on cube deposition, the component b z ' can be very small [40]: we do not consider such a case here. For the offcut case or when some like-sign disconnections occur in a local region during growth, when b z ' ≠ 0, the imposed disconnection density may not completely remove misfit and added misfit dislocations might be needed.

We first consider the disconnections, depicted in figure 8. The added feature is that the step height h equals the smaller of the complementary free-surface steps and not necessarily the vicinal step height. The steps cause an interface rotation, θ . Now, the misfit balance and the tilt rotations are performed in the rotated coordinates ' shown in the figure . A nonlinear treatment, analogous to that for misfit dislocations, is available for the disconnection case [36]. The equilibrium disconnection spacing that produces a long-range dislocation strain equal and opposite to the coherency strain is
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The angle ϕ is given by
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Here, the successive approximations become accurate in the limit of small φ and smallθ , respectively. Evidently, when θ is zero, equations ( 4) and ( 5) reduce to [START_REF] Beanland | Handbook on Semiconductors[END_REF] and (3), respectively. Just as for the misfit dislocation array cases (figure 2a When 0 λ is increasingly large, the angle φ becomes so small as to be negligible. In general the disconnections from vicinal steps do not remove all the coherency strain. The disconnection spacing λ 0 is known so equation ( 2) gives the portion of the strain removed (or added), cv yy ε . The difference between this value and c yy ε is the portion of the strain to be removed by misfit dislocations, either in-plane or inclined. The nominal spacing of these defects can be determined from equation ( 2)

and ( 4) in the usual manner. Actually, while the strain portions are known, and hence the numbers of the two types of defects, the spacings λ 0 do not remain constant. The spacings rearrange in a somewhat nonuniform manner so that the total strain energy of the defects is minimized. The consequence is that the m z distance where the strain becomes uniform is somewhat smaller than the smaller of the two individual uniform spacings. There could be a similar mixture of the two types of misfit dislocations, although in that case only the dislocations with in-plane Burgers vectors would rearrange to minimize strain energy: The inclined dislocations would be sessile for inplane motion. The determination of the effective value of φ z for such superposed arrays becomes more complicated.

The convergence of the strains to zero is less rapid, reflecting the variation in spacings of the two types of defects, but is still of the order of the average spacing of the defects. Hence, φ z will still be much less than the characteristic distance, say d B , for the superposed arrays. In principle, the disconnections could even increase misfit strain, although this is not commonly expected. The major role of the vicinal steps is to augment island (disc or spherical segment) nucleation there during deposition [38,39]. Elastic energy has a role (not considered in detail in the original papers) but surface energy is a major factor. The latter factor may dominate, allowing the unfavorable elastic energy nucleus to form.

Hence, there typically should be no effect of relative layer thicknesses on the partitioning of rotations, provided that the layer thickness analogous to the misfit strains considered here, but these effects vanish in the isotropic elastic case. When φ z d B < , i.e. for widely spaced misfit defects (inclined dislocations or disconnections), the local rotations become a complicated function of position. The net rotation may be less than in the large z limit. Of course the net rotation becomes small when the misfit defects are widely spaced, so this limit does not represent a very important case.

Applications

One example of each of the three interface types in figure 2 Du and Flynn used MBE to grow epitaxial films of hcp and fcc materials on bcc substrates [START_REF] Du | [END_REF]. Very thin films were observed by X-ray diffraction to be homogeneously strained to be commensurate with the substrate, but this coherency strain was relieved in thicker deposits. The thicker films were also tilted by values up to several degrees: for example, ( 110 
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Disconnection arrays have been observed using TEM in parent-martensite interfaces [19,[START_REF] Pond | Dislocations in Solids[END_REF]. In this case, the disconnections are mobile, and form arrays as in figure 8 with spacings close to the equilibrium value, e λ . (In general, a second array of dislocations, inclined to the disconnection array, is present in the interface for complete misfit accommodation). Figure 10 shows a disconnection array in Ti-10wt.%Mo [44], and we compute the value of θ andφ using equations ( 4) and ( 5).

Equation. ( 4) can be written
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One can start with the linear result . Evidently, φ is small in this case and the approximate (linear) forms of equations ( 4) and ( 5 Table : Step height ratios and habit plane parameters for "Ti" obtained by the linear and non-linear forms of equations ( 4) and [START_REF] Freund | Thin Film Materials[END_REF]. All angles are expressed in degrees. A special case occurs for some offcut crystals where disconnections form at the former free surface steps on the substrate, but no added misfit dislocations form.

Hence the coherency strain is not completely relaxed. The above derivations are still applicable for this case, but λ replaces λ 0 in equation ( 4) and the corresponding strain is only a portion of the equilibrium strain that would completely remove misfit. Al 2 O 3 [48].

the substrate terrace planes, they do not contribute to film tilting in the first approximation. The CdTe:Al 2 O 3 case is similar, although the misfit dislocation array (thought to be a triangular network of in-plane

CdTe > < 0 1 1 2 / 1
dislocations) was not imaged directly. Thus, the observed tilts,φ , are produced by the z b components of the disconnection array, and Aindow and Pond [15] correlated these with measurements of the vicinal angle of the substrates, figure 12. Vicinal angles can be expressed

as v A v h λ φ / - =
, where v λ is the spacing of the vicinal steps (the minus sign is necessary for consistency with the sense ofφ defined in Appendix C), and A h is the height of the substrate surface steps. Since

v A B v z h h b λ λ φ / ) ( / - = ≈ , we can write v A B h h φ φ ) / 1 ( - ≈
. Thus the slope of a φ -versus-v φ plot is negative when
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and positive otherwise. The dashed lines in figure 12 represent the ideal relation associated with particular disconnections, and these show excellent agreement with the least squares fit to the data, solid line. , where h is the smaller of A h or B h , and
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. Thus, for CdTe, B, on alumina, A,
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Discussion

In the foregoing we have identified the characteristic lengths arising from interfacial dislocation and disconnection arrays. When residual strain persists the elastic misfit and coherency strains are partitioned according to equation ( 1 We have presented the above analysis for the plane strain, single-array case.

However the characteristic lengths, the focus of the present treatment, would be the same for the biaxial strain, intersecting-array case as well. The characteristic lengths would also be similar for an imbedded layer or for a layer within a multilayer. The results also have implications for the phase transformation case. For lath type transformation products or for plate-shaped products with large aspect ratios, the rotations produced by interface defects should also be fully partitioned when the plate thickness is greater than the defect spacing in the interface.

While the presence of rotations associated with tilt components of dislocations and disconnections have long been known, the present results provide explicit results for expected rotations and their partitioning. Particularly significant is the finding that the critical length scale for achievement of long-range rotation partitioning is distinct from that characterizing the partitioning of residual long-range elastic strains. From a practical point of view, the dislocation and disconnection sites should provide local charged defect centers that can act as traps for electrons, holes and ionic defects such as vacancies while the inhomogeneous strain fields also give weak scattering of the electronic defects. The disconnections have smaller Burgers vectors than the misfit dislocations in general and thus represent weaker trapping sites, with concordant implications for electronic properties.

However, the disconnections and inclined-b dislocations with a misfit component carry rotations with them, also giving electron scattering. Indeed the deleterious effect of tilt wall components and accompanying rotations has been demonstrated for a high T c superconductor [49]. Understanding the source and magnitudes of the rotations provides an opportunity in thin film design.

As an example of a method to control the degree of rotation, research on films of Ni on Cu agree with the above trends, but with differences in whether the observed misfit dislocations are Lomer dislocations with ½ <110> Burgers vectors lying in the interface [25,27,28] or with in-plane and out-of-plane Burgers vectors inclined to the interface [26,29]. Recent work [50] has shown that near the critical thickness, the dislocations are mainly inclined dislocations of this type and that with increasing thickness these convert increasingly to Lomer dislocations. Consistent with this finding, in-plane bs predominate in high-misfit cases: e.g. they form at island edges, whereas out-of-plane bs arise in 2-D growth films where misfit is lower [START_REF] Beanland | Handbook on Semiconductors[END_REF]. Thus selecting the degree of misfit is a way to control the degree of rotation at an interface in such systems.

Both the nonlinear pair of equations ( 4) and ( 5), derived from the topological model for phase transformations [36], and equations ( 2) and (3) for the misfit case involve simultaneous transcendental equations that must be solved by iteration. Yet in many cases, the linear forms of the equations can be used. Then ϕ in equations ( 3) and ( 5) is linearly related to 1/λ 0 and after substitution into equations ( 2) and (4), the latter can be solved directly for λ 0 . This is the basis of the initial linear model for the topological model [19,[START_REF] Pond | Dislocations in Solids[END_REF], where for the phase transformation case one first solves While we consider the static interface here, the defect content of the interface can also be determined from the lattice transformation between the two crystals. The defect content per unit length, c b , of a coherent interface with respect to the natural reference can be calculated from the Frank-Bilby equation as follows

v A B b ) ( 1 1 - -- = n c n c c , ( A1 
)
where v is a unit length probe vector along the coherent terrace, the matrix n c A represents the homogeneous deformation that transforms the natural Alattice into the coherent A-lattice, and similarly for n c B .

Appendix B. Coherency strain

The partitioning of coherency strains arises from the condition that the net Newtonian force must vanish at equilibrium on a plane normal to the interface. This corresponds to a balance of stresses. In turn the stresses in general would be given by an expression containing first order and higher order displacement derivatives, with coefficients corresponding to higher order elastic constants. In the small strain limit only the Hooke's law, linear term is significant. The stress is then linear in true strain so that the stress balance gives the strain balance (B5)

The difference between the magnitudes of these is of order 2 ) ( a ∆ and is negligible to linear elastic order. Hence to linear elastic order, strain partitioning gives partitioning of a ∆ , so that one can use the simpler strain definition
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To summarize, when all anisotropic and nonlinear elastic effects are absent as well as geometric effects associated with differing layer thicknesses, the coherent lattice parameter at the interface is always given by the geometric mean, An alternative approximation is to set the engineering strains equal, i.e. 

/

, i.e. the square of the geometric mean divided by the arithmetic mean [START_REF] Pond | Dislocations in Solids[END_REF]. Thus, there will always be a slight inequality of lattice parameter changes when there is equal (true or engineering) strain partitioning, i.e. ) ( ) (

B i i A a a a a - ≠ -
). However, in the small strain limit the difference between these alternatives is negligible, and the simpler arithmetic mean can be used; this is the usual assumption in the literature, e.g. [19].

Appendix C. Crystal rotations

In order to simplify the following equations, which are understood to apply to 

  yy ε and B yy ε . (Superscripts A and B refer to values of strain or rotation partitioned to the A and B crystals). Similarly, rotational distortions adopt constant values at distances greater than φ z , and are partitioned to the values A φ and B φ . The characteristic distances m z and φ z , as well as the partitioning into A yy ε and B yy ε and A φ and B φ , arise from the superposition of the elastic fields of the defects at the interface on the initial coherency strain in the film.

Figure 1 (

 1 b) is a schematic illustration of the extra {111} planes terminating at the cores of these dislocations[START_REF] Beanland | Handbook on Semiconductors[END_REF].

Figure 1 (Figure 1

 11 Figure 1(c) is a schematic illustration of the formation of a disconnection when a surface step on a ) 2 1 01 (

Figure 2

 2 Figure 2 Schematic illustration of three principal interface topologies.

  (a) or (b). The characteristic distances and partitioning for these possibilities are addressed in sections 3.1 and 3.2 where elastic distortions with 0

  , the coherency strain can be envisioned as arising from a continuous distribution of infinitesimal dislocations. The integral of this distributionper unit length, l , is l / c y b, and this is numerically equal to the total coherency strain, c yy ε (see Appendix A). For the present case this representation of the distribution leads to no loss in rigor. The zero long-range strain condition is satisfied for the equilibrium spacing of misfit dislocations, e λ . Then the Burgers vector of the misfit dislocations,

Figure 3 .

 3 Figure 3. Misfit dislocations spaced by 0 λ at the interface between A and B. The curved line represents a constant value of m yy ε ; the strains tend to become constant for m z z > .

  with St. Venant's principle. The zero longrange condition is defined when the misfit strain is equal and opposite to the interface

Figure 4 Figure 4 .

 44 Figure 4 is a plot of m yy ε as a function of z on the same size scale as figure 3.

0λFigure 5 .Figure 6

 56 Figure 5. Crystal dislocations impinge on the interface to relieve misfit. Their Burgers vectors are inclined to the interface, having both misfit, m y b , and tilt, m z b , components.

Figure 7 .

 7 Figure 7. The local distortions of a tilt wall are represented by the curved lines. For m z z > these distortions rapidly converge to pure rotations, partitioned to 2 / φ in each

  and b), the lattice rotations in the disconnection case partition equally when e z z > , in accord with equation C-5 in Appendix C, and there is no dependence on the ratio A B d d / .

Figure 8

 8 Figure 8 Schematic illustration showing the disconnection content of an interface, with Burgers vector components resolved in the terrace (upper) and habit plane (lower) frames[19,[START_REF] Pond | Dislocations in Solids[END_REF]. The terrace plane is inclined at an angle θ to the horizontal

  φ z d B > . Other effects, such as differing elastic constants, would partition rotations at the larger size scale,

.≈Figure 9 .

 9 Figure 9. Weak beam TEM image showing one array of an orthogonal network of 90° ½<110> dislocations in (001) GaAs:Si [31].

φ

  depends only weakly on i φ .For this example h α = 0.2556 nm, h β = 0.2678 nm and 038

  ) are satisfactory. In fact, this is the case for most martensitic transformations (which involve modest volume changes). The calculated values are consistent with experimental observations, though the uncertainties in the latter are of the order °±1 and °± 25 . 0 for ω and φ respectively in ideal conditions. Only in exceptional cases would the non-linear corrections be needed; an example would be the martensitic transformation in a hypothetical Ti alloy with the same value of c yy ε as above but with α β h h / = 1.15, as shown in the Table. A further real example arises in Pu-Ga alloys, where °≈ 6 φ and α β h h / = 1.2 [45]. The rotation produced in individual disconnections can be discerned in TEM images of defects with large values of z b , such as those observed in Ti:TiH interfaces [46]. For Ti10wt%Mo, the calculated value of e λ for disconnections with the smallest b is 1.26nm [20]. However, the disconnections observed in figure 10 are 'double' disconnections, (2b, 2h) with double spacing; thus the LID is considered to be individual twinning dislocations with b parallel to [ ] α . If these defects accumulate into micro-twins, as is observed experimentally [47], the resulting value of φ z z m = increases to become equal to the average twin spacing.

Figure 10 .

 10 Figure 10. Transmission electron micrograph of a parent-martensite interface in Ti-10wt.%Mo [44]. The electron beam is oriented parallel to the disconnection array, as in figure 8.

4. 4 Figure 11 .

 411 Figure 11. Weak beam TEM image of misfit dislocation array in ) 001 ( Si deposited

Figure 12 . 3 ..

 123 Figure 12. Correlation of film tilt angle,φ , with surface vicinal angle, v φ , for (a) ) 111 ( CdTe on ) 0001 ( Al 2 O 3 and (b) ) 001 ( Si on ) 2 1 01 ( Al 2 O 3 . All angles are in units of minutes of arc. Solid lines represent the least-squares best-fit to the data, and the dashed lines are the ideal relations for specific disconnections [15].

.

  ), the characteristic distance for this partitioning being the smaller of the layer thicknesses, here B d . For the relaxed, zero long-range strain case, the two strains are equal and opposite when for all three interface types illustrated in figure 2. For a "mixed" case, such as ) dislocation spacing, and φ z by the vicinal step spacing, and The strain partitioning depends on d B but the rotation partitioning is independent of d B provided that d B > z m ≈ z ϕ ≈ λ 0 .

  θ assuming ϕ to be zero and then superposes the tilt wall array with the attendant partitioned rotation ϕ. is the union when the lattices are uniaxially strained into coherence on the terraces, and the Burgers vectors and step heights h of disconnections and misfit dislocations are defined in this reference state.

coordinates of figure 7 ,

 7 we drop the primes. For a single tilt dislocation z b in the array spaced by λ , at the origin in the coordinates of figure7, the displacement fields as given by equation in[START_REF] Dundurs | Mathematical Theory of Dislocations[END_REF], are dislocation in the array, Y becomes n Y + and one can sum the rotations over the n dislocations from -Z the second term in brackets vanishes and the first term becomes unity.Hence, the rotation φ properly partitions:

  

  

  

  This is the standard relation between the geometric and arithmetic means. In the
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Summary

The strains and rotations arising in thin films deposited on misfitting and/or offcut substrates have been quantified for the case of elastically isotropic materials. These distortions become homogeneous at distances greater than a characteristic distance related to the spacing of interfacial defects,

. Strains are partitioned in a manner dependent on the ratio

when the interfacial defects present do not fully compensate the coherency strain. On the other hand, rotations may be finite even in the fully compensated case, and their partitioning does not depend on . Case (iv) is unlike the others in the sense that two characteristic distances arise, associated with the misfit dislocation and disconnection spacings. Non-linear treatments are presented, and shown to correspond with simpler linear versions for small values of θ andφ . The analysis is applied to one example of each of the four cases, and excellent agreement is obtained between calculated and experimentally observed values.

Appendix A. Reference states

The reference states are defined by the dichromatic patterns of interfacial symmetry theory [START_REF] Pond | Dislocations in Solids[END_REF]. The natural dichromatic pattern is created by the union of the two crystal lattices with terrace planes aligned to be parallel. The Burgers vectors of the interface coherency dislocations are defined with respect to this reference. The 

where ν is Poisson's ratio. This gives the rotation