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Automatic Cell Planning (ACP) is an optimization problem from the mobile
telecommunication domain that addresses finding the location of the
network antennae as well as their parameter settings in order to satisfy several
cellular operator requirements. Due to its NP-hard complexity, evolutionary
techniques have become popular to solve ACP instances. This paper presents
a survey of evolutionary algorithms (EAs) engineered for addressing ACP
problems, analyzing both the features of the considered ACP problem and the
main aspects of the EAs used to solve them. The survey provides an up-to-date
overview that is not limited to any particular kind of evolutionary approach,
and comprises advanced algorithmic enhancements like hybridization and
parallelization. The paper ends by addressing some important issues and open
questions that can be the subject of future research.
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1. Introduction

Planning and managing a cellular phone system means engineers have to face many
challenging optimization problems (Resende and Pardalos (2006)). Assuming that the
business planning activities are already completed, i.e., choosing customer segments,
network technology to be used, etc., one of the most significant technical optimization
problems is the radio network planning (Mishra (2004)), also known as the Automatic Cell
Planning (ACP) problem, the network dimensioning problem, or the capacity planning
problem. Indeed, the foundation of a well-performing cellular network is the basic radio
platform since it is the part of the network which is closest to mobile users. Also, it
has clear benefits for the operators since they reduce the infrastructure costs and, at the
same time, increase revenue and user satisfaction.

In the initial deployment of a cellular network, the ACP problem addresses selecting
the locations of base stations (BTSs) from a set of candidate sites, as well as their
parameter settings, in such a way that a number of network requirements are satisfied.
These requirements include maximizing the area covered and the traffic capacity,
while minimizing the infrastructure cost. Configuring BTSs is not a simple task,
since it implies setting up many configuration parameters, such as the antenna type, the
emission power, and/or the tilt and azimuth angles. However, cellular networks need to be
adapted to the highly competitive telecommunications industry: new services, new
equipment technologies, increasing system capacity, etc. Even in relatively mature cellular
markets, these issues force the deployment of additional sites, not only to enhance the
system capacity but also to provide increased levels of in-building coverage as mobile users
expect to be offered service in all geographical area. The ACP problem therefore holds
both for the second generation of cellular phone systems, GSM (Global System for Mobile
communication, Mouly and Paulet (1992)), and its enhanced releases GPRS (Granbohm
and Wiklund (1999)) and EDGE (Furuskar et al. (1999)), as well as for the current
third generation networks, UMTS (Universal Mobile Telecommunication System, Rapeli
(1995)).

The simplest version of the ACP problem, as an extension of the classical minimum
cost set covering problem, has NP-hard complexity (Glasser et al. (2005)). In more com-
plex and realistic versions in which BTSs have to be dimensioned, the high number of
configurations for each of these BTSs has to be taken into consideration. Even when the
inherently continuous BTS parameters such as emission power, tilt and azimuth are dis-
cretized into a small subset of possible values, the search space becomes huge. However,
an additional issue emerges in this optimization problem: changing the configuration set-
ting of any BTS may affect other BTSs. For instance, if the maximum emission power
of a BTS b is reduced to decrease the signal interference in a given area of the network,
other BTSs should hold the traffic capacity that has been left unsupported by b. If these
other BTSs are already operating at their full capacity, the network would simply start
dropping calls of mobile users. This means that making small local changes would
require most of the network predictions to be recomputed.

In general, two kinds of techniques can be applied to solve hard optimization problems,
such as ACP: exact and approximate. Exact methods such as brand and bound or the A*
algorithm are effective for problems of small sizes; when problems become larger, usually
because of their NP-hard complexity, approximate algorithms are mandatory. Among
these approximate optimization techniques, metaheuristics (Glover and Kochenberger
(2003)), has become a highly active research area. Although there is not a commonly
accepted definition of metaheuristics, they can be considered as high-level strategies that
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guide a set of simpler techniques in the search of an optimum (Blum and Roli (2003)).
Evolutionary algorithms (EAs, Bäck et al. (1997)) are one of these techniques and they
are, by far, the most popular metaheuristics. They are based on maintaining a popu-
lation of tentative solutions that are competitively manipulated by applying variation
operators (selection, recombination, mutation). EAs have been widely used to address
ACP problems. Indeed, they can provide this complex optimization problem with very
accurate results, even when little knowledge is used in the exploration of the search
space. As discussed before, achieving a satisfactory radio network design requires con-
sideration of a number of issues which are contradictory to each other. For example,
the cost of the entire network infrastructure can be reduced by using a small number
of omnidirectional antennae operating at a maximum power. This would provide a wide
coverage with small cell overlapping and, as a consequence, low interference. However,
the network might not be able to satisfy the traffic demand of each cell. This issue can be
tackled by adding more antennae, leading to a cost increment and potentially greater
interference. As a consequence, it is mandatory to find trade-off solutions for these
conflicting goals. The ACP problem is therefore multiobjective in nature. This fact
has made EAs even more popular for solving ACP. Indeed, when using a multiobjective
formulation of a given optimization problem (e.g., ACP), the goal does not lie in finding
one single solution, but a set of trade-off solutions. The point is that EAs are partic-
ularly well suited to solve multiobjective problems. Their main advantage is that they
are able to find such a set of trade-off solutions in one single run (Coello et al. (2007),
Deb (2001)), what has promoted their utilization for addressing the ACP problem even
more.

This paper is aimed at providing a survey of work related to EAs used to solve ACP.
To the best of our knowledge, it is the first attempt at covering this gap. The goal is
that an interested researcher will be able to find references on relevant studies using
EAs applied to different formulations of the ACP problem and define new strategies for
improving the current state of the art. An up-to-date overview that is not limited to
any particular kind of evolutionary approach is provided. More than 40 works have been
revised and summarized in this overview, which analyzes both the features of the ACP
problem addressed and the main aspects of the EAs used for their resolution. Important
aspects of the evolutionary search are considered, such as the encoding and
genetic operators, as well as advanced algorithmic enhancements like hybridization and
parallelization.

The rest of the paper is organized as follows. In the next section, the basic concepts
of EAs and the different models used for solving the ACP problem in the literature
are described. The survey of related works is provided in Section 3. Finally, the main
conclusions of this paper are given in Section 4, which also addresses some important
issues for future research.

2. Basics on EAs and ACP

This section provides the reader with a brief overview of the two main topics of this
work, namely evolutionary algorithms (EAs) and automatic cell planning (ACP) prob-
lems.
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t := 0 ;
initialize & evaluate[P (t)] ;
while not stop condition do ;

P ′(t) := variation [P (t)] ;
evaluate [P ′(t)] ;
P (t + 1) := select [P ′(t) ∪ P (t) ] ;
t := t + 1 ;

end while

Figure 1. Pseudocode describing a standard EA.

2.1. Evolutionary Algorithms

EAs are stochastic search methods inspired by nature’s capability to evolve individuals
well adapted to their environment. Well-accepted subclasses of EAs are genetic algo-
rithms (GAs), evolution strategies (ESs), and evolutionary programming (EP) (Bäck
(1996)). The basic outline of a standard EA is shown in Figure 1. At each generation
(iteration) t, an EA operates on a population of individuals P (t), each one encoding a
tentative solution, thus searching in many regions of the problem space at the same time.
Each individual is a string of symbols encoding a solution for the problem (genotype) and
has an associated fitness value (phenotype) which is computed by the objective function.
This fitness function is aimed at ranking the quality of the evaluated individual with
respect to the rest of the population. The application of stochastic variation operators,
such as mixing parts of two strings (crossover) or randomly changing their contents (mu-
tation), leads this population towards the fittest regions in an iterative manner. The
algorithm finishes when a stopping condition is met (e.g., an optimum is found or a
number of function evaluations has been carried out).

2.2. Models for the ACP Problem

A number of different models have been defined in the literature to solve ACP prob-
lems (see Raisanen (2006)), ranging from pure abstract models (e.g., based on graph
theory) to rather detailed ones (models considering specific areas, with known traffic and
topologies). The intermediate models proposed move in two different directions. They
either add real information to abstract models or they try to reduce the com-
plexity of detailed models to reduce their computational demands. The three
main models found in the literature —demand node, disk, and cell and test
point— are described in the following sections.

2.2.1. Demand Node Model

The concept of demand nodes was introduced first by Gerlich et al. (1996), and it
has since been used in different works (e.g., Amaldi et al. (2001), Galota et al.
(2000), Tutschku (1998), Weicker et al. (2003)). The basic idea is that the demand node
represents the center of an area where the traffic is being generated by the users. The
main advantage of this model is that by combining the traffic of a small region in a single
point, the computational requirements are drastically reduced; the drawback is that the
realism of the problem is also simplified. The demand nodes comprise a number of test
points, hence the need fewer nodes; however, merging test points into a single demand
node has the same effect as applying a lossy compression mechanism: the resolution is
reduced.
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Most of the research works using this model also allow the total freedom as regards
the positioning of candidate sites. This allows to uniformly distribute the sites over
the full area to be covered, which usually is not possible in practice as a site cannot
simply be placed anywhere, e.g., in the middle of a highway.

2.2.2. Disk Model

The first use of disk (circle) graphs in the design of cellular networks was in Hale (1980),
where it was applied to solve the frequency assignment problem. Later extensions to this
model consider intersections among disks and non-uniform traffic distributions (Huang
et al. (2000a,b,c)). The main advantage of the approach presented in Huang et al.
(2000a) is that it is possible to take into account different goals related to the design
of the network; thus, the problems of cell planning and frequency assignment can be
addressed simultaneously. Furthermore, the computational costs are not high.

The main inconvenience of the disks model has to do with the fact that it assumes an
ideal propagation model, so all the cells have the same shape. Even though the size of
the cells can vary depending on a non-uniform traffic distribution (Huang et al. (2000b)),
the shape is always a circle. Another issue is that sites may be located anywhere,
so the same problems as in the demand node model arise.

2.2.3. Cell and Test Point Model

Although this model is known thanks to the works of Reininger and Caminada
(1998a,b, 2001), it appeared first in Hao et al. (1997). In it, the working area is dis-
cretized into a set of test points which are spread over the whole area. These test points
are used to measure the amount of signal strength in the region where the network
operator intends to service the traffic demand of a set of customers.

Three subsets of test points are defined: Reception Test Points (RTPs), where the
signal quality is tested; Service Test Points (STPs), where the signal quality must exceed
a minimum threshold to be usable by the customers; and the Traffic Test Points (TTPs),
where a certain traffic amount is associated to the customers (measured in Erlangs).

In this model, the set of candidate site locations does not have to be uniformly dis-
tributed in the terrain, so it is a better representation of the scenarios presented
by the operators. Its main advantage is that it allows measuring all the network ob-
jectives (such as coverage and capacity). Notwithstanding, there is a clear inconvenience:
the computational cost increases because a high number of points is usually used to
face the problem (e.g., test points every 200 meters) in order to increase the realism.
This realism is the main reason that this model is widely adopted in the literature,
e.g., Hurley (2002), Raisanen et al. (2004), Raisanen and Whitaker (2005, 2003), Talbi
et al. (2007), Talbi and Meunier (2006), Vasquez and Hao (2001), Zimmermann et al.
(2003b).

3. The Survey

EAs, and more concretely GAs, have been widely used to tackle most of the ACP models
proposed. This section includes detailed analysis of more than 40 works that show the
different EA approaches developed to address this complex optimization problem. It
starts by giving an overview of the literature, focusing on the main features of the
particular ACP problem solved in each research work. Next, a more in depth review
based on algorithmic details (encoding schemes, genetic operators, hybridization, and
parallelization) is provided.
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3.1. ACP Problems Addressed by EAs

Tables 1, 2 and 3 summarize the main characteristics of the ACP problems addressed by
EAs in the literature. For each row, they show the following information:

• Ref.: Bibliographic reference. The publication year of the first work of the series is
used to rank the entries.

• Alg.: Particular EA used for solving the problem (see Bäck (1996) for the details).
Here, it distinguishes between:
(1) GA: simple GA. This keyword is used when not enough information is given in

the paper for further specifications.
(2) genGA: generational GA.
(3) ssGA: steady state GA.
(4) dGA: distributed GA. This kind of GA may appear combined with the

two previous algorithms. That is, dssGA refers to a distributed GA in which
each subpopulation evolves by using the steady state scheme.

(5) ES: evolution strategy.
(6) Concrete algorithms such as CHC, DE, NSGA-II, SPEA2, and others whose de-

scription can be found in the references provided.

• Multi: this column points out whether the problem is addressed by using multiobjective
techniques based on Pareto optimality.

• ACP: ACP model used (see Section 2.2). Available values are Demand Node, Disk,
and Test Points.

• Sites: it shows whether the locations of the BTSs are chosen among a set of candidate
sites (CSL or Candidate Site List) or they can be freely placed all over the geographic
area.

• Cell: this column indicates how the cell or service area of BTSs is computed.

• Pw, T i, and Az: these three columns show respectively whether the power, tilt, and
azimuth of the BTSs are optimized. These are the most common settings adjusted
when the BTS dimensioning is addressed.

• Objectives: different aspects of the cellular network that are optimized.

• Constraints: aspects of the cellular network that are considered as constraints during
the optimization process.

From the algorithmic point of view, classic GAs have been used in the literature for
solving the ACP problem, both generational (genGA) and steady state ones (ssGA).
Indeed, they are applied in almost 50% of the works reviewed. Rather specific evolu-
tionary techniques such as CHC (Eshelman (1991)), Differential Evolution (DE, Storn
and Price (1995)), PBIL (Baluja (1994)), or Artificial Immune Systems (AIS, de Melo
Carvalho Filho and de Alencar (2008)) are also found. It can be seen that not only sequen-
tial approaches exist, but also parallel models deployed on standard parallel platforms
such as clusters of computers (dGAs, Alba and Chicano (2005), Calégari et al. (2001))
and even grid computing systems (Talbi et al. (2007)). If multiobjective approaches are
considered, NSGA-II (Deb et al. (2002)) and SPEA2 (Zitzler et al. (2002)), the two best
known algorithms in the evolutionary multiobjective research community have been
applied in eight of the analyzed works. Other specific multiobjective algorithms used are
SEAMO (Raisanen and Whitaker (2005)) and MOCHC (Nebro et al. (2007)). From the
point of view of the formulation, the first proposals have adopted a single objective ap-
proach in which the different network aspects to be optimized are weighted into a single
(aggregative) function (Calégari et al. (1997), Chamaret and Condevaux-Lanloy (1998),
Lieska et al. (1998), Reininger et al. (1999)). However, the recent advances in multi-
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Table 1. EA approaches in the literature for the ACP problem (I).
ACP Search Space

Ref. Alg. Multi Model Sites Cell Pw Ti Az Objective Constraints

Calégari et al. (1996, 1997,
2001)

dGA •
Demand
node

CSL
Propagation
model

• • • Cost, cover −

Chamaret and
Condevaux-Lanloy (1998)

dssGA •
Demand
node

CSL
Propagation
model

• • • Cost, cover −

Lieska et al. (1998) genGA •
Demand
node

CSL Synthetic • • • Cover 4 BTSs

Molina et al. (1999) genGA •
Demand
node

CSL
Propagation
model

• • • Cover, cost −

Reininger et al. (1999) genGA • Test points CSL
Propagation
model

X • •
Cover, cost
(dynamic)

−

Meunier et al. (2000), Cahon
et al. (2006), Talbi and Meunier
(2006), Talbi et al. (2007)

ssGA,
hybrid

X Test points CSL
Propagation
model

X X X
Cost, traffic,
interference

Cover, handover

Huang et al. (2000b) GA • Disk Free Omnidirectional X • X
Cover, traffic, cost,
interference

−

Zimmermann et al. (2000,
2003a,b)

ES • Test points CSL
Propagation
model

X X X
Cost, interference, cell
shape

Traffic, cover

Lee and Kang (2000) dGA •
Demand
node

CSL
Propagation
model

• • • Expansion cost
Traffic,
capacity, cover

Han et al. (2001) ssGA • Disk Free Omnidirectional • • • Cost, cover −

Continue...
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Table 2. EA approaches in the literature for the ACP problem (II).
ACP Search space

Ref. Alg. Multi Model Sites Cell Pw Ti Az Objectives Constraints

Laki et al. (2001) genGA • Test points Free Ray tracing • • • Cover, delay −

Altman et al. (2002a,b), Jamaa
et al. (2006)

GA • Test points CSL
Propagation
model

X X X
Cost, cover,
capacity

Handover

Park et al. (2002) ssGA • Disk Free
Propagation
model

• • • Cost, cover −

Cerri et al. (2003, 2004), Cerri
and Russo (2006)

Binary GA •
Demand
node

Free Omnidirectional X X •

Radiation, traffic,
interference,
efficiency, cover

−

Weicker et al. (2003)
SPEA2,
NSGA-II,
stEAPT

X
Demand
node

Free Omnidireccional X • •
Cost,
interference

Cover

Alba (2004), Alba and Chicano
(2005)

ssGA,
dssGA

•
Demand
node

CSL Square • • • Cost, cover −

Brunetta et al. (2004), Chiara
et al. (2005)

GA, hybrid
GA-TS

• Test points Free
Propagation
model

X • •
Different cover
conditions

Handover,
capacity

Jamaa et al. (2004a,b), Picard
et al. (2005)

NSGA-II X Test points CSL
Propagation
model

X X X
Cost, cover,
capacity

Handover

Jedidi et al. (2004) MOGA X Test points CSL
Propagation
model

X X X
Overlap,
geometry

Cover

Lin et al. (2004) Binary GA •
Demand
node

CSL
Propagation
model

X • •
Cost, cover, traffic,
handover

−

Continue...
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Table 3. EA approaches in the literature for the ACP problem (and III).
ACP Search space

Ref. Alg. Multi Model Sites Cell Pw Ti Az Objectives Constraints

Maple et al. (2004) dGA X Disk CSL
Propagation
model

X • •
Capacity, cover,
cost

−

Raisanen et al. (2004),
Whitaker et al. (2004a,b),
Raisanen and Whitaker (2005)

SEAMO,
SPEA2,
NSGA-II,PESA

X Test points CSL
Propagation
model

X • • Cost, cover Handover

Zhang et al. (2004)
MOGA,
EMOGA

X Disk Free Omnidirectional • • • Cost, cover −

Créput et al. (2005) Hybrid dES •
Demand
node

CSL Hexagonal • • •
Traffic, geometry,
cost, overlap

−

Alba et al. (2007)
CHC, ssGA,
genGA

•
Demand
node

CSL
Square,

• • X Cost, cover −Omnidirectional,
Directive

Nebro et al. (2007)
MOCHC,
NSGA-II

X
Demand
node

CSL Square • • • Cost, cover
Maximum cost,
minimum cover

Vega-Rodŕıguez et al. (2007a,b)
CHC,
PBIL, DE

•
Demand
node

CSL Square • • • Cost, cover −

de Melo Carvalho Filho and
de Alencar (2008)

AIS X Test points CSL
Propagation
model

• • •
Cover, cost,
traffic

Raisanen (2008) NSGA-II X Test points CSL
Propagation
model

• • • Cost, cover Traffic, handover
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Figure 2. Summary of related works that address the ACP problem using EAs.

objective EAs have meant that the number of works using this multiobjective
formulation has increased in the last years (Cerri and Russo (2006), Nebro et al.
(2007), Raisanen (2008), Talbi et al. (2007)).

Figure 2 summarizes the number of reviewed contributions that fall into different cat-
egories: mono/multi, ACP model, site selection, cell shape computation, and BTS pa-
rameter optimization. Now, each group of columns of the figure is analyzed. In the first
group, from all the works in the literature reviewed, monoobjective formulations
have been more widely used in spite of the fact that the ACP problem is natu-
rally prone to the multiobjective ones. The additional complexity added by the Pareto
optimality mechanisms makes the ACP researchers reluctant to adopt this kind of tech-
nique. However, the multiobjective approach may be the most appropriate because it
can provide the decision maker (network designer) with a set of different configurations
for the BTSs, none of which is better than the others (non-dominated). These
configurations could be used in particular scenarios that may appear during
the operational lifetime of the network.

The second group of columns shows the ACP models used in the analyzed contri-
butions. It is clear that both the Demand Node and the Test Point are the most widely
adopted models. The simplicity and low computational requirements, in the former case,
and the realism, in the latter one, are the reasons that explain these facts. The Disk
model has more to do with theoretical studies. Indeed, cellular networks composed ex-
clusively of omnidirectional antennae are hardly found in the real world (vectorization
allows the network capacity to be greatly increased). Looking at the third group of
columns in Figure 2, it can be observed that using a candidate site list (CSL) instead
of freely placing the BTSs in any location of the network is the most common option.
This is because it is unlikely many network operators are granted such free-
dom (e.g., no BTS can be placed near schools or in the middle of a lake). The fourth
group of columns also reflects the preferred choice for computing the cells (serv-
ing areas) of the BTSs: the propagation models such as free space, Okumura-Hata or
Walfish-Ikegami model (COST231 (1991)). Selecting one or another depends mainly on
the computational effort required (ITU (1997)). Omnidirectional and square cells also
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appear in several contributions (8 and 6 works, respectively). Tables 1, 2 and 3 include
alternative methods for computing the cell associated to BTSs such as modern ray trac-
ing techniques (Laki et al. (2001)). Finally, the last group of columns summarizes the
number of papers in which the power, tilt and azimuth are involved in the optimization
process. That is, they are decision variables of the search space. Even though differences
here are smaller, it can be seen that the power parameter is more often optimized
than the other two. It applies to any kind of BTS (omnidirectional, directive, square,
etc.) as the main setting to manage the cell size. The tilt and azimuth angles usually
appear in very accurate ACP models. They normally lead to highly expensive
computational tasks, which explains the lower incidence in the literature.

To conclude with this discussion about the analyzed works, the objective functions
and the constraints used in the different approaches are now analyzed. On the objectives
side, a clear trend exists in considering the network cost, measured in terms of number
of installed sites, and the quality of services (QoS) provided by these sites. These two
objective functions are clearly contradictory. The main difference between many
contributions lies in the concept of QoS. Maximizing the network coverage is the most
widely used option and it appears in 78% of the revised contributions. However, a more
realistic approach is based on using such objective as a constraint (e.g., at least 90% of the
network must be covered) so as to discard useless configurations. Indeed, it does not make
any sense to deploy an expensive, fully operational network infrastructure just to cover a
small percentage of a given target area. Other ways of measuring the network QoS in the
literature have taken into consideration the interference caused by cell overlapping or
the traffic capacity of the network. As to the constraints, the handover, or the capability
of the network to guarantee continuous communication while the mobile user is
moving from one cell to another, is the one that most appears.

3.2. Details on EAs for the ACP Problem

This section reviews the main features of the EAs found in the literature for solving the
ACP problem. Potential advantages and drawbacks of each algorithm are analyzed in
the light of their corresponding encoding schemes, genetic operators, local search, and
parallelization. Table 4 includes a summary of all these EA aspects.

3.2.1. Encoding Schemes

Several encoding schemes have been used, and some of them have been designed
specially for solving ACP problems. In summary, they can be categorized into
four types: binary, integer, real, and ACP-targeted.

3.2.1.1. Binary Encoding. The most widely adopted scheme is the classical binary en-
coding, i.e., the tentative solutions are bit strings. The information encoded by this bit
string depends on the specific ACP problem addressed.

The first usage of this encoding scheme appears when the optimization task is simply
to position the BTSs of the network by selecting a subset of sites from a CSL (Candidate
Site List). Then, EAs work on bit strings of length N , where N is the total number of
candidate sites. Each position of the bit string corresponds to a site, i.e., the ith position
represents the ith site. The value of the ith is 1 if the ith site is selected, and zero
otherwise. This approach is specially used when solving ACP problems that follow the
Demand Node model (see Section 2.2.1): Alba and Chicano (2005), Alba (2004), Alba

Page 11 of 24

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 6, 2009 11:42 Engineering Optimization acp

12

et al. (2007), Calégari et al. (1996, 1997, 2001), Chamaret and Condevaux-Lanloy (1998),
Lieska et al. (1998), Lin et al. (2004), Molina et al. (1999), Nebro et al. (2007), Vega-
Rodŕıguez et al. (2007a,b).

The binary encoding has also been used when the BTSs can be freely placed any-
where on the geographical area of the network (no CSL exists). In this case, the bit
string encodes the binary representation of a list of real numbers that represent the (x, y)
coordinates of the sites. However, in all the material analyzed, the tentative solutions
also include one or more values that allow dimensioning of the BTS (i.e., allow the
BTS service area to be configured). Indeed, in (Brunetta et al. (2004), Chiara et al.
(2005)), the binary string has also considered the power level of emission. In the works
of Cerri et al. (2003, 2004), Cerri and Russo (2006), the authors have not only included
the encoding of the emission power, but also the tilt of the antennae. So, for each BTS,
24 bits are used: 9 + 9 bits for the coordinates, 3 bits for the radiated power, and 3 bits
for the tilt. Laki et al. (2001) have just added the height of the BTSs.

The main advantage of this binary encoding is that it allows the evolutionary search to
be performed by means of classical EA operators. These operators have been originally
developed to manipulate binary genotypes (Goldberg (1989)), as will be further analyzed
in Section 3.2.2.

3.2.1.2. Integer Encoding. Integer encoding has been used by Larry Raisanen, Roger
Witaker and Steve Hurley at Cardiff University in several works: Raisanen et al. (2004),
Raisanen and Whitaker (2005), Raisanen (2008), Whitaker et al. (2004a,b). Their ap-
proach is based on considering that each BTS is identified by an integer. Then, given n

candidate BTSs, a permutation π of size n represents a solution to the ACP problem.
That is, EAs manipulate integer permutations, so special care has to be taken with the
genetic operators used. These BTS permutations are then translated into a cell plan by
using a decoder. The decoder works by iteratively packing cells as densely as possible,
subject to certain constraints not being violated. This cell plan is then used to
compute the fitness function.

3.2.1.3. Real Encoding. The real encoding is mainly used for solving ACP problems
based on freely positioning the BTSs in the working area of the cellular network. There-
fore, the tentative solutions are made up of real numbers that represent the BTS co-
ordinates. This scheme is mainly used in works dealing with the Disk model (see Sec-
tion 2.2.2). Indeed, this is the approach used in Han et al. (2001), Park et al. (2002).
If K is the maximum number of BTS to be placed, solutions are encoded as arrays
(c1, . . . , cK), where ci = (xi, yi) are the coordinates of the ith BTS. When a BTS is not
supposed to be deployed, a special NULL value is used. This is the mechanism adopted
in these three works to avoid using a variable-length representation and therefore
special genetic operators have been developed.

3.2.1.4. ACP-targeted Encoding. The encoding schemes shown in this section have
been designed especially to deal with ACP problems, so they do not properly fall
into any of the previously defined categories. The most widely used non-classical scheme
in the EA literature encodes all the optimizable parameter settings of each BTS in the
tentative solution. Let us call it network encoding. This encoding is usually aimed not
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Table 4. Details of EAs used for solving ACP problems.

Ref. Alg. Encoding Crossover Mutation LS Parallel

Calégari et al. (1996, 1997, 2001) dGA Binary SPX Bit flip • X

Chamaret and Condevaux-Lanloy
(1998)

dssGA Binary SPX Bit flip • X

Lieska et al. (1998) genGA Binary SPX Bit flip • •

Molina et al. (1999) genGA Binary SPX Bit flip • •

Reininger et al. (1999) genGA Network SPX Random • •

Meunier et al. (2000), Cahon et al.

(2006), Talbi and Meunier (2006), Talbi
et al. (2007)

ssGA,
hybrid

Network Geographical Multilevel X X

Huang et al. (2000b) GA Binary Fusion Bit Flip • •

Zimmermann et al. (2000, 2003a,b) ES Network • Especialized • •

Lee and Kang (2000) dGA
Group-
based

Group-
oriented

Group-
oriented

• X

Han et al. (2001) ssGA Real
Distance-
based

Random • •

Laki et al. (2001) genGA Binary Uniform Bit flip • •

Altman et al. (2002a,b), Jamaa
et al. (2006)

GA Network Geographical Multilevel • •

Park et al. (2002) ssGA Real
Distance-
based

Random • •

Cerri et al. (2003, 2004), Cerri and
Russo (2006)

GA Binary SPX Bit flip • •

Weicker et al. (2003)
SPEA2,
NSGA-II,
stEAPT

ACP-
targeted

Especialized
Several
Especialized

• •

Alba (2004), Alba and Chicano
(2005)

ssGA,
dssGA

Binary DPX Bit flip • X

Brunetta et al. (2004), Chiara et al.

(2005)
GA, hybrid Binary SPX Bit flip • •

Jamaa et al. (2004a,b), Picard et al.

(2005)
NSGA-II Network Geographical Multilevel • •

Jedidi et al. (2004) MOGA Network • Multilevel • •

Lin et al. (2004) GA Binary Uniform Bit flip • •

Raisanen et al. (2004), Whitaker
et al. (2004a,b), Raisanen and
Whitaker (2005)

SEAMO,
SPEA2,
NSGA-II,PESA

Permutation Cycle
Random
Swap

X •

Zhang et al. (2004)
MOGA,
EMOGA

Real Multipoint Random • •

Créput et al. (2005) Hybrid dES
ACP-
targeted

Several
Especialized

Macro-
mutation

X •

Alba et al. (2007)
CHC, ssGA,
genGA

Binary HUX Bit flip • •

Nebro et al. (2007)
MOCHC,
NSGA-II

Binary HUX, SPX Bit flip • •

Vega-Rodŕıguez et al. (2007a,b)
CHC,
PBIL, DE

Binary HUX Bit flip • •

Raisanen (2008) NSGA-II Permutation Cycle
Random
Swap

X •

only at positioning the BTSs but also at dimensioning them. Figure 3 displays an example
in which the BTS type, the emission power, and the tilt and azimuth angles are to be
optimized. It is worth mentioning here that, even though power tilt and azimuth are
actually real-valued parameters, they are usually discretized into a rather small set of
values in order to reduce the complexity of the optimization problem. This is the
approach used in Altman et al. (2002a,b), Cahon et al. (2006), Jamaa et al. (2004a,b,
2006), Jedidi et al. (2004), Meunier et al. (2000), Picard et al. (2005), Reininger et al.
(1999), Talbi et al. (2007), Talbi and Meunier (2006), Zimmermann et al. (2000, 2003a,b).
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BTS1 BTS2 BTSi BTSn

BTS Type
Power
Tilt
Azimuth

Figure 3. ACP-targeted encoding: all the parameter settings of the BTSs.

The main advantage of this encoding scheme is that EAs are put to work on real solutions
so therefore problem-domain specific knowledge can be easily included in the search.
Otherwise, no classical well-known operators can be used and newly specific ones have
to be developed.

Other specific encodings are analyzed next. With the goal of minimizing the number
of BTSs required to cover a given area, Créput et al. (2005) have adaptively transformed
the hexagonal cell shapes typically used in cellular networks. This adaptive meshing is
performed according to a traffic density map and to geometrical constraints. Then, for
each cell of the network, the encoding scheme includes six vertices (two real values)
plus an attribute that indicates whether it is visible or not. This latter attribute is the
particularity of this approach.

Lee and Kang (2000) have used group encoding (Falkenauer (1994)) to maximize the
coverage of traffic demand areas (TDAs) using as few BTSs as possible. In this group
encoding, each tentative solution has two parts: the TDA part and the BTS part. In the
TDA part a BTS is assigned to each TDA. The BTSs used in the TDA part are then
represented in the BTS part. Specific group-oriented operators have been applied.

Maple et al. (2004) have proposed a matrix encoding with size 3 × N , where N is the
maximum number of BTSs. All the BTSs are labeled so that the ith column corresponds
to the ith BTS. In this encoding, the three values of the ith BTS indicate whether the
BTS is present or not in the network (BTS selection), the BTS height, and the BTS
emission power. This encoding has many drawbacks but no further discussion is given
since the authors only present their proposal in the paper, with no experimentation
at all. Consequently, this paper will not be considered further in this survey.

The work of Weicker et al. (2003) presents an encoding that mixes real and integer
values, as well as a set of frequencies. This specialized encoding is required because
they address both the BTS positioning and the frequency assignment simultaneously. A
candidate solution includes, for each BTS, two real values representing its coordinates,
two integer values encoding the transmitting power and the number of available channels
in the BTS, and the set of channels assigned to the BTS.

3.2.2. Operators

Several genetic operators have been investigated in the literature for solving ACP
problems (Table 4). This section is only aimed at discussing the crossover and mutation
operators since they are the ones which depend on the encoding schemes (selection and
replacement operators are based on the fitness of the individuals).
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3.2.2.1. Crossover. The classical Single Point Crossover (SPX) has been extensively
used for solving ACP problems. Most of the existing work using binary encod-
ing have adopted this approach (e.g., Calégari et al. (1996), Lieska et al. (1998),
Molina et al. (1999)). With this encoding, other well-known operators such as Two
Point Crossover (Alba (2004), Alba and Chicano (2005)) and uniform crossover (Laki
et al. (2001), Lin et al. (2004)) have been applied. It is also worth mentioning that
algorithm-specific crossover operators also appear when particular algorithms have been
used. The works of Alba et al. (2007), Nebro et al. (2007), Vega-Rodŕıguez et al. (2007a,b)
use the Highly Disruptive Crossover (HUX) designed for the CHC algorithm, whereas
the two-fusion crossover (Hifi (1997)) is applied in Huang et al. (2000a).

In the case of the integer encoding scheme, the cycle crossover has been used in
the works of Raisanen et al. (2004), Raisanen and Whitaker (2005), Raisanen (2008),
Whitaker et al. (2004a,b). Since their algorithms work on integer permutations, this
crossover operator is aimed at preserving the permutation, and as a result no repair
mechanism is required. It is important to remark here that using the decoder procedure
that translates the permutation of BTSs into a cell plan avoids the main concern of this
representation: different permutations represent the same solution in the objective space.

Traditional recombination operators are not applied with the real encoding
scheme since no pure real-valued strings have been used. Indeed, in the works
of Han et al. (2001), Park et al. (2002) this operator has to deal with the special NULL
value used in any given position to indicate that the corresponding BTSs are not deployed.
This way, given two parents p1 and p2, the operator returns one single child, c, in which
the position of the ith BTS is computed as follows. If p1(i) = NULL and p2(i) = NULL,
then c(i) = NULL; if either p1(i) = NULL or p2(i) = NULL, c(i) receives the genetic
material of the non-NULL parent; otherwise, the ith BTS is placed somewhere near the
BTS positions of the parents (sampling a Gaussian distribution).

The main disadvantages of all these crossover operators is that they just manipulate
genes, without taking into account the links with other genes (epistasis). Indeed, as
explained in the introduction, either activating, deactivating, or redimensioning one given
BTS in a cellular network will surely affect the influence of other BTSs in the ACP
problem at hand. It is therefore worth giving particular attention to the development
of operators specially designed for ACP problems that use classical encoding schemes in
their resolution.

When ACP-targeted encoding schemes are adopted, this crossover specialization is
already addressed. Most of the works that use the network encoding (see previous section)
apply the so-called geographical crossover defined in Meunier et al. (2000)). This operator
is based on exchanging the configuration of the sites located within a given random radius
around a randomly chosen site. Figure 4 shows an example of the working principles of
the geographical crossover. The main advantage of this operator is that it considers
somehow the connection between the sites in a topological way: only nearby sites are
modified. However, under this encoding, the classical SPX crossover has also been used
by Reininger et al. (1999).

Other specialized crossover operators have been defined for dealing with ACP-targeted
encodings. Créput et al. (2005) have proposed a mechanism in order to combine the
vertices of the hexagonal cells used to cover the traffic demand in the cellular network.
It works by selecting two individuals as follows. The first one, i1, is chosen by fitness-
proportional probability (e.g., roulette-wheel selection), whereas the second, i2 is picked
randomly. Since it is assumed that the former will have a better fitness than the latter,
the crossover operator generates a child in which i1 attracts i2 by using a weighted
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Exchange area

Activated sites

Exchanged sites

Figure 4. Geographic recombination: sites located within the radius are exchanged.

average sum. Lee and Kang (2000), who have used the grouping GA, have adopted the
grouping crossover operator defined by Falkenauer (1994). Finally, Weicker et al. (2003)
have implemented a crossover operator based on the decomposition of the service area of
the cellular network. Two halves along one of the dimensions are generated and then, for
each half, the fitness of the parent individuals is evaluated. The offspring will inherit the
configuration for each of the sub-areas from the fittest parent for that sub-area. The
main drawback of this approach is that the operator may generate unfeasible individuals,
therefore requiring that the authors apply a repair function.

3.2.2.2. Mutation. The analysis of the mutation operators in the literature for solving
ACP problems with EAs is similar to that performed for the crossover operators. It
depends greatly on the encoding used. The classical bit flip mutation is the preferred
operator for binary encoding schemes (see Section 3.2.1). In the works using integer
permutation encoding, a random swap that simply transposes two randomly chosen
positions in the permutation is adopted (e.g., Raisanen and Whitaker (2005)). Again,
this operator is safe and no repair function is needed.

The two works categorized with the real encoding, i.e., Han et al. (2001), Park et al.
(2002), have to manage the NULL value which is used to represent that a BTS is not
deployed in the network. This way, for each BTS, the mutation operator either randomly
updates the current position of the deployed BTSs or it is assigned with a NULL value;
otherwise, if the BTS is not deployed yet, it can remain the same or it is placed in an
arbitrary position of the network.

Using the network encoding (ACP-targeted encoding), the mutation operator usually
works by first selecting a given site and then updating the configuration of this site. It is
called multilevel mutation since it operates at different levels of the encoding. Depending
on the parameters of each site, the mutation may affect:

• Activation toggling. If the site is activated, then it is just deactivated. On the other
hand, if Li is deactivated, then an entire random configuration for the site is generated.

• BTS power tuning. It requires the site to be activated. It randomly chooses a BTS of
the site and then the power is randomly changed to one of its discretized values.
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• BTS tilt tuning. The same as the power tuning, but changing the tilt angle.

• BTS azimuth tuning. The same as the power and tilt tuning, but modifying the azimuth
angle.

• BTS diagram tuning. This mutation also requires the site to be activated. The goal
of this operator is to change the BTS type, that is, from an omnidirectional BTS to
several directive BTSs, or vice versa. The configuration for each newly generated BTS
is randomly generated.

This is the approach used in Altman et al. (2002a,b), Cahon et al. (2006), Jamaa et al.
(2004a,b, 2006), Jedidi et al. (2004), Meunier et al. (2000), Picard et al. (2005), Talbi
et al. (2007), Talbi and Meunier (2006).

On the other hand, the works of Zimmermann et al. (2000, 2003b,a) have further
detailed these mutations by defining more specialized search operators. The authors
have distinguished between repair operators (RepairTraffic, RepairHole, DecreasePower,
IncreasePower, ChangeAzimuth, ChangeTilt, DissipateTraffic) and climb operators (Re-
moveWeakAntenna, RemoveAntenna, RemoveWeakSite, RemoveSite, IncreaseCompact-
ness, ReduceIrregularities, and MinimizePower). They all are applied one each time by
randomly choosing one of them. Because unfeasible solutions may be generated,
a repair phase is used.

Other mutation operators used with ACP-targeted encoding schemes are described
next. Créput et al. (2005) have developed the macromutation operator. It is intended to
perform simultaneous moves on the vertices of the cells that cover the cellular network,
thus allowing these cells to exit or to reach to traffic demand areas. Lee and Kang (2000)
have adopted the grouping crossover operator defined by Falkenauer (1994) for the group-
ing GA. Finally, Weicker et al. (2003) have applied both directed and random mutations.
The former ones (6 different operators) include problem knowledge and feasibility is al-
ways guaranteed since several preconditions have to be met prior to their application.
However, directed mutations find it difficult to explore the entire search space,
so this is why the random mutations have been used. The goal is to promote ex-
ploration, but the drawback is that feasibility is no longer guaranteed and a
repair function has to be applied.

3.2.3. Local Search

Adding ACP problem knowledge to the exploration performed by EAs can be fur-
ther promoted with the usage of local search algorithms. That is, engineering hybrid
algorithms (Talbi (2002)). So far, this problem specific knowledge has been added by
using specific encoding schemes and genetic operators (as has been shown in the pre-
vious sections). However, there are several proposals in the literature in which EAs are
endowed with highly tailored search methods, allowing the search to be intensified
in promising regions of the search space.

When adaptively meshing the cell shapes of a cellular network, Créput et al. (2005)
have used a local search algorithm based on a Lamarckian adaptive process. This process
applies small mutations on isolated vertices of the hexagonal cells which makes an in-
dividual evolves to a local minimum. The mutation operator, called micromutation,
performs a small move on some randomly chosen vertex.

Talbi et al. (2007) have designed a multiobjective local search to be used with the
network encoding explained above. It is an iterative process that starts from a set of
nondominated solutions (or network configurations). Then, for each activated BTS of
any network, it successively tests its removal, the updating of the power, azimuth and
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tilt with any of the available discretized values. By using the newly generated solutions,
the set of nondominated solutions is continuously updated. Finally, the local search
algorithm restarts from any newly inserted solution, and so on.

Finally, the decoder approach of Raisanen et al. (2004), Raisanen and
Whitaker (2005), Raisanen (2008), Whitaker et al. (2004a,b) for translating
the integer permutation of BTSs into a cell plan can also be mentioned here.
As its authors have indicated, this decoder can be considered a local search algorithm.

3.2.4. Parallelization

As early as in the first works published on EAs for solving the ACP problem, i.e.,
Calégari et al. (1996, 1997), it was soon understood that this optimization problem in-
volved tasks demanding high computational resources. With the aim of not only speeding
up the computation but also improving the solution quality, most of the parallel EAs
analyzed have adopted the coarse-grained scheme, also known as the island model (Alba
and Tomassini (2002)). They have also used a unidirectional ring topology: Alba and Chi-
cano (2005), Alba (2004), Calégari et al. (1996, 1997, 2001), Chamaret and Condevaux-
Lanloy (1998), Lee and Kang (2000). The work of Créput et al. (2005) has also used the
island model with a unidirectional ring topology but, instead of subpopulations, each
island runs a hybrid evolution strategy.

Meunier et al. (2000) have used a master/slave approach for the parallel implemen-
tation of the function evaluation, i.e., each function evaluation is distributed to dif-
ferent processors. Talbi and Meunier (2006) have extended this work by using the
master/slave scheme not only for the parallel evaluation of the function evaluation, but
also for evaluating each tentative solution of the EA asynchronously in parallel. They
have also used the island model in this work. Finally, the works of Cahon et al. (2006)
and Talbi et al. (2007) have again proposed extensions of these previous publications by
deploying a parallel hybrid EA on a computational grid (Berman et al. (2003)). This EA
is hybrid because a local search is used to improve the solutions generated within the
evolutionary loop. The parallelism is applied at different levels: the main EA model is an
island model. Then, on each island, individuals undergo local search in parallel. The third
level of parallelism considers each single function evaluation in parallel by decomposing
the fitness function.

4. Conclusions and Future Work

4.1. Summary

This paper presents a survey on evolutionary algorithms for solving ACP problems. It
shows the profile of this area by focusing on both the particular ACP problems tackled
and the evolutionary approaches engineered to address them. The key issues on the design
of EAs have been discussed: usually adopted representations, evolutionary operators,
and advanced features such as hybridization and parallelism. Concretely, the crossover
and mutation operators described in the literature have been analyzed, distinguishing
between classical operators and ACP-targeted ones. Some hints on the advantages and
disadvantages of several representation schemes have also been discussed.

In the next section which follows, some topics for future research to engi-
neers interested in EAs for ACP problems are outlined. In the authors’ opinion,
these topics should deserve special attention so that the current state-of-the-art
can be improved.

Page 18 of 24

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 6, 2009 11:42 Engineering Optimization acp

19

4.2. Future Trends

There are several research lines that can be explored to further address the ACP problem
with EAs. At a lower algorithmic level, the design of new encodings and genetic operators
for the problem, as well as the analysis of current existing ones, are of great interest.
Concretely, the more complex encoding, the network encoding presented in Section 3.2,
has only been evaluated with a few genetic operators (multilevel mutation and
geographical crossover, mainly). Additional operator developments may take advantage
of this ACP-targeted encoding. Evaluating this encoding and operators with the search
engine of well-known algorithms such as NSGA-II or SPEA2 is also a matter of research.

At a higher algorithmic level, a promising research line is targeted to hybridizing
EAs (Talbi (2002)), especially with other EAs. Up to now, EAs have been hybridized
in the literature with local search algorithms (e.g., see Créput et al. (2005), Talbi et al.
(2007)) or Tabu Search (Chiara et al. (2005)) to solve ACP problems, but hybrid al-
gorithms involving two different EAs have not been found. The aim here would be to
profit from the different search capabilities, for example, of a GA (diversification) and an
evolution strategy (intensification). In the context of multiobjective EAs, hybridization
is underexplored in the literature.

Checking whether other unused EAs can successfully address the ACP problem is a
promising research topic as well. To the best of our knowledge, two main unused EAs
have been left unexplored in the literature. On the one hand, no genetic programming
approach has been found in the literature for ACP, even when this kind of EA performs
well on other design problems (Koza (1992), Koza et al. (2004)). On the other hand,
the cellular model of structured EAs (Alba and Tomassini (2002)) has not been used
either. Cellular EAs have been shown to be very effective in other domains (Alba
and Dorronsoro (2008)), so evaluating their enhanced search engine may lead to an
improvement in the current state-of-the-art algorithms.

There are several additional studies whose conclusions may result in relevant out-
comes especially for the telecommunication engineers that use EAs to solve their ACP
problems. The analysis of both scalability and convergence speed of EAs on
this problem also requires more investigations. The increasing size of cellu-
lar networks means EAs are faced with problem instances with thousand of
decision variables. Therefore, evaluating the algorithms that perform better on very
large instances is of great interest for cellular operators, since they can afford larger
and more efficient network deployments. The study on how quickly EAs converge
towards optimal solutions would also be of interest to the telecommunication in-
dustry. Indeed, execution time becomes a critical constraint for the operators and
mainly for the software companies that are developing software for operators. Within
commercial applications, reaching “good” solutions in a very short time is usually a
must in order to provide operators with competitive software tools. These studies have to
pay special attention to the statistical analysis of the results, which must be rigorously
performed in order to draw useful conclusions. However, the works analyzed in this
paper, for the most part lack such thorough analyses.
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Bäck, T., Fogel, D.B., and Michalewicz, Z., eds. , 1997. Handbook of Evolutionary Com-
putation. Oxford University Press.

Baluja, S., Population-Based Incremental Learning: A Method for Integrating Genetic
Search Based Function Optimization and Competitive Learning. , 1994. , Technical
report CS-94-163, Carnegie Mellon University.

Berman, F., Fox, G., and Hey, A., 2003. Grid Computing. Making the Global Infrastruc-
ture a Reality. Communications Networking and Distributed Systems Wiley.

Blum, C. and Roli, A., 2003. Metaheuristics in Combinatorial Optimization: Overview
and Conceptual Comparison. ACM Computing Surveys, 35 (3), 268 – 308.

Brunetta, L., et al., 2004. Optimization approaches for wireless network planning. In:
URSI 2004 International Symposium on Electromagnetic Theory, 182 – 184.

Cahon, S., Talbi, E.G., and Melab, N., 2006. A parallel and hybrid multi-objective evo-
lutionary algorithm applied to the design of cellular networks. In: MELECON 2006.
2006 IEEE Mediterranean Electrotechnical Conference, 803 – 806.

Calégari, P., Guidec, F., and Kuonen, P., 1996. A Parallel Genetic Approach to
Transceiver Placement Optimisation. In: Proceedings of the SIPAR Workshop’96: Par-
allel and Distributed Systems, 21 – 24.

Calégari, P., et al., 1997. Parallel island-based genetic algorithm for radio network design.
Journal of Parallel and Distributed Computing, 47 (1), 86 – 90.

Calégari, P., et al., 2001. Combinatorial optimization algorithms for radio network plan-
ning. Theoretical Computer Science, 263, 235 – 245.

Cerri, G., et al., 2003. Base-station network planning including environmental impact

Page 20 of 24

URL: http:/mc.manuscriptcentral.com/geno  Email: A.B.Templeman@liverpool.ac.uk

Engineering Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

October 6, 2009 11:42 Engineering Optimization acp

REFERENCES 21

control. In: Electrical Engineering and Electromagnetics VI. Sixth International Con-
ference on Computational Methods for the Solution of Electrical and Electromagnetic
Engineering Problems incorporating Electromagnetic Effects on Human Beings and
Equipment Seminar. ELECTROCOMP VI, 63 – 69.

Cerri, G., et al., 2004. Base-station network planning including environmental impact
control. IEE Proceedings Communications, 151 (3), 197 – 203.

Cerri, G. and Russo, P., 2006. Application of an Automatic Tool for the Planning of a
Cellular Network in a Real Town. IEEE Transactions on Antennas and Propagation,
54 (10), 2890 – 2901.

Chamaret, B. and Condevaux-Lanloy, C., 1998. Graph based Modeling for automatic
Transmitter location in Cellular Network. In: Proceedings of the High Performance
Computing HPC98 Special session Telepar’98, 248 – 252.

Chiara, B.D., et al., 2005. Hybrid Meta-heuristic Methods in Parallel Environments for
3G Network Planning. In: EMC Europe Workshop 2005, Electromagnetic Compatibility
of wireless Systems, 199 – 202.

Coello, C.A., Lamont, G.B., and Veldhuizen, D.A.V., 2007. Evolutionary Algorithms
for Solving Multi-Objective Problems. Second Genetic and Evolutionary Computation
Series Springer.

COST231, Urban transmission loss models for mobile radio in the 900 and 1800 MHz
bands. , 1991. , Technical report, European Cooperation in the Field of Scientific and
Technical Research.
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