
HAL Id: hal-00602510
https://hal.science/hal-00602510v1

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtualization for computational scientists
G.K. Thiruvathukal, Konrad Hinsen, Konstantin Laufer, Joe Kaylor

To cite this version:
G.K. Thiruvathukal, Konrad Hinsen, Konstantin Laufer, Joe Kaylor. Virtualization for computational
scientists. Computing in Science and Engineering, 2010, 12 (4), pp.52-61. �10.1109/MCSE.2010.92�.
�hal-00602510�

https://hal.science/hal-00602510v1
https://hal.archives-ouvertes.fr

Loyola University Chicago

Loyola eCommons

Computer Science: Faculty Publications & Other Works

7-1-2010

Virtualization for Computational Scientists
George K. Thiruvathukal
Loyola University Chicago, gkt@cs.luc.edu

Konrad Hinsen

Joseph P. Kaylor

Konstantin Läufer
Loyola University Chicago, klaufer@luc.edu

This Article is brought to you for free and open access by Loyola eCommons. It has been accepted for inclusion in Computer Science: Faculty
Publications & Other Works by an authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Copyright © 2010 George K. Thiruvathukal, Konrad Hinsen, Joseph P. Kaylor, and Konstantin Läufer

Recommended Citation
Thiruvathukal, George K.; Hinsen, Konrad; Kaylor, Joseph P.; and Läufer, Konstantin, "Virtualization for Computational Scientists"
(2010). Computer Science: Faculty Publications & Other Works. Paper 16.
http://ecommons.luc.edu/cs_facpubs/16

http://ecommons.luc.edu
http://ecommons.luc.edu/cs_facpubs
mailto:ecommons@luc.edu
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

52 Copublished by the IEEE CS and the AIP 1521-9615/10/$26.00 © 2010 IEEE COMPUTING IN SCIENCE & ENGINEERING

S C I E N T I F I C P R O G R A M M I N G

Editors: Konstantin Läufer, laufer@cs.luc.edu
Konrad Hinsen, hinsen@cnrs-orleans.fr

VIRTUALIZATION FOR
COMPUTATIONAL SCIENTISTS
By George K. Thiruvathukal, Konrad Hinsen, Konstantin Läufer, and Joe Kaylor

T he fun all began in May of
1999, when VMware launched
VMware Workstation, a prod-

uct that lets you run multiple operat-
ing systems simultaneously on your
desktop computer. In truth, the story
begins much earlier with the VM OS
concept, which was pioneered (like
many things) by IBM in 1960 but
eventually perfected by others. The
idea behind virtualization is simple.
You can run multiple OSs simultane-
ously and share the CPU, memory,
and peripherals among them.

In this article, we’re not going to
cover what virtualization is per se.
This would easily require two articles,
and the actual ideas behind virtualiza-
tion are well explained elsewhere. And
besides, we’ve already covered the use
of virtualization in this column for use
in maintaining experimental comput-
ing laboratories.1 Instead, we’ll focus
here on a fairly simple use case that’s
likely to be of interest to our read-
ers: setting up your own mini com-
pute cluster to use for developing and
testing high-performance computing
applications.

Why Should Computer and
Computational Science
Researchers Virtualize?
For many years, we’ve been a bit frus-
trated with applied computer science,
which overlaps with computational
science. Seemingly, a new framework,
tool, or solution is born every minute

that was certainly predestined to be
published in the literature. We’re even
guilty of publishing papers with pur-
portedly useful techniques that were
(at best) hard to reproduce, simply
because readers couldn’t download,
build, install, and run the code with-
out significant work. Even worse,
sometimes even the best instructions
or configuration scripts simply won’t
do. Systems work is complex and pep-
pered with dependencies that trip up
even the most seasoned systems hack-
ers (as all of us can attest). Given the
entropy of modern OSs (especially
Linux and friends), it’s often the case
that something changes that causes
something not to work for some sub-
set of users. A carefully placed vir-
tual machine (VM) image, however,
makes it possible to demonstrate your
work in most cases.

As an example, in a couple of
recent papers, Thiruvathukal and
Kaylor made their development sand-
boxes available as VM images. Their
research looked at FUSE (file systems
in user space) and at building a layer
atop it to make it possible for devel-
opers to create their own FUSE file-
systems without having to be complete
systems geeks. While the code was ac-
tually easy to build and install, it goes
without saying that giving people the
ability to test drive the framework out
of the box, on their own hardware, is
a huge plus for prospective users and
collaborators—and also spares the

authors from having to make their
own servers freely accessible. The
idea of doing this itself was not all that
new. After all, VMware has offered
the Virtual Appliance Marketplace
(www.vmware.com/appliances/) for
years, aimed at making it easy for its
customers to evaluate enterprise server
software sans the obligatory install.

While many of our projects these
days are focused on computer science
(with an eye to computational science)
in the systems area, systems ideas are
particularly valuable to computational
scientists, who often work on a vari-
ety of platforms—such as Linux, OS
X, and Windows—but might not have
their platforms configured for sci-
entific application development. To
this end, we decided to bite the bullet
and show you how to establish a fully
functioning message passing inter-
face (MPI) cluster on your computer.
We’ll show you how to do it on your
own, but you can also download VM
images to get your own cluster go-
ing in a matter of minutes (instead of
the hour or so it took us to do it from
scratch).

Your Own Virtual Cluster
for MPI Development
After struggling mightily to come up
with a straightforward (but not too
straightforward) example that would
be interesting to computational scien-
tists, we decided to start from scratch
by revisiting an old friend from the

Virtualization lets you carve your computer into slices, allowing for great experimentation with different
operating systems, tools, and techniques.

CISE-12-4-SciProg.indd 52 31/05/10 4:03 PM

JULY/AUGUST 2010 53

past: cluster computing. In this ex-
ample, we’re going to set up a simple
two-node network that could be used
for developing parallel software (say,
using MPI). It’s important to note
that this isn’t intended to be a com-
plete cluster computing solution, but
can be a great environment to test,
develop, and learn in before working
with a cluster.

There are already similar projects
out there such as Bootable Cluster
CD (BCCD), which we featured in a
previous column,2 and Rocks (www.
rocksclusters.org/wordpress). However,
we ultimately decided against both of
these because they required way too
much computing power or were lack-
ing in customization potential with-
out significant upfront investment
(something that’s difficult to come by
when you’re simultaneously writing
an article). Nevertheless, this “how to”
overlaps strongly with BCCD’s goals
to make cluster computing accessible
and teachable without the hassle of
setting up everything you need in a
production clustering environment.

For this demonstration, we’ll use
the freely available VirtualBox, which
runs on all platforms of current
interest: Windows, Linux, OS X, and
several others. If you’re going to try
this at home, it’s important that you
have a computer with sufficient com-
putational power. A dual- or quadcore
system will do, and we recommend
having more than 100 Gbytes of free
disk space and at least 2 Gbytes of
RAM (4 Gbytes or more are prefer-
able). Our Mac Mini test system has
2 Gbytes RAM, dual-core Intel 2.26
gigahertz CPU, and plenty of free disk
space (more than 200 Gbytes). Never-
theless, in this case, we were compu-
tationally “challenged” with only two
cores, so we don’t plan to set up too
many nodes in our virtual cluster.

Getting Started:
A Process Overview
First things first: You need to visit
virtualbox.org and download and in-
stall the appropriate installer for your
platform. You’ll also want to grab the
ISO image for Ubuntu Server Edition
(version 9.10 will do, 32-bit or 64-bit).
Any version of Linux will do, but we
assume here that you can find the
equivalent packages on your favorite
version of Linux (or other Unix, such
as OpenSolaris or FreeBSD). We’re
using the 32-bit distribution, given
a desire to optimize compatibility
(32-bit still works best for most things)
and realizing that we don’t need to ad-
dress more than 4 Gbytes RAM on

this system anyway. Everything we’re
doing should work fine in 64-bit, but
we haven’t tested it.

Once the installer completes its
work, start VirtualBox. (As we’ll show
shortly, much can be done at the com-
mand line as well.) We’re going to set
up a cluster of two nodes, which will
be appropriate for our dual-core test
system, but if you have more capacity
feel free to repeat the instructions for
additional VMs when indicated.

The process basically has four steps:

1. Set up a head node.
2. Set up one or more compute

nodes. (We’re actually going to
use the head node as a compute
node in this example with an iden-
tical software setup. In practice,

however, you might have some
special requirements on the head
node, such as I/O.)

3. Set up the compiler toolchain
and MPI runtime/scripts. This
environment will be sufficient,
but is by no means complete (for
brevity’s sake).

4. Run the world-famous “compute
Pi” example.

In the remaining sections, we’ll
take you through the various steps,
ultimately leading to a virtual MPI
development cluster. The end-to-
end or wall-clock time to complete
all of these steps can be as short as an
hour.

Creating your VM
Let’s start by creating the head node.
We’ll be cloning this node to add
compute nodes, and we’re likely to
dive into the VirtualBox command
line interface to accomplish parts of
this. As indicated, you need to have
the ISO image for Ubuntu Linux
at this time and to know where it’s
located on your computer.

Creating a VM is generally simple.
As you’re doing this, we’ll explain
some of the core ideas along the way
and why you should care. More im-
portant, we’ll explain some alterna-
tives that might be worth exploring.
Feel free to experiment! Figure 1
shows VirtualBox’s main screen,
which is the first thing you will see
when you launch VirtualBox to create

We’re going to set up a cluster of two nodes, which will

be appropriate for our dual-core test system, but if you

have more capacity feel free to repeat the instructions

for additional VMs when indicated.

CISE-12-4-SciProg.indd 53 31/05/10 4:03 PM

S C I E N T I F I C P R O G R A M M I N G

54 COMPUTING IN SCIENCE & ENGINEERING

or start an existing virtual machine—
or virtual machines, given the topic of
this article.

Initial Decisions
You can name the VM and OS type
anything you wish, choosing Linux
and Ubuntu as the OS and version,
respectively. If you’re using a cur-
rent version of Linux not mentioned
in the dropdown, just select “Linux
2.6.” (We don’t recommend using
older kernels for performance rea-
sons.) We’ve chosen to name this VM
“head.” (Later, we’ll repeat this pro-
cess to create “node0,” “node1,” and
so on.)

As for base memory size, you can
start lean with 384 Mbytes. Given that
we’re not running a desktop—such
as Gnome (www.gnome.org) or KDE
(www.kde.org)—in this VM, it can
probably be a bit lower if you’re work-
ing with limited memory (under 2
Gbytes total).

Next, you create the virtual hard
disk by selecting “Create new hard
disk.” You’ll want at least 5 Gbytes.
We’ve found that even when we do
a desktop install of Ubuntu with al-
most all packages installed, it takes
3.3 Gbytes. That said, you want to
leave room for growth, so 5 to 6 Gbytes
should be more than sufficient.

Disk Creation Decisions
At this point, we could either use the
command line utility VBoxManage
createhd to create all of our hard
disks for us, or use VBoxManage

clonehd to clone an existing hard
disk. We’ll likely take advantage of
these shortly when adding compute
nodes. For now, it’s time to enter a
disk creation wizard.

Hard disk storage type. Go ahead and
choose “dynamically expanding stor-
age.” In general, you’ll want this op-
tion because hard disks are stored as

files on the host, and you want to al-
locate only space that the installed OS
will actually use. That is, as a virtual
hard disk fills up, a disk file will begin
to “grow” in size.

If you’re a hardcore systems geek,
you’re probably thinking that this can’t
be good for performance—and you’d be
right to a point, because this strategy is
replete with opportunities for fragmen-
tation. That said, most OSs are getting
better at handling large files and virtu-
alization in general (which is truly here
to stay), so if you’re seriously worried
about performance, select “Fixed-size
storage.” Be warned, however, that you’ll
need to wait while VirtualBox allocates
the space for the entire hard disk!

Virtual disk location and size. Accept
the default location name, which
should match the VM name you se-
lected earlier. We recommend set-
ting the size to at least 20 Gbytes,
given that you’ll lose only what you
use, so to speak. You’re not going to
need more than that for these initial
experiments.

Speaking of location, keep in mind
that VirtualBox lets you put your
VMs and disks anywhere you like.
However, by default, a directory/
folder (.VirtualBox) is kept in your
home directory. This is true even
on Windows and OS X (Library/
VirtualBox instead of .VirtualBox)
and can be a bit confusing if you’re
not familiar with hidden files and the
like.

Customizing Your Virtual Machine
After finishing both the disk and
VM wizards, you’ll see a “Details”
tab that shows you the details of your
VM configuration. However, we’re
not quite ready to boot the VM yet.
Although you’ve completed the wiz-
ard, it’s still possible to make some

Figure 1. Main VirtualBox screen. This screen shows the authors’ inventory of VMs,
or cluster nodes.

CISE-12-4-SciProg.indd 54 31/05/10 4:03 PM

JULY/AUGUST 2010 55

last minute changes. And there are
several things you’re likely to want to
change. We’ll focus here on some of
the highlights.

Storage. To actually install Ubuntu
Linux, we must ensure that the CD
device is mapped to the actual ISO
image. After clicking on “Storage,”
you’ll notice that there should be
two devices there: a virtual hard
disk (the file you created for the hard
disk, likely named head.vdi) and an
empty CD. On the right side of this
panel is a folder icon, which you can
use to select the ISO image and add it
to the inventory. I’m going to assume
that most people can select the file
(ubuntu-9.10-server-i386.iso).
If all goes well, what you see will
resemble Figure 2.

System. If you’ve got major power at
your fingertips, you might want to
adjust the number of processors and
base memory. We’re assuming most
readers don’t have these kinds of re-
sources on a desktop computer, but
we do want to call your attention to
the boot order: make sure that CD/
DVD-ROM precedes the hard disk.
Some virtualization solutions (such as
VMware) don’t make it easy to change
these, leaving the task to the emu-
lated BIOS setup. In such cases, you
need very fast fingers to select ESC,
F2, or DEL (which is how you usually
get into the BIOS setup on your own
computer). Luckily, in VirtualBox it’s
a piece of cake.

Network. We’re also going to need to
tweak this later. To set up our virtual
cluster’s head node, we can go with
the single adapter (Bridged). In some
situations, you might want to pursue
other options. Bridged is great when
you’re already set up with a private,

secure home network, and it’s appro-
priate for our experiments. However,
if you’re behind a proxy or find that
your VM cannot get Dynamic Host
Configuration Protocol (DHCP) ad-
dresses from your upstream router,
you’ll want to consider using Network
Address Translation (NAT) or setting
up a host-only network, which will
dynamically assign IPs to your con-
figured VMs. For brevity’s sake, I’m
going to forego some of the details of
networking here so we can focus on
the good stuff!

Universal Serial Bus. We actually rec-
ommend disabling the USB for now.
We’re setting up a cluster, so we don’t
need access to peripheral devices that
are available for USB. Deselecting
this option doesn’t affect your key-
board and mouse, which are handled
using legacy serial logic. So these
devices are always seen in the VM.

Installing the OS
Now that we have a configured VM
for the head node that’s mostly (if not
entirely) to our liking, it’s time to do
the actual OS install. Go ahead and

boot your VM machine by clicking on
the “Start” arrow.

At this point, you’ll see the Ubuntu
server boot menu (see Figure 3). If
you don’t, then it’s likely that you ei-
ther haven’t set the boot order to have
the CD-ROM first or didn’t map the
ISO image to the CD-ROM device
correctly.

First, select “Install Ubuntu
Server.” The entire setup process is
straightforward; for those new to this
type of thing, here’s a quick cheat
sheet:

1. Select your options, including
keyboard layout, time zone, and
so on. In most cases, choosing
these options is trivial.

2. Partition your virtual disk. To
make life easy, simply select the
auto-partitioning option.

3. Set up a user/password for the
administrator account. For new
users, we recommend something
like “manager.” For this demo,
make sure that every node is
configured with the same users,
because we’re not going to be
configuring an advanced naming

Figure 2. The storage screen showing the CD mapped to the Ubuntu 9.10 server
ISO image. You must see what is shown here, especially if you want to install the
actual OS in the VM.

CISE-12-4-SciProg.indd 55 31/05/10 4:03 PM

S C I E N T I F I C P R O G R A M M I N G

56 COMPUTING IN SCIENCE & ENGINEERING

service. There will be a “manager”
user on every node, and we’ll
show you how to set up “ssh” so
you can log into all of the nodes,
password-free.

4. The installation will complete
after awhile. We need to set up the
OS only once. We’ll show you how

to clone nodes, although some
manual steps will be required as
we add nodes to the cluster.

Once the installation has completed,
you can boot the server to ensure ev-
erything worked out (see Figure 4). You
might want to first perform a proper

shutdown so you can deselect the CD-
ROM from the system “Boot Order”
section. However, if you choose not
to, you’ll just see the Ubuntu installa-
tion menu and can boot from the first
hard disk to enter your newly installed
node.

If you’re using VMware instead
of VirtualBox, it will automatically
do the base OS installation, doing
steps 1 through 4 completely unat-
tended. As you’ll see in the rest of
the article, you’ll still have your
work cut out for you (to install net-
working services and MPI) but it’s
slightly less work.

A Look at the VirtualBox
Command Line Interface
Once you’ve booted and logged
in as manager, you should see the
following:

$ VBoxManage list vms

Sun VirtualBox Command

Line Management Interface

Version 3.1.6

(C) 2005-2010 Sun

Microsystems, Inc.

All rights reserved.

"Head" {90bbcce2-6102-4057-

b701-0e781e77131a}

"node0" {98552b67-8ea8-4533-

a2ba-a8926ddcce87}

This shows you all of the VMs that
VirtualBox is presently managing.
On our system, we have a couple of
VMs. To see the VM information for
the head node, you type

VBoxManage showvminfo

90bbcce2-6102-4057-b701-

0e781e77131a

This basically gives you a textual
version of the information that you

Figure 3. Ubuntu server installation menu. The setup process is straightforward;
once installation is complete you can boot the server to see if everything worked
as planned.

Figure 4. The head node console after boot. The output in this figure shows
several boot diagnostics and services being started. If all has gone well, a login:
prompt will also appear.

CISE-12-4-SciProg.indd 56 31/05/10 4:03 PM

JULY/AUGUST 2010 57

see in the VirtualBox main screen’s
“Details” tab:

$ VBoxManage showvminfo

90bbcce2-6102-4057-b701-

0e781e77131a

Sun VirtualBox Command

Line Management Interface

Version 3.1.6

(C) 2005-2010 Sun

Microsystems, Inc.

All rights reserved.

Name: Head

Guest OS: Ubuntu

....

As you can see, it’s fairly lengthy, but
it gives you an idea of how you can do
just about everything outside of the
GUI framework—if you wish. Be-
cause the long-term interest of this
exercise is to set up a complete cluster
on-demand and automatically, it’s im-
portant to be able to do it all from the
command line. (Imagine, for example,
that you wanted to set up a 16-node
cluster—of course, most people don’t
have enough memory to try that at
home.)

Suppose, for example, that we want
to create a new compute node, say,
node1. The steps we’d take are

• clone an existing hard drive (likely
from node0);

• create a new VM that’s identical to
node0’s configuration, except for its
hard disk;

• attach the cloned hard drive to the
VM; and

• boot the VM and change its host-
name from node0 to node1.

The final step isn’t strictly automat-
ed at this point (and is a bit beyond
what we’d planned for this article). In
general, because we can dynamically

assign hostnames with DHCP, this
step doesn’t (strictly speaking) vio-
late our design ideal of complete
automation.

So let’s take a look at the hard disks
in our inventory (belonging to exist-
ing VMs):

$ VBoxManage list hdds

Sun VirtualBox Command

Line Management Interface

Version 3.1.6

(C) 2005-2010 Sun

Microsystems, Inc.

All rights reserved.

UUID: 27048708-1f52-

 4c84-ac9e-

 641f3e706086

Format: VDI

Location: /Users/gkt/Library/

 VirtualBox/

 HardDisks/Head.vdi

Accessible: yes

Type: normal

Usage: Head (UUID:

 90bbcce2-6102-

 4057-b701-

 0e781e77131a)

UUID: f963ccf6-0263-

 4037-8c6f-

 f525bfde4394

Format: VDI

Location: /Users/gkt/Library/

 VirtualBox/

 HardDisks/node0.

 vdi

Accessible: yes

Type: normal

Usage: node0 (UUID:

 98552b67-8ea8-

 4533-a2ba-

 a8926ddcce87)

As you can see, there are two hard
drives, each of which belongs to
one of our VMs. These disks are
kept in the VirtualBox directory
(usually ~/.VirtualBox on Linux
or Windows and ~/Library/

VirtualBox on Mac). We recom-
mend keeping your disks in the
default locations so you don’t have
to think about where to put them

(at least while learning how stuff
works!)

Here’s the VBoxManage command
to clone a hard drive:

VBoxManage clonehd <uuid>|
 <filename> <outputfile>
 [-- format VDI|VMDK|

VHD|RAW|<other>]
 [-- variant Standard,Fixed,

Split2G,Stream,ESX]
 [-- type normal|writethrough|

immutable]
 [--remember] [--existing]

The most important options here
is --remember. If you don’t use it,
then you won’t be able to select this
hard disk for inclusion in a new VM.
That is, it won’t show up on the
VBoxManage list hdds output above!

You’ll obviously need to look
up the Universally Unique Identi-
fier (UUID). For node0, we want

We recommend keeping your disks in the default

locations so you don’t have to think about where to put

them (at least while learning how stuff works!)

CISE-12-4-SciProg.indd 57 31/05/10 4:03 PM

S C I E N T I F I C P R O G R A M M I N G

58 COMPUTING IN SCIENCE & ENGINEERING

UUID f963ccf6-0263-4037-8c6f-
f525bfde4394. We recommend that
you carefully name your disks after
the VMs they’ll ultimately live in.

VBoxManage clonehd f963ccf6-

0263-4037-8c6f-f525bfde4394

node1.vdi –remember

And voila, you now have a new hard
disk that contains a complete clone
of node0, which we can use in a
new VM.

At this stage, we could use
VBoxManage createvm to create a
new VM with this hard disk from
the command line. However, there’s
some customization required to get
a new node up and running, even
though every node’s configuration is
largely the same. In particular, the

new node must have its own host-
name (node1 instead of node0, and
so on)

So, the easiest thing to do at this
point is to fire up VirtualBox and cre-
ate a new VM (just like we did for the
head and node0). When you come
to the point where you need to cre-
ate the disk, you’ll select the option
to use an existing disk, which you
can then attach to the newly created
VM. Simply boot the VM, login as
manager, and make the following
changes:

• edit /etc/hosts and replace the
entry for 127.0.0.1 with the proper
hostname (node0),

• edit /etc/hostname with the proper
hostname, and

• reboot.

After rebooting, it’s official: You have
a two-node cluster!

Setting up Network Services
on the Cluster
Now that we have our nodes up and
running, it’s important to set up some
additional packages. We’ll begin by
setting up some commonly needed
network services. Make sure you’re
logged in as manager on each of the
nodes. We use OpenSSH to provide
remote login service:

$ apt-get install openssh-

server avahi-utils ntp

Avahi provides zero configuration
(zeroconf) networking, letting us
look up hosts by name without run-
ning a standalone network directory

VARIATIONS ON
A VIRTUAL THEME

The main article’s topic, desktop-based virtualization, is
in many ways a limited subset of the larger virtualization

space. Virtualization is a topic of growing interest and one
we’re likely to explore again in this department. Following
is a sampling of other things you can do with virtualization.

Virtual Appliances
The idea of using a VM to package and distribute ready-
to-run software is still rather new, but established enough
already that the term “virtual appliance” has been coined
for such a software distribution.

To get an idea of what a virtual appliance can do, look at
TurnKey Linux (www.turnkeylinux.org) or Bitnami (http://
bitnami.org/). These sites provide a collection of ready-
to-run VMs for various server tasks, including web servers
with content management systems, issue-tracking systems
for software development, and wikis. Just download the
virtual appliance you want and import it into your VM
manager with a few mouseclicks, then boot the VM and
follow the instructions. You get an administration interface,
command-line access via ssh, and of course the web appli-
cations you wanted in the first place. You can also use most
of the VMs immediately on Amazon’s Elastic Compute
Cloud (EC2) cloud service. Setting up your own Web server
has never been easier.

An example of a scientific computing virtual appliance
is HUBzero (http://hubzero.org), a collaborative platform1
that offers users a collection of virtual appliances based
on OpenVZ (http://openvz.org), a lightweight form of
VMs specifically designed for virtual appliances. OpenVZ
supports only one OS (Linux) but has less overhead than
complete virtualization solutions. Using OpenVZ or similar

technologies, you can completely isolate software instal-
lations running on the same hardware and even have the
installations managed by different people.

Virtual Machines in the Cloud
Among the reasons for virtualization’s growing popularity
is the rise of grid and cloud computing. Both techniques
aim to make computing resources commodities just like
water and electricity. You can prepare and submit jobs and
have them executed by some available CPU somewhere—
in fact, you don’t care where. But running your computa-
tional job requires that the CPU have all of your software,
in exactly the versions you need. How can you prepare
such an installation for an unknown computer? Build
a VM!

The oldest and best-known cloud computing service,
EC2, is based on virtualization technology. To run a job in
EC2, you must first prepare an Amazon machine image or
choose from a range of existing ones. You prepare and test
the machine on your own computer, and then upload it to
Amazon’s computing centers. Other cloud services work in
a similar way.

Rent Your Own Virtual Machine
There are times when something is so useful that it deserves
a mention. We’ve already done that in our article by men-
tioning VMware, which remains one of our favorite virtu-
alization solutions, especially on the desktop. So there’s
already at least a precedent of sorts.

So, among the growing number of solutions for rent-
ing your own virtual server is Linode.com, which lets you
pay as you go for a hosted server. For as little as US$20
a month, you can rent a server that lets you set up any
version of Linux you like. Linode.com uses Xen and has its
own control panel to set up the OS from the Web. With
Xen, you can attach to the console, which is particularly

CISE-12-4-SciProg.indd 58 31/05/10 4:03 PM

JULY/AUGUST 2010 59

service such as network information
service (NIS) or Lightweight Direc-
tory Access Protocol (LDAP) (or hav-
ing to manually edit the /etc/hosts
file). When a node runs Avahi, it
“announces” itself using multicast so
other peers can find it. The ntp is the
Network Time Protocol. It’s gener-
ally good practice in networked sys-
tems to have the correct time on all
connected stations/devices.

Again, you’ll run the apt-get

command on each node in the cluster.
Once we have OpenSSH on all nodes,
we can actually do most system ad-
ministration in our cluster remotely.

$ ssh-keygen -t dsa -b 2048

Do this just on the head node,
logged in as the manager user (that

you created earlier), then copy the
key to all of the other N−1 nodes
to create a Digital Signature Al-
gorithm (DSA) key. You’ll then
be asked to provide a pass phrase.
Leave it blank. Otherwise, you’ll
need to enter your password when
you use the key to access this or an-
other node in the cluster (which you
don’t want).

Copy the key to the compute
node(s):

$ scp -r ~/.ssh manager@

node0.local:.

$ scp -r ~/.ssh manager@

node1.local:.

If all has gone well, you should now
be able to log into any node (from
any node) as follows and execute a

command without having to enter
your password:

$ ssh node0.local hostname

$ ssh node1.local hostname

Getting MPI Running
on Our Cluster
So now that we have our nodes up
and running and can log in with SSH,
we’re just about ready to run our
first MPI program, compute Pi (see
Figure 5). We just need to make sure
that an essential build environment
and MPI are installed on all of the
nodes. This is fairly easy on Ubuntu!

$ sudo apt-get install build-

essential gcc g77 g++

openmpi-bin openmpi-common

libopenmpi-dev

useful if anything goes wrong with your virtual server and
it needs a reboot or other maintenance.

Virtual Machines on Virtual Machines
Long time readers of this column know that we’ve covered
Java and other languages that run on virtual machines.
These VMs differ from the notion of virtualization. Lan-
guage VMs (a more precise term) are aimed at providing a
layer of abstraction above the hardware (often at a signifi-
cant penalty) by using a fictitious machine design with its
own instruction set.

The Java VM (JVM), for example, is significantly different
than the processor it typically runs on. For example, it uses
a stack-based design (as opposed to registers). It also has
a relatively simple, abbreviated instruction set. It even im-
poses some restrictions that many computational scientists
don’t like, such as mandatory bounds checking.

Virtualization differs from the language VM notion be-
cause it actually uses the host hardware to run the OSs and
applications as is. And, with few exceptions, you need to
run an OS that has the right architecture (or a compatible
one) to virtualize it. For example, on his 64-bit dual core
laptop, Thiruvathukal runs Linux in 32-bit mode (primar-
ily because he finds that 32-bit Linux has fewer headaches
than 64-bit, but the situation is improving).

From VMs to virtual VMs
For a few years, confusion caused by the different mean-
ings of “virtual machine” was limited: there were basically
virtualized computers (the topic of our main article) and
language VMs (as we just described). Recently, another
“virtual” technology has appeared and rapidly gained inter-
est: the low-level virtual machine (LLVM, http://llvm.org/).

LLVM started as a research project in 2000, and got con-
siderable press exposure last year when Apple decided to
use it as the basis for its next-generation MacOS compilers

and for its OpenCL implementation in MacOS 10.6. LLVM
bears some resemblance to language VMs, such as the
JVM, in that it defines a fictitious machine design to be
targeted by compilers. However, LLVM lacks other parts
of a typical VM, such as memory management and OS
interfaces, and has a different role: it’s a building block for
compiler writers that provides state-of-the-art optimization
techniques.

If you’ve resisted confusion until now, let’s move on
to the next level. Suppose you want to write your own
(language) VM, such as a JVM optimized for a specific ap-
plication domain or target platform. Wouldn’t it be nice to
have a toolkit with most of the required ingredients, such
as a just-in-time (JIT) compiler and a memory manage-
ment library with garbage collection? If so, perhaps VMKit
(http://vmkit.llvm.org/) is just what you need. It uses LLVM
as its JIT compiler, so your newly written VM will actually
be based on another VM (of a quite different kind). And
you can run all that on a virtualized PC if you want. That’s
three levels of virtualization!

But there’s no need to stop there. How about a virtual
VM? That’s a VM that takes as its input the specification of
another VM, which then runs Java bytecodes or something
similar. It also lets you change the VM while it’s running by
loading “VMlets.” This is different from VMKit’s approach,
where the VM is defined by a C++ program, although of
course nothing stops you from using VMKit to implement
a virtual VM that loads extensions dynamically. Virtual VMs
are still a research project for now (http://vvm.lip6.fr/), but
they illustrate what can be done using various virtualization
approaches.

Reference
1. M. McLennan and R. Kennell, “HUBzero: A Platform for

Dissemination and Collaboration in Computational Science and
Engineering,” Computing in Science & Eng., vol. 12, no. 2, 2010,
pp. 48–52.

CISE-12-4-SciProg.indd 59 31/05/10 4:03 PM

S C I E N T I F I C P R O G R A M M I N G

60 COMPUTING IN SCIENCE & ENGINEERING

This command installs MPI
applications using C, C++, and For-
tran 77 (you’ll need to dig deeper if
you aren’t using one of those oldies but
goodies). This environment should be
installed on every node. So, now that
you have ssh installed on every node,
you can actually do it this way:

$ ssh node0.local sudo

apt-get install build-

essential gcc g77 g++

openmpi-bin openmpi-common

libopenmpi-dev

Note: You’ll be asked to enter your
manager password to complete the
sudo operation. You can configure this
to work password-free by changing the
%admin line in /etc/sudoers to

%admin ALL=(ALL) NOPASSWD:

ALL

Please note: letting administrators
become root without a password is a
potential security risk in production
environments. However, because this
server is running in a more confined
setting, the convenience of being
able to run a command on multiple

cluster nodes outweighs the security
risk. Nevertheless, if you’re using
a machine connected to the public
Internet (say, your office computer),
please don’t add the NOPASSWD option
above.

To make it easy for you to get the
examples going without having to
download the entire MPI Chame-
leon (MPICH), we’ve set up a reposi-
tory at Google Code. This repository
contains a clone of the mpich/

examples directory, where useful
MPI demonstration programs live
(the ones we typically use to test our
MPI installation’s sanity). You’ll need
to have Mercurial installed on at least
your head node. You can do this as
follows:

$ sudo apt-get nstall

python-dev python-setuptools

$ easy_install -U mercurial

Then you can use Mercurial to get a
hold of the examples.

$ hg clone https://

virtualization.cise.

googlecode.com/hg/

cise-virtualization

Build the Compute PI (cpi) example:

$ cd cise-virtualization/

mpich-examples

$ mpicc -o cpi cpi

Next, you can create a machines file
that tells MPI the nodes you want to
use to run programs. (These are se-
lected round-robin based on how many
MPI processes you intend to create.)

$ cat > machines

head.local

node0.local (and any other

nodes you created)

^D

Use rsync to “backup” your MPI
code (most important, the execut-
able code) to the other nodes. Here is
how you get the code over to node0.
local:

$ rsync -avz $HOME/cise-

virtualization/ node0.local:

$HOME/cise-virtualization/

$ mpirun -machinefile

machines -n 2 cpi

When you invoke mpirun as above,
you’ll see the nodes where processes
were started.

We intended this as a development
environment—not a high-performance
cluster. Nevertheless, it’s awfully
close to what you find in a real clus-
ter. With a bit more work (beyond the
scope of this article), we could have
set up Network File System (NFS) to
include shared directories (so that we
don’t need to rsync the code).

G reat, you might say, but do I re-
ally need to know how to do this

from scratch? Of course not, but then
again, what fun would there be in
that?

Figure 5. The compute Pi (cpi) example running on the two-node virtual
cluster. This example is often used as a basic test of the “sanity” of one’s MPI
environment. If all goes well, you’ll see that cpi has run on the various compute
nodes selected from the machinefile.

CISE-12-4-SciProg.indd 60 31/05/10 4:03 PM

JULY/AUGUST 2010 61

It’s likely that many readers will
want to simply grab the images and get
started right away. We can understand
this, given how most of us are seemingly
busier than ever. However, because
we think there’s a growing interest in
topics like this—and because at least
one of us has students who surely could
have used this in an HPC course last
year—we plan to continue working on
evolving this and would certainly be
interested to hear what you think.

For updated instructions and links to
the latest images, see http://gkt.etl.luc.
edu/writings/cise-virtualization. Our
hope is to one day have a fully automat-
ed process that will let you build your
own N-node cluster (and perhaps we’ll
have even worked out most of the details
by the time you see this link …).

References
1. J. Kaylor and G.K. Thiruvathukal,

“A Virtual Computing Laboratory,”

Computing in Science & Eng., vol. 10,
no. 2, 2008, pp. 65–69.

2. P. Gray and T. Murphy, “Something
Wonderful this Way Comes,” Comput-
ing in Science & Eng., vol. 8, no. 3,
2006, pp. 82–87.

George K. Thiruvathukal is an associate
professor of computer science at Loyola
University Chicago and associate editor
in chief of CiSE. His technical interests
include parallel/distributed systems, prog-
ramming language design/implementation,
and computer science across the disci-
plines. Thiruvathukal has a PhD in com-
puter science from the Illinois Institute of
Technology. Contact him via http://gkt.
etl.luc.edu.

Konrad Hinsen is a researcher at the Cen-
tre de Biophysique Moléculaire in Orléans
(France) and at the Synchrotron Soleil in
Saint Aubin (France). His research interests
include protein structure and dynamics and

scientific computing. Hinsen has a PhD in
theoretical physics from RWTH Aachen Uni-
versity (Germany). Contact him at konrad.
hinsen@cnrs-orleans.fr.

Konstantin Läufer is a professor of com-
puter science at Loyola University Chicago.
His research interests include program-
ming languages, software architecture
and frameworks, distributed systems, mo-
bile and embedded computing, human-
computer interaction, and educational
technology. Läufer has a PhD in computer
science from the Courant Institute at New
York University. Contact him via www.
cs.luc.edu/laufer.

Joe Kaylor is a software engineer at a
Chicago-area software firm and a member
of the Emerging Technologies Laboratory.
His research interests include storage, vir-
tual memory, and compilers. Kaylor has an
MS in computer science at Loyola Univer-
sity Chicago in 2010.

CISE-12-4-SciProg.indd 61 31/05/10 4:03 PM

View publication statsView publication stats

https://www.researchgate.net/publication/216132854

	Loyola University Chicago
	Loyola eCommons
	7-1-2010

	Virtualization for Computational Scientists
	George K. Thiruvathukal
	Konrad Hinsen
	Joseph P. Kaylor
	Konstantin Läufer
	Recommended Citation

