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Abstract—A common assumption in intermittently-connected
(or opportunistic) mobile networks is that any contact has enough
capacity to transfer the required amount of data. Although such
an assumption is reasonable for analytical purposes and when
contents are small, it does not hold anymore when nodes produce
contents that are larger than the capacity of a contact. In such a
case, nodes must slice data and send fragments separately, which
allows better use of short contacts and progressive dissemination
of large contents data pieces. The question here is to designthe
best strategy for deciding which piece(s) to transmit whenever
nodes meet. In this paper, we present the design and evaluation
of PACS (Prevalence-Aware Content Spreading), a completely
distributed algorithm that selects pieces to transfer based on their
popularity. We evaluate the performance of PACS using both
synthetic and real traces from intermittently-connected networks.
When compared with sequential and randomized solutions, we
show that PACS significantly outperforms these approaches both
in terms of latency to achieve full dissemination and ratio of
effective contacts. Moreover, PACS achieves performance levels
that are extremely close to a centralized version based on an
oracle.

I. Introduction

Important advances in the area of opportunistic networks
have been achieved including the conception of applications
to enable content sharing among users on the move [1], [2],
[3]. In our daily lives, users generate, consume, and share
contents that are becoming increasingly larger. We addressthe
following question:how to efficiently disseminate such large
contents in opportunistic networks when contacts have limited
capacity? This is a realistic situation, as portable devices
such as smartphones and compact cameras are now able to
generate high-definition videos that are resource-consuming.
As an idea, average standard videos on YouTube are 10MB
long [4]; in HD quality, this value goes up to 40MB. If we
consider Bluetooth as the underlying transport technology(as
suggested in several proposals), transferring such amounts of
data opportunistically would require contacts of 80 to 320
seconds, at best.

A few experimental initiatives have shown that most contact
durations in human-driven opportunistic networks fall under
the minute [5], [6], [7].1 For example, Gaito et al. show in
their experiment that the median contact time is 48 seconds,
i.e., more than 50% of the contacts last for less than 1

1Other fundamental papers could not show such a behavior as they relied
on beaconing periods of 120 seconds or more [8], [9].

minute. Trying to transfer large contents during these short-
lived encounters becomes impractical, as two main limitations
rise. First, nodes that experience short contacts frequently
might never receive the data. Second, transfer opportunities
are wasted leading to poor overall performance.

To optimize data dissemination in such scenarios, it is
fundamental to adapt the size of messages to the contact
capacity by fragmenting the transmitted data. In this paper,
we suppose that contents are divided into pieces of standard
size. The main challenge when disseminating fragmented data
is to decide which piece(s) should be sent when two nodes
meet (see Section III). One possibility is to rely on a naive
approach and transfer pieces in a sequential order, i.e., nodes
disseminate the pieces with the lowest identifiers first. As
we will show later, the main problem with this approach is
that it does not capture the conditions of the network and
leads to poor dissemination ratio. Another possibility is to
disseminate pieces in a uniformly-distributed random way,but
it does not capture contact patterns either. In this paper, we
show that: (i) the order of piece dissemination matters, (ii)
bad piece selection can lead to ineffective contacts, and (iii)
uniform random selection is not enough. To our knowledge,
no previous work has addressed this problem.

To counterpart the abovementioned issues, we propose
PACS (Prevalence-Aware Content Spreading), a popularity-
based strategy to select pieces to be exchanged between
neighbors solely based on node-local information. Through
their successive contacts, nodes keep track of the dissemina-
tion level of the pieces throughout the network and use this
information to transfer less prevalent pieces first. To thisend,
nodes exchange a small Boolean vector when in contact. By
combining such vectors over time, nodes are able to build a
popularity map of pieces in the network. We show that such a
simple strategy significantly increases the system performance.

We evaluate PACS using both synthetic and real-world
mobility traces from intermittently-connected networks.Syn-
thetic user movements are generated using the random trip
model [10] and the community-based mobility model proposed
in [11]. Additionally, we have also used movement traces
obtained from RollerNet, an intermittently-connected mobile
network formed between 62 people during a rollerblading tour
in the streets of Paris, which lasts for 3 hours [5].

In summary, the key contributions of PACS are:
• Higher heterogeneity of pieces in the network.PACS
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Fig. 1. A motivating example. Selecting the pieces to transfer is fundamental to efficient dissemination of fragmented contents.

prevents nodes form getting the same pieces first, which
leads to quick increase in the number of infected nodes.

• More useful contacts.PACS leads to much higher con-
tact effectiveness, i.e., it reduces the number of contacts
that cannot be used because nodes have the same pieces.

• Reduced dissemination delay.By turning more contacts
into effective opportunities, PACS significantly reduces
the latency for the contents to be fully pushed to all nodes.

II. Content Spreading in Opportunistic Networks

In this section, we provide all the necessary background
before introducing the dissemination algorithms.

A. Problem Statement

In our problem, we consider a certain number ofpieces
that compose acontent. The content must be disseminated to
a population of mobile nodes that communicate opportunis-
tically. The problem we face here is:given the pieces and
a contact opportunity, which subset of these pieces should be
transferred if the contact is insufficient to transmit all of them?

Our objective is to define an algorithm to select pieces to
be transferred when two nodes get into communication range.
This algorithm should generate little overhead and still lead to
fast content dissemination. Note that this problem is similar
to file swarm in peer-to-peer networks [12]. However, in our
case infection can only happen when nodes meet physically.

B. Motivating Example

We now illustrate why the proper selection of pieces to
send is important. The straightforward approach for a node to
disseminate a content in an opportunistic network is to transfer
pieces based on an increasing order of identifiers. We will call
this strategysequentialin the remainder of this paper.

We show in Fig. 1(a) the sequential approach at three
consecutive time instants. In the very beginning, only node
n1 has the content (composed of four pieces). Att = t1, n1

meetsn2. This latter has no pieces yet. The contact allowing
the transfer of two pieces,n1 sends then pieces 1 and 2. At
t = t2, n1 meetsn3 (which does not have any pieces either).
As for the previous case,n1 transfers the first two pieces. At
t = t3, noden1 has left the network. Whenn2 andn2 meet, the
contact opportunity cannot be used because both nodes have
the same pieces.

The ideal case would have been the one illustrated in
Fig. 1(b). Noden1, instead of disseminating the same pieces

TABLE I
Summary of the variables.

Variable Definition
N Set of nodes in the network
N Number of nodes inN
n0 Data source
C Content to be disseminated
K Number of pieces that composeC
ci ith piece ofC
τ Contact slot (time to transfer one piece)

an j Availability bitmap of nodenj

each time it meets a node, applies some randomized strategy
to avoid the situation described above. Here, att = t3, nodes
n2 and n3 are able to exchange pieces turning the encounter
into a useful contact.

In a real network composed of dozens or even hundreds of
nodes, contact patterns are expected to be much more complex
than the example above. We propose a generalization to the
solution shown in Fig. 1(b).

C. Network model and assumptions

Let N = {n0, n1, . . . , nN} be the set ofN nodes in the
network. Nodes are mobile, but we do not assume any a priori
knowledge of mobility patterns. For the sake of simplicity,
we assume that all nodes in the network are interested in the
unique content that is initially only available at a single node.
Without loss of generality, we call this node the data source
and denote it asn0. The generalization to any number of data
sources and contents is straightforward.

The data source chops the content intoK pieces of
equal size. Pieces are sequentially identified asC =

{c0, c1, . . . , cK−1}. Nodes use their contact opportunities to get
pieces, i.e., we assume that there is no infrastructure to help
the dissemination process. Nodes can get pieces from the
data source and from any other node in the network having
it. Each nodeni stores locally anavailability bitmap vector
ani = {a0, . . . , aK−1}, whereak = 1 if the node has piececk,
andak = 0 otherwise.

The necessary contact time to transfer one piece is notedτ.
We call this a contact slot. Thus, a contact durationt can be
used to transfer⌊ t

τ
⌋ pieces.

All the variables are summarized in Table I.
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III. Basic content dissemination strategies

We now detail the operation of the basic strategies. A
strategy specifies the pieces to transfer during a contact
slot. We call “basic” strategies the sequential one illustrated
in Section II-B and a randomized one where pieces to be
transferred are selected following a uniform law.

A. Sequential content dissemination

In the sequential strategy, nodes transfer pieces to neighbors
in an increasing order of identifiers. This implies that if a node
has piecec j, it necessarily has piecesck, ∀0 ≤ k ≤ j. We note
ĉni as the largest identifier nodeni has, i.e., ˆcni = j if a j = 1
anda j+1 = 0. Initially, all nodes in the network are looking for
the first piece (i.e.,c0) except the data sourcen0 that already
has all pieces. Formally, ˆcni = −1,∀ni ∈ N\n0 andĉn0 = K −1.

When two nodesni and n j meet, they exchange their
corresponding ˆc. Consider first the case where ˆcni > ĉnj , which
means thatni has at least one piece thatn j does not have. As
long as the contact duration allows, nodeni transfers pieces
following the sequencecĉnj+1, cĉnj+2, . . . , cĉni

. If ĉni < ĉnj , the
same is done but fromn j to ni . At each transfer, the receiving
node increments its ˆc.

Note that ifĉni = ĉnj , the contact will be useless as the nodes
have exactly the same contents. For a contact of durationt, the
maximum number of pieces transferred is min{|ĉi − ĉ j |; ⌊t/τ⌋}.

B. Uniform random content dissemination

The idea behind the uniform content spreading strategy is to
select, among the pieces a neighbor has not received yet, the
ones to be transferred in a uniformly-distributed random way.
When nodesni and n j meet, they exchange their availability
vectorsani andanj (as defined in Section II-C). Nodeni (resp.
n j) computesani ∧ (¬anj ) (resp. anj ∧ (¬ani )), which gives
the candidate pieces to be transferred (∧ stands for the “and”
operator and¬ is “not’). During the contact time, one or more
of these candidate pieces are chosen to be transferred based
on a uniformly-distributed random way. After one round of
exchanges, nodes update their availability vectors as:

ani = ani ∧ ic j→i ,

anj = anj ∧ ici→ j .
(1)

whereici→ j andic j→i are vectors ofK elements with all positions
equal to 0 except the position relative to the piece just received,
which is set to 1.

IV. PACS: Prevalence Aware Content Spreading

The goals of PACS are to achieve fast content dissemination
while keeping the overhead low and making better use of
contact opportunities. The challenges of conceiving such a
system are mainly twofold. First, nodes must have a clue
on the dissemination progress of each piece, so that they
can appropriately prioritize their transmissions. Second, the
dissemination information must remain local to reduce the
overhead and achieve a scalable solution.

In PACS, in addition to the availability vector, nodeni also
keeps a prevalence vectorpni

= {p0, p1, . . . , pK−1}. As it will

Algorithm 1 ni PACS strategy
1: while contact with(nj ) do
2: receive f rom(nj ,an j );
3: pni

= pni
+ an j ;

4: if (ani∧(¬an j ) , ∅) and (initiate connexion with(nj )) then
5: cs← prevalence selection f rom((ani ∧ (¬an j )),pni

);
6: send to(nj , cs);
7: end if
8: if (an j ∧(¬ani ) , ∅) and (connexion initiated by(nj )) then
9: receive f rom(nj , cs);

10: ic j→i = {i0, . . . , iK−1}; ik = 0, ∀k < K (k , s) and is = 1
11: ani ← ani ∧ ic j→i ;
12: end if
13: end while

ani

ni nj

anj1 1 0 10 0

p
ni

p
nj

1 1

1 3 425 7 11

(a) State 1: select pieces.

ani

ni nj

anj1 1 10

p
ni

p
nj

1 1

1 3 536 8 12

11

(b) State 2: update local vectors.

Fig. 2. Piece selection using PACS. Initially,ni has pieces{c0, c1, c2} and
nj has pieces{c0, c3}.

become clearer later, the goal ofpni
is to give a local view of

the prevalent pieces in the network. Initially, all nodes have
an empty prevalence vector. When nodesni andn j meet, they
exchange their availability vectors, exactly in the same way as
the uniform content dissemination strategy. They also update
their prevalence vectors respectively as:

pni
= pni

+ anj ,

pnj
= pnj

+ ani .
(2)

Among the candidate pieces to be transferred, nodes select
the one with the lowest prevalence. In case of tie, a piece is
chosen in a uniformly distributed random way. Letci→ j be the
piece sent byni to n j andc j→i be the piece sent byn j to ni .
Once this step done, nodes update their availability vectors as
indicated in Equation 1.

In the very beginning, the prevalence vector has a limited
influence on the selection algorithm but gains importance
as nodes move and exchange pieces. We show an example
in Fig. 2. After exchanging their availability vectors, nodes
update their prevalence vectors as indicated in Equation 2
(pni
= {6, 1, 3, 2} and pnj

= {8, 3, 5, 1} ). Then, n j transfers
to ni the piecec3 that is the only piece it is able to select,
while ni chooses the less prevalent piece from{c1, c2} to send
to n j. According topni

, piecec1 is less prevalent than piece
c2. Nodeni sendsc1 to n j. Once the exchanges are done, the
respective availability vectors are set toani = {1, 1, 1, 1} and
anj = {1, 1, 0, 1}. The strategy is described in Algorithm 1.

Note that PACS has some similarities with peer-to-peer
systems, notably BitTorrent [12], [13]. Indeed, PACS uses a
BitTorrent-like content swarming where data is divided into
several pieces. When two nodes are in range of each other,
they try to exchange the pieces with the lowest prevalence
first. This corresponds somehow to the rarest-first algorithm
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used in BitTorrent. Nevertheless, the notion of rarest piece
is essentially different in the two cases. In BitTorrent, each
peer maintains a list of the number of copies in its peer
set. This list corresponds to the prevalence vector described
in PACS but contains exactly the number of copies in the
peer set (neighborhood). In PACS, instead, nodes update
their prevalence vector each time they initiate a connection
with another node. Even if both strategies give the node an
egocentric view of the rarest pieces, PACS adapts the algorithm
to counterbalance the instability of a node’s neighborhooddue
to the dynamics of the environment. Indeed, the nodes that
are the most represented in the prevalence vector are those
encountered often and/or during longer time intervals.

V. Evaluation framework

In this section, we summarize the simulation and model
parameters. We use the ONE [14] simulator with both mobility
models and real movement trace based simulations.

A. Simulation parameters

We study the impact of the following main parameters:
Area size. We select two areas: 300m×300m and
1,000m×1,000m. The first area is of the size of a train
station when the second area is large as a city neighborhood.
Number of nodes. The number of nodes varies between 100
and 2,500 nodes. By default, the number of nodes is set to
250. This parameter, associated to the area size, determines
both the network density and the network diameter.
Data size. We consider a unique content originally available
at a single data source. The content size is set to either 12MB
or 48MB. We select these values to fit a realistic scenario of
video dissemination. As observed in [4], videos in YouTube
have a mean duration of 4.15 minutes for an average size of
10MB. In our simulations, a 12MB-file represents a standard
definition video, while a 48MB-file is a high definition video.
Piece size. We investigate the impact of the piece size on the
effectiveness of the algorithms. The piece size is incremented
exponentially from 96kB to 12MB. By default, the piece size
is set to 384kB. The piece size together with the content size
determines the number of pieces.

These parameters are summarized in Table II. Bold values
stand for the defaults.

B. Parameters of the mobility models

We used two mobility models for the simulations. First,
nodes follow the random trip model. We only consider the
steady state of the random waypoint by applying the formulas
described in [10]. Second, nodes move according to the
community-based model formulated by Musolesi et al. [11].

For both models, nodes move at walking speed (between
0.5m/s and 1.5m/s). Two nodes are able to communicate when
in communication range of 10m. Data is transferred at a
throughput of 125 kBps. In addition, each model has specific
parameters. For random trip, nodes may pause between two
trips. Node pause time is uniformly selected in the interval
[0, 120]s. In the community-based model, nodes are grouped

TABLE II
Simulation parameters.

Factors

Area size 300m×300m, 1,000m×1,000m

Number of nodes 100, 250, 500, 1,000, 2,500

Data size 12MB, 48MB

Piece size 96kB, 192kB, 384kB, 768kB,
1.5MB, 3MB, 6MB, 12MB

Parameters of
the models

Range 10m

Moving speed [0.5, 1.5] m/s

Throughput 125 kBps

RollerNet
configuration

Number of nodes 62

Trace duration 3 hours

Throughput 125 kBps

together based on social relationship among individuals. The
initial number of groups is set to 50. Groups are mapped
onto a topographical space corresponding to cells. The number
of cells in the area is set to 3×3. Table II summarizes the
parameters of the models.

C. Real-world trace configuration

We use the RollerNet trace to evaluate the performance of
the spreading strategies in real-world environment [5]. The
trace has been generated through contact logs between Intel
iMote nodes (equipped with a Bluetooth interface). Each iMote
performs regular scans and registers the MAC addresses of
the responding devices around. The RollerNet trace has been
collected during a rollerblading tour in Paris. iMotes were
distributed to 62 participants and the total duration of thetour
was about three hours. This trace is publicly available to the
community through the Crawdad repository.2

The number of nodes is set to the number of participants in
the experiment (i.e., 62). The transmission throughput of nodes
is set to 125 kBps that correspond to an average Bluetooth
throughput. At each simulation run, the data source is changed.
The trace configuration is summarized in Table II.

D. Benchmarking

We compare PACS with the two basic strategies described
in Section III: the sequential strategy and the uniform random
strategy. Besides these strategies, we consider a centralized
strategy where a central entity maintains a global prevalence
vector. The global prevalence vector is used to select the
piece to be transferred by nodes in the same way as in
PACS. Nevertheless, it is only updated when a node receives a
piece. The global prevalence vector reflects exactly the current
dissemination state of each piece in the network. We call this
strategy the disseminationOracle. Obviously, deploying such
a centralized strategy is impracticable in a real opportunistic
network. We only use it for comparison purposes.

VI. Synthetic mobility evaluation

We use two mobility models to generate synthetic traces.
First, we study the simple case of mobility induced by the

2http://crawdad.cs.dartmouth.edu/meta.php?name=upmc/rollernet
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Fig. 3. Dissemination delay according to the number of nodes. Dissemination
of a 12MB data divided on 32 pieces of 384kB. Random trip (RT) versus
community-based model (CB).

random trip model. Second, we consider the community-based
mobility model, a more elaborated model founded on social
network theory. Parameter details are in Section V-B.

A. Impact of the network density and the network diameter

We vary both the area size and the number of nodes to
study the dissemination delay of a 12MB-file (Fig. 3). We
define the dissemination delay as the required duration for the
content to be received by all the nodes in the network. It is
the elapsed time between the transmission of the first piece
to the first node and the reception of the last piece by the
last node. We also measure the contact effectiveness (Fig. 4).
The contact effectiveness is the ration between the time used
for transfers over the total contact durations (in the period
comprised between the first and the very last piece transfers). It
indirectly measures the availability of new pieces when nodes
meet. An effectiveness closer to zero means that nodes meet
but seldom have pieces to transfer, while effectiveness closer
to one reflects frequent exchanges. As expected, for the four
strategies, the larger the number of nodes (denser network), the
smaller the dissemination delay and contact effectiveness. This
is due to the increase of the number of contact opportunities
in denser networks. The sequential strategy gives the worse
performances. Such a tendency is asserted in dense networks
(Fig. 3(a) and Fig. 3(b)). Regardless of the number of nodes
and the area size, PACS performs better than the sequential
and the random strategies, achieving more than 2× faster
dissemination delays. Furthermore, the results of PACS tend
to the ones obtained using the oracle strategy.

B. Impact of the strategy on the piece dissemination evolution

We want to understand the reason of such a difference in the
dissemination delay between the strategies. First, we compare
the strategies regarding the piece dissemination evolution.
Fig. 5 shows the proportion of time required, among the total
time, to fully disseminate a specific percentage of pieces.
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Fig. 4. Contact effectiveness according to the number of nodes. Dissemina-
tion of a 12MB data divided on 32 pieces of 384kB. Random trip (RT) versus
community-based model (CB).

The total time corresponds to the dissemination delay. The
piece dissemination is faster with the random and sequential
strategies. Indeed, all the nodes get the first piece after 17%
of the total time for the random and only after 7% of the total
time for the sequential. This reflects the fact that all nodesstart
by getting the same pieces with those strategies. In opposite,
with PACS and oracle, nodes start by getting different pieces
and no piece is fully disseminated before 82% of the total time
for Oracle and 71% of the total time for PACS.

Then, we analyze the impact of the strategy on the node
infection evolution. Fig. 6 shows the proportion of time
required, among the total time, to infect a definite percentage
of nodes. A node is infected when getting all the pieces.
Regardless the mobility model, we observe two different
behaviors. Clearly, with PACS and oracle, nodes are infected
very quickly compared to the random and sequential strategies.
With PACS and oracle, the first node is infected at the middle
of the total time. On the other hand, this first node is only
infected at 80% of the total time, with the random and
sequential strategies. Moreover, when the simulation achieves
90% of the total time, only 1.6% (resp. 29%) of nodes are
infected with the sequential strategy (resp. random strategy)
whereas 96% of nodes are already infected with PACS and
oracle. Indeed, in a real scenario, we get more satisfied nodes
with PACS since the node infection is faster.

C. Impact of the strategy on the neighborhood redundancy

We define the neighbor redundancy as the average fraction
of useless connections selected by each node at each slot. A
connection is considered useless if the two nodes involved in
it have no pieces to exchange. We consider the dissemination
of a 48MB file divided on 128 pieces. Fig 7 shows the
neighborhood redundancy according to the number of nodes
in the network. For all strategies, the nodes face more useless
connections when the network is denser. Indeed, with the
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(b) Community-based model.

Fig. 5. Piece dissemination evolution. 250 nodes. Dissemination of a 48MB
data divided on 128 pieces of 384kB. Area 1, 000m× 1,000m.
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(a) Random trip model.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.2  0.4  0.6  0.8  1F
ra

ct
io

n 
of

 th
e 

di
ss

em
in

at
io

n 
 d

el
ay

Percentage of infected nodes

PACS
Oracle

Random
Seq

(b) Community-based model.

Fig. 6. Nodes infection evolution. 250 nodes. Dissemination of a 48MB data
divided on 128 pieces of 384kB. Area 1, 000m× 1, 000m.

random trip model for example (Fig. 7(a)), only 1% or less
of the selected connection is useless with 100 nodes in the
network. This proportion is 10 times larger for 250 nodes.
The impact of network density can be explained by the
augmentation of simultaneous co-located contacts. In the same
neighborhood, nodes can get pieces from more neighbors when
the network in denser. In particular, two co-located nodes
can get the same pieces at the same time but from different
neighbors. As a consequence, a future contact between these
two nodes becomes useless. We observe, however, that PACS
limits neighborhood redundancy as compared to sequential and
random strategies. For example, with 500 nodes, the number
of useless connection with PACS is divided by two comparing
to the random strategy. This highlights the fact that co-located
nodes get more heterogeneous pieces with PACS.

VII. Real-world trace evaluation

In this section, we evaluate the performance of the spreading
strategies in the real-world context of the RollerNet trace.
We vary the scenario by setting each node in the network
as data source. Plots represent average results. Section V-C
summarizes the experimentation details.

A. Impact of the piece size

Regardless the strategy, the dissemination delay increases
with the augmentation of the piece size (Fig. 8). One reason
is that the larger the piece size, the less the number of contact
opportunities able to transmit the piece. Moreover, when the
piece is too voluminous, the dissemination fails in many
cases. This is what happens, when trying to send pieces larger
than 1.5MB (resp. 3MB) for 48MB data (resp. 12MB data).
Nevertheless, comparing the different strategies, the increase
of the dissemination delay is less significant with PACS than
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Fig. 7. Neighborhood redundancy. Dissemination of a 48MB data divided
on 128 pieces of 384kB. Area 1, 000m× 1,000m.
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Fig. 8. Dissemination delay according to the piece size. Nodes move based
on RollerNet trace. (Please note that the two graphs do not use the same scale,
for the sake of visualization.)

with the sequential and random strategies. This difference is
more noticeable when disseminating larger data (Fig. 8(b)).
Indeed, when the number of contact opportunities able to
transmit the piece is smaller, the impact the strategy grows.

B. Impact of the piece selection strategy

This section investigates the importance of the piece selec-
tion strategy in a real environment. We analyze the impact
of the strategy in the evolution of both piece dissemination
and node infection. Figs. 9(a) and 9(b) confirm the observa-
tions made with the mobility models. Indeed, compared to
the sequential and random strategies, PACS achieves slower
piece dissemination and a faster node infection. Clearly, the
percentage of nodes having all pieces and playing the role
of a source node increases faster with PACS. This observation
reflects a higher heterogeneity of the disseminated pieces with
PACS that explains the better dissemination delay.

To see in detail how the dissemination evolves in time, we
estimate the piece dissemination delay (Fig. 10). We define the
piece dissemination delay as the time required for a particular
piece to be fully disseminated. We consider the dissemination
of a 48MB data divided into 32 pieces of 1.5MB. Each plot
in the figures represents a different data source. We clearly
distinguish two different behaviors. On the one hand, the
random and the sequential strategies (Fig. 10(c), Fig. 10(d))
achieve the dissemination of the first pieces very quickly.
Nevertheless, they spend much more time to disseminate the
last pieces. This can be explained by the lack of piece diversity
in the network that causes useless contact opportunities. On
the other hand, oracle and PACS (Fig. 10(b), Fig. 10(a)) start
by spreading various pieces. This explains the slowness of
the first piece dissemination. But, because nodes get different
pieces, the overall dissemination is faster.
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(a) Piece dissemination evolution.
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(b) Node infection evolution.

Fig. 9. Dissemination evolution. Dissemination of a 48MB data divided on
128 pieces of 384kB. Nodes move based on RollerNet trace.
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Fig. 10. Piece dissemination delay. Dissemination of a 48MBdata divided
on 32 pieces of 1.5MB. Nodes move based on RollerNet trace.

C. Impact of the data source

The data source may have an impact on the dissemination
success. Fig. 11 shows the dissemination delay according to
the data source ID. We assume the dissemination of a 12MB
data divided on 2 pieces of 6MB. When the strategy fails
to disseminate the content before the end of the trace, the
dissemination delay is set to -1. The strategies dissemination
success depends on the data source. Indeed, for some data
sources (for example, nodes 26 and 50), the dissemination
fails regardless the strategy. Moreover, we observe some data
sources that achieve the dissemination for some strategiesand
fail for the others (for example, nodes 44 and 47). This last
observation highlights the fact that the piece selection strategy
remains important even when the number of pieces is small
(here, there is only 2 pieces). Furthermore, we notice that
PACS has the same delivery rate as oracle and outperforms
the random and sequential strategies by more than 13%.

We further investigate the dissemination failures. Fig. 12
shows the node infection delay according to data source ID.
We denote the node infection delay as the elapsed time before
a particular node receives the full content. We consider three
particular data sources: 26, 44, and 47. When node 26 is
the data source, no strategy completes the dissemination (this
represents 8% of the points in Fig 11). In this case, the
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Fig. 11. Dissemination delay according to the data source ID. Dissemination
of a 12MB data divided on 2 pieces of 6MB. A dissemination delay equals to
-1 means that the strategy fails to disseminate the content.λ is the complete
delivery rate. Nodes move based on RollerNet trace.

infection of the first node in the network comes very late
comparing to the common case represented by the source node
7 (Fig 12(a)). Nevertheless, even if the dissemination is not
achieved for all strategies, the node infection delay is faster in
PACS comparing to the random and sequential strategies. In-
deed, with PACS, 95% of nodes are infected at the time 7,135
of the trace whereas the same rate is reached by the random
and sequential strategies at time 8,810. When node 44 is the
source, PACS and oracle complete the dissemination while the
random and sequential strategies fail (represents 14.5% ofthe
points in Fig 11). Here, the random and sequential strategies
infect only 82% nodes when PACS achieves the dissemination.
Finally, when node 47 is the source, random and sequential
strategies achieve the dissemination while oracle and PACS
fail (represents 1.6% of the points in Fig. 11). In this case,
PACS infects 98% of the nodes at time 6,681 and fails to
infect the last node even if it remains 30% of the total time.
We find that the last non-infected node becomes isolated at this
moment. This is due to the random selection of the neighbor
with whom pieces are exchanged.

VIII. R elated work

As discussed in Section IV, our solution is inspired by
BitTorrent. Several solutions have been proposed to adapt
BitTorrent to opportunistic and Ad Hoc networks [15], [16],
[17]. Most of these adaptations, however, aim at constructing
and maintaining an overlay network that enables multi-hop
message routing. In other terms, nodes do not to be direct
neighbors to become peers. Our solution, in turn, uses the net-
work layer and the immediate communication capabilities of
the nodes to disseminate data. Nadan et al. proposed SPAWN,
a cooperative strategy for content downloading in vehicular
networks [18]. The piece selection scheme used in SPAWN
is based on a proximity-driven strategy called rarest-closest.
Such a strategy selects the rarest pieces and then ranks them
based on the distance to the closest peer that has that piece.
This solution shares with PACS the same motivations, i.e.,
they prioritize rarer pieces and consider peer location. SPAWN
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Fig. 12. Node infection delay according to data source ID. Dissemination of
a 12MB data divided on 2 pieces of 6MB. Nodes move based on RollerNet
trace.

and PACS differ however on a fundamental aspect. SPAWN,
as the abovementioned solutions, constructs an application-
layer overlay that does not limit the peer selection to the
one-hop neighborhood. Hence, it needs a routing protocol that
maintains multi-hop routes between peers.

Some other solutions implemented file swarming by only
considering one-hop communications [19], [20]. Both solu-
tions use uniformly-distributed random piece selection. Nev-
ertheless, they use network coding in order to mitigate the
coupon collection problem by increasing piece heterogeneity.

IX. Conclusion and open issues

In this paper, we proposed, designed, and evaluated PACS,
an efficient strategy to disseminate large contents in oppor-
tunistic networks. PACS selects pieces to disseminate based
on their prevalence in the network. We evaluate PACS using
both mobility based and real-world trace simulations. Thanks
to a more heterogeneous piece distribution, PACS achieves
better dissemination delays and faster node infection thanthe
sequential and random strategies.

Future work includes several interesting open issues. A
first question is the impact of the selected neighbor, i.e.,
how to better select the relaying node when having several
simultaneous contact opportunities. Second, in this paper, we
considered a unique content dissemination. An interesting
future direction is to consider the case of multiple contents to
disseminate to multiple user groups. In this case, extending the
algorithm with a caching policy could be a good solution [21],
[22]. Another important concern is the overhead induced by
content fragmentation in this scenario (which includes extra
headers for each piece). Indeed, our results showed that faster
dissemination is obtained with smaller pieces. Nevertheless,
to implement such a solution in reality, we must account
for the tradeoff between overhead and dissemination delay.
Finally, we also intend to extend PACS with networking
coding capabilities.
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