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Abstract—This paper presents a two-stage motion planner
for walking humanoid robots. A first draft path is computed
using random motion planning techniques that ensure collision
avoidance. In a second step, the draft path is approximated by a
whole-body dynamically stable walk trajectory. The contributions
of this work are: (i) a formal guarantee, based on small-
time controllability criteria, that the first draft path can be
approximated by a collision-free dynamically stable trajectory;
(ii) an algorithm that uses this theoretical property to find a
solution trajectory. We have applied our method on several
problems where whole-body planning and walk are needed, and
the results have been validated on a real platform: the robot
HRP-2.

I. INTRODUCTION

Humanoid robots are highly redundant and yet under-

actuated kinematic systems. Their many degrees of freedom

(DoFs), inspired by the human body kinematic tree, provide

them with great capabilities for manipulation, but require

locomotion in order to move globally. The DoFs that define

the position and orientation of the whole robot in space are

not directly controlled, they derive from the articular DoFs of

the legs of the robot. Those latter should be controlled with

care to guarantee a robot dynamic stability.

Integrating walking control systems in a whole-body motion

planning architecture is not straightforward. Usual ways of

taking care of collision avoidance during locomotion include:

• Computing a collision-free planar trajectory for a bound-

ing box of a robot, then using a locomotion gait to follow

the box trajectory.

• Guaranteeing collision avoidance only at a footstep level,

and planning footstep positions.

Both methods are approximations, either of the geometry of

the robot, or of the geometry of its environment. These simpli-

fications are ways of decreasing the computational complexity

of planning for a humanoid kinematic tree augmented with

footstep positions.

The work presented here tackles the problem of whole-

body motion planning, including locomotion. In a first stage, a

randomized motion planner computes a collision-free path for

a humanoid robot whose feet are sliding on the ground. In a

second stage, this draft path is approximated by a dynamically

stable walk trajectory. A theoretical result, based on small-

time controllability criteria, guarantees that the draft path can

be approximated arbitrarily close by a walking trajectory.

This means that after the planning phase, we are sure that

Fig. 1. The robot HRP-2 passing between two chairs. In that kind of
environment whole-body collision avoidance is needed during locomotion
(edited picture).

a collision-free walking trajectory can be computed from

the first draft path. We present various examples of use of

this algorithm in the experimental section of the paper. The

experiments have been conducted on a model of the HRP-2

robot, and validated on a real platform.

II. RELATED WORK AND CONTRIBUTION

This work is based on two different fields of humanoid

robotics research: first, randomized whole-body motion plan-

ners and second, walk pattern generators based on the Zero-

Momentum Point (ZMP) formalism. These two fields rely

at a lower level on the prioritized inverse kinematics (IK)

formalism [1], [2]. Collision-avoidance can be integrated into

an IK-solver, [3] presents such a method for whole-body

motion planning, and [4] for collision avoidance at a footstep

placement level. However, these methods are prone to fall

into local minima. In this paper, we focus on global motion

planning.

A. Whole-Body Motion Planning

When planning a whole-body motion for a humanoid robot,

the first challenge is to cope with the curse of dimensionality.

The complexity of motion planning is exponential in the

dimension of the configuration space (CS) to explore [5].

When dealing with high-dimensional configuration spaces, it



is typically impossible to explicitly represent them, leading to

the use of randomized sampling techniques to solve global

planning problems. In the past fifteen years, Probabilistic

Roadmaps [6] and Rapidly exploring Random Trees (RRT) [7]

have been developed and used to solve many high dimensional

planning problems. When using sampling techniques on a

humanoid robot, the second difficulty is to take into account

stability constraints, i.e. to generate random configurations

on zero volume submanifolds of CS. This problem has been

investigated with success during the last few years, [8], [9]

present some solutions. The idea is to use prioritized inverse

kinematics techniques within the framework of sampling-

based motion planning. To our knowledge, recent contributions

to this field do not cover walk planning.

B. Walk pattern generation

Another field of humanoid robotics research is the genera-

tion of dynamically stable walk patterns. Since the introduction

of the ZMP formalism [10], several methods have been pro-

posed to generate walking motions efficiently. One way to deal

with the complexity of a humanoid robotics kinematic tree is

to use the so-called ”cart-table” simplified model [11]. Based

on such a model, planning a trajectory for the ZMP is reduced

to planning a trajectory for the Center of Mass (CoM) of the

robot. Given a trajectory of the CoM and footstep positions,

inverse kinematics solvers can animate the whole set of DoFs

of the robot to generate a dynamically stable walk trajectory.

C. Collision-free Walk Trajectories

Collision-free locomotion trajectories is usually obtained by

simplifying the model of the robot or its environment. By

choosing a bounding volume of a humanoid robot, including

its swaying motions, one can use a simple planar motion

planner on this bounding volume and generate a valid loco-

motion trajectory. This strategy is used in [12] in a computer

animation context. Variants of this method include dynamic

path reshaping [13]: if collisions appear when animating the

locomotion trajectory, it is locally reshaped and re-animated.

This two-stage strategy does not guarantee that the locomotion

trajectory can be followed or that the local reshaping will

converge.

Simplifying the environment consists in considering obsta-

cles at a footstep level. [14], [15] use an A∗ algorithm to find

collision-free footsteps. In [16], the authors compute collision-

free motions for the legs by using an RRT∗ algorithm.

D. Contribution

The main contribution of this work is a two-stage motion

planner for a humanoid robot that computes a collision-

free walking trajectory on the exact models of the robot

and its environment. The first stage uses a sampling-based

motion planner to compute a collision-free path for a robot

sliding on the ground. Another contribution of this paper is

the formal proof that this path can be approximated by a

dynamically stable, collision-free walking trajectory. The proof

relies on small-time controllability properties of humanoid

Fig. 2. Collision-free path for a humanoid robot sliding on the ground. The
constraints applied to the configurations along this path concern: (i) the relative
positions of the feet, (ii) the position of the CoM, (iii) the verticality of the
waist.

robots. Based on these properties, we propose an algorithm

that automatically computes footsteps along the sliding path

to animate it. We have implemented this method and used it

on a model of HRP-2 robot. The results have been validated

on a real platform.

III. STATICALLY STABLE COLLISION-FREE PATH FOR A

”SLIDING” ROBOT

The first stage of our planning architecture consists in

computing a statically stable path for a humanoid robot sliding

on the ground. This path will be approximated in a second

stage by a dynamically stable trajectory. The static stability of

the configurations of the robot along this path is defined by

the following constraints:

1) The two feet are on the ground, and their relative position

is fixed,

2) The robot CoM is projected vertically in the center of its

support polygon.

To ensure that the approximation of the sliding path by

a dynamically stable trajectory can be arbitrarily close, we

require the sliding robot to respect the constraints used to

validate the cart-table model approximation:

3) The robot CoM is at a constant height,

4) The robot waist is kept vertical.

Random motion planning under task constraints has been

successfully investigated in the past years. Here, we apply the

method described in [9]. Note that all the constraints applied

on the robot at that stage are expressed in the robot frame,

so the non-articular DoFs describing the global position and

orientation of the robot are free to change.

Fig. 2 shows an example of a collision-free path found by an

RRT algorithm. All the configurations along the path respect

the set of constraints listed above. The CoM height and the feet

positions in the robot frame are chosen such that the generated

configurations avoid singularities.

IV. EXISTENCE OF A DYNAMICALLY STABLE TRAJECTORY

This section presents a proof that any sliding path p can be

approximated by a collision-free walk trajectory. This property

is based on ideas from control theory, and in particular small-

time controllability. Let us recall briefly what a small-time

controllable system is, and how this property is used in motion

planning.
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Fig. 3. Small-time controllability in motion planning. On the left, the local
property: any configuration q′ at distance less than η is reachable from q by
an admissible trajectory included in a ball of size ǫ. On the right, a collision-
free path from q1 to q2 is approximated by collision-free and admissible
trajectories by using the local property.

A. Small-Time Controllability

A robotic system is controllable if for any two config-

urations q1 and q2, there exists a time T > 0 such that

there exists a trajectory going from q1 to q2 in time T .

It is small-time controllable if for any configuration q, for

any time T > 0, the set of configurations accessible from

q in time less than T is a neighborhood of q in CS. In

geometric terms, it means that for any configuration q, for

any ǫ > 0, there exist η > 0 such that all the configurations

contained in the ball of center q and radius η are reachable

by trajectories included in the ball of center q and radius ǫ.

The main consequence of this property in motion planning is

that any collision-free path (not necessarily admissible by the

system) can be approximated by a sequence of both collision-

free and admissible trajectories. This property is crucial in

nonholonomic motion planning [17]. Fig. 3 shows an example

of collision-free path approximation by admissible collision-

free sub-trajectories. The fact that this algorithm converges is

guaranteed by the small-time controllability property.

B. Small-Time Controllability of a Walking Humanoid Robot

We want to prove that any collision-free sliding path found

by the method presented in section III - for example the one

presented in fig. 2 - can be followed by a sequence of collision-

free walk motions. Let M be the CS submanifold formed by

configurations verifying the constraints (1) to (4) presented in

section III. It is then sufficient to prove the following result:

Theorem 1. ∀q ∈ M, ∀ǫ > 0, ∃η > 0 such that ∀q′ ∈ M
such that d(q, q′) < η, there exists a dynamically stable walk

motion going from q to q′ included in the CS-ball of center q
and radius ǫ.

The result is valid under the hypothesis of the cart-table

simplified model. We will thus consider that the arms are of

negligible mass and do not influence the position of the CoM

of the robot. The DoFs of the robot upper-body are therefore

free to follow exactly any input trajectory. On the other hand,

the DoFs defining the position and orientation of the whole

robot in space and the articular DoFs of the legs must generate

a valid walk motion and cannot follow any path. The proof

will consider first the non-articular DoFs defining the position

and orientation of the robot and then the leg DoFs. To position

the robot in space, we will consider the position of its CoM.

Following the cart-table model, we require that during the

walk motion the CoM stays at a constant height and that the

global rotations of the robot around (x) and (y) axes are

constant of null angle, so overall, there are three non-articular

DoFs of the robot that change along a walk trajectory: x, y
and θ, where x and y define its CoM horizontal position, and

θ the angle of the rotation of the robot around the (z) axis.

1) Walking in place: First, let us show that it is possible

to walk in place while keeping the CoM of the robot in

an arbitrarily small neighborhood. The equations giving the

ZMP horizontal coordinates (px, py) as functions of CoM

coordinates (x, y) in the cart-table model were presented in

[11]:
(

px

py

)

=

(

x− zc

g ẍ

y − zc

g ÿ

)

(1)

where zc is the constant height of the CoM and g is the gravity

constant. In the following we will note ω0 =
√

g
zc

.

To be able to lift a foot without falling, the robot has to

move its ZMP under its other foot. Let us consider a robot in

configuration (0, 0, 0). To move the ZMP under a given foot,

only the y coordinate of the CoM is of interest. Thus, we will

keep the x coordinates of the CoM and ZMP constant equal

to 0.

We wish to walk in place while keeping the CoM in an

arbitrarily small neighborhood. Let ǫ > 0, arbitrarily chosen,

be the size of that neighborhood. We require that for any time

t ≥ 0, |y(t)| ≤ ǫ. Let L be the horizontal distance between the

CoM and the center of either of the robot feet. L is fixed by

the geometry of the robot. We aim at making py(t) oscillate

between −L and L. During this proof we will assume that

the feet of the robot are rectangular, of length l1 and width

l2. If the feet are not rectangular, we can adapt the proof by

considering a rectangle included in the contact surface between

a foot and the ground. If no such rectangle exists, for example

if the contact is punctual, this proof does not hold.

The idea of this proof is to use the form of Eq. (1) to apply a

scaling factor between the amplitude of the oscillations of the

CoM and of the ZMP. For example for ω > 0, let us assume

the trajectory of the CoM is given by y(t) = ǫ sin(ωt). We can

derive Eq. (1) and obtain py(t) = (1 +
(

ω
ω0

)2

)ǫ sin(ωt). The

amplitude of the oscillations of y is multiplied by a factor

(1 +
(

ω
ω0

)2

). If we choose ω = ω0

√

L
ǫ − 1, py oscillates

between −L and L. At time t
(n)
l = n 2π

ω + π/2
ω , the ZMP is

located at the center of the left foot, the robot can lift its right

foot and at time t
(n)
r = n 2π

ω + 3π/2
ω the ZMP is located at the

center of the right foot, the robot can lift its left foot.

Starting from a static configuration at time (t = 0), we

cannot apply directly a command y(t) = ǫ sin(ωt) because

it generates a discontinuity in the speed of the CoM at time
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Fig. 4. CoM motion (in plain red) along y axis. The CoM stays in the
interval [−ǫ, ǫ] while during permanent state (t ≥ T ), the ZMP (dashed
blue) oscillates between the centers of the feet, which allows in-place walk.

(t = 0). To overcome this discontinuity, we go through a

transient state between (t = 0) and (t = T ) for some T > 0.

Let f : [0, T ] → [0, 1] be an increasing function of class

C∞ such that f(0) = 0, ḟ(0) = 0, f(T ) = 1, ḟ(T ) = 0
and f̈(T ) = 0. We can explicitly construct such an f with

a degree 4 spline. We also request that for all t ∈ [0, T ],
|2ǫḟ(t) ω

ω2

0

| ≤ l2
4 and |ǫf̈(t)/ω2

0 | ≤
l2
4 . These inequalities will

be used to bound the trajectory of the ZMP. We can guarantee

them by choosing T large enough. Let us now consider the

following CoM motion:

y(t) =

{

f(t)ǫ sin(ωt) if t ∈ [0, T ]

ǫ sin(ωt) if t ≥ T

One can check that y is of class C2 over R+, and that

ḟ(0) = 0. When t ≥ T , the robot is in the permanent state

described above and can walk in place. The last point to check

is that for t ∈ [0, T ] py(t) stays inside the support polygon of

the robot. The calculation of the successive derivatives of y
gives:

py(t) = f(t)ǫ(1 +
(

ω
ω0

)2

) sin(ωt)

+2ǫḟ(t) ω
ω2

0

cos(ωt)

+ ǫ
ω2

0

f̈(t) sin(ωt)

For all t ∈ [0, T ], f(t)ǫ(1 + ω
ω0

2) sin(ωt) lies between −L
and L. The bounds on the derivatives of f guarantee that

py(t) lies between −L− l2/2 and L+ l2/2, which means that

the ZMP stays inside the support polygon. Fig. 4 shows an

example of CoM motion on the y axis and the corresponding

ZMP motion. Once in permanent walk in-place state, the robot

can come back to a static state by applying a symmetric

transient state used to decrease gradually the amplitude of the

oscillations of the CoM without generating a discontinuity in

the first derivative of the command.

These CoM motions can be adapted to follow a (x, y, θ)
linear segment by a dynamically stable walk motion, while

keeping the CoM at distance at most ǫ from the segment. To

do so, we add the walk-in-place CoM motion presented above

to the desired trajectory. The details of the proof are shown in

Appendix.

2) Legs degrees of freedom: During a walk motion, the

six DoFs of each leg are controlled through a position and

orientation task on the foot. For a given configuration of the

robot waist, this task is defined by six equations determining

the position and orientation of the foot. Let qwaist be the

configuration of the waist of the robot, qfoot the desired

configuration of the foot, and qleg the articular configuration

of the leg. The task on the foot is defined by a function

Tk : R
6 × R

6 × R
6 → R

6, such that the task is satisfied iff

Tk(qwaist, qfoot, qleg) = 0. Each component of Tk is a sum

of trigonometric functions and as such, Tk is of class C∞. Let

q(0) ∈M. By hypothesis, when the robot is in q(0), the tasks

defining the positions and orientation of the feet are not in

singularity. Hence, ∂Tk/∂qleg(q
(0)
waist, q

(0)
foot, q

(0)
leg) is invertible.

The implicit function theorem can be applied and states that:

there exist open sets U ⊂ R
12 and V ⊂ R

6 and φ : U → V
such that:

• (q
(0)
waist, q

(0)
foot) ∈ U and q

(0)
leg ∈ V ,

• ∀(qwaist, qfoot) ∈ U, Tk(qwaist, qfoot, φ(qwaist, qfoot)) =
0,

• φ is of class C∞.

The continuity of φ implies that for a given ǫ, there exists an

open set U ′ containing (q
(0)
waist, q

(0)
foot) and included in U such

that for all (qwaist, qfoot) ∈ U ′, |φ(qwaist, qfoot) − q
(0)
leg| <

ǫ. Let U ′
waist ⊂ R

6 and U ′

foot ⊂ R
6 be products of open

intervals containing respectively q
(0)
waist and q

(0)
foot, such that

U ′
waist × U ′

foot ⊂ U ′. For configurations in M, there is a

bijection foot between the configuration of the waist and of

the foot. Let U ′′ be an open ball containing q
(0)
waist included

in U ′
waist∩foot−1(U ′

foot). Let hmax be the maximum height

for a foot positions in U ′

foot. For any configuration q ∈ M
such that when the robot is in q, its waist is in U ′′, following

the linear segment [q(0), q] with footsteps of height less than

hmax will generate leg configurations at distance less than ǫ

from q
(0)
leg .

3) Global Proof: We can now conclude the proof. Let q(0)

be a configuration in M and ǫ > 0 arbitrarily chosen. Let

U ′′

l and U ′′
r be open balls of R

6 as defined above respectively

for the left and right foot. Let V be the set of configurations

q ∈M such that:

• the non-articular DoF values are in U ′′

l ∩ U ′′
r

• the non-articular DoF values are at distance at most ǫ
from q(0),

• the upper-body DoF values of q are at distance at most

ǫ from q(0),

V contains a neighborhood of q(0) in M. For any q ∈ V , the

CoM and leg motions corresponding to a walk motion from

q(0) to q as described in appendix, with a linear interpolation

of the upper-body DoFs, generate a whole-body motion at

distance at most k.ǫ from q(0) where k is a constant depending

on the number of DoFs of the robot. This concludes the proof.



Remark: The control strategy presented in this proof

may generate very long trajectories, because of the transient

states at the beginning and end of the locomotion. In the

actual implementation, we chose to generate CoM motions

with a ZMP preview controller, as presented in [11]. We

have observed experimentally that the amplitude of CoM

trajectories decreases when the frequency of steps increases.

V. ANIMATION OF THE STATICALLY STABLE PATH

The algorithm that animates a statically stable path into a

dynamically stable walk trajectory has been inspired by the

previous small-time controllability proof. Given a statically

stable path p, we start by placing footsteps corresponding

to the nominal walk pattern of the robot - in our exper-

imental section, HRP-2. The footstep time parametrization

also follows the robot nominal walk. Given the footsteps, we

compute a ZMP trajectory, and a preview controller outputs

a corresponding CoM trajectory. At this point, we use the

global mechanism shown in [18] to solve a prioritized inverse

kinematics problem. The stack of tasks applied to the robot is

- in decreasing priority order:

1) Position and orientation of the moving foot,

2) Horizontal position of the CoM,

3) Height of the CoM,

4) Verticality of the waist,

5) Upper-body configuration task towards corresponding

configuration of p.

Tasks (1) and (2) generate a dynamically stable motion by

using the simplified cart-table model and the ZMP criterion.

Tasks (3) and (4) ensure that the resulting motion is well

described by the cart-table model. Task (5) is used to approx-

imate p as well as possible given the walk parameters.

Because it comes at the lowest priority, task (5) is not neces-

sarily fulfilled in the resulting trajectory. Hence, collisions may

appear when animating p, if the resulting trajectory diverges

too much from the initial sliding path. If so, it is necessary

to approximate more closely p by a walk trajectory. To do so,

we use the small-time controllability property of the system

shown in the previous section. The way we use this property

is inspired by similar results in non-holonomic mobile robot

control presented in [19].

If the animated trajectory collides with the environment, we

cut the initial path p into two sub-paths, that we try to animate

recursively. When the paths to animate are too short for the

robot nominal walk parameters, we accelerate the steps, and

decrease the maximum height of the moving foot. As shown in

previous section, the walk trajectory corresponding to smaller

and faster steps converges toward the sliding path. Algorithm

1 shows pseudo-code that takes a sliding path p as input and

returns a collision-free walk trajectory.

The ComputeFootprints() function uses the geomet-

ric length of p to decide if the footsteps have to be accelerated.

The Animate() function is a call to an inverse kinematic

solver able to generate ZMP and CoM trajectories based on

the input footsteps. It includes a ZMP preview controller.

Algorithm 1 FindDynamicTrajectory(Path p)

Footprints← ComputeFootprints(p)
StackOfTasks.initialize()

StackOfTasks.addFootprintTask(Footprints)

StackOfTasks.addWaistTask()

StackOfTasks.addConfigurationTask(p)

DynamicTrajectory ← Animate(StackOfTasks)
if (CheckForCollisions(DynamicTrajectory) = Colliding)

then

(p1, p2)← CutInHalf(p)
DT1 ← FindDynamicTrajectory(p1)
DT2 ← FindDynamicTrajectory(p2)
return Concatenate(DT1, DT2)

else

return DynamicTrajectory
end if

VI. EXPERIMENTS

The motion planning algorithms presented in this paper

have been implemented using KineoWorksTM [20]. The plan-

ning times have been measured on an Intel Core 2 Duo

2.13 GHz PC with 2 GB of RAM. Evaluation of the ran-

domized algorithm has been conducted by executing 50 trials

on each problem, we present the average results. Videos

of all presented examples can be found on the webpage:

http://homepages.laas.fr/sdalibar/humanoids11/

A. Passing between two chairs

The environment shown in Fig. 1 and 2 was presented in

[21]. The authors solved it by using a bounding box method,

leading the robot to walk sideways between the two chairs. Our

method generated a locomotion trajectory in which the robot

walks forward, which could be required if the robot has to

use vision during locomotion for example. The first planning

stage required 29.6 s on average. The animation of the sliding

path presented in Fig. 2 used 66.5 s of computation time.

Fig. 5. Horizontal trajectory of the robot waist during locomotion. When the
robot is close to obstacles, the amplitude of the oscillations decreases.

Fig. 5 shows the horizontal trajectory of the robot waist

(equivalent to its CoM motion) during locomotion. One can

see how the amplitude of the oscillations decreases when

passing between the chairs. This motion has been validated on

a real HRP-2 platform. In order to smooth the motion before



playing it on the real robot, once the collision-free dynamic

trajectories had been computed, we saved the footprint posi-

tions and footstep parameters and generated a single dynamic

walk motion executing all the footsteps. We checked this new

motion for collision.

B. Cluttered environment

Fig. 6. Solution path for a cluttered environment, the robot walks among
floating obstacles.

The environment shown in Fig. 6 was inspired by computer

animation benchmarks. The robot has to find a way among

many floating obstacles. In this kind of environment neither

bounding box nor footstep planning strategies could find a

collision-free walk trajectory. The first planning stage required

184.3 s on average, and the animation of the trajectory

presented in Fig. 6 used 339.5 s of computation time. Fig.

7 shows the robot waist trajectory during locomotion.

Fig. 7. Horizontal trajectory of the robot waist during locomotion.

C. Grasp Planning

The problem shown in Fig. 8 is defined as a grasping

task. The final configuration is defined implicitly by a desired

hand position. We generated automatically goal configurations

solving the task by following the method proposed in [9].

Then, we applied our planner to generate a whole-body walk

motion that solved the grasping task. Computation time for the

first planning phase was on average 83.0 s, and the animation

of the trajectory presented on Fig. 8 used 90.1 s. Fig. 9 shows

the robot waist trajectory during locomotion.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented a new planning strategy for

humanoid whole-body motion planning including locomotion.

The algorithm is based on a formal small-time controllability

Fig. 8. Solution path for a grasp planning problem in an appartment. The goal
is implicitly defined as an inverse kinematics task.

Fig. 9. Horizontal trajectory of the robot waist during locomotion.

property of humanoid robots, that states that they can achieve

a dynamically stable walk motion while hardly moving their

CoM. We have used our motion planner on different examples,

and validated the generated motions on a real robot. Our

method has some limitations that should be addressed in future

work:

• Because of the kinematic constraints we apply at the

planning stage, we are not able yet to plan motions where

the robot steps over obstacles, while this is an important

feature of humanoid robots,

• The fact that we use the simplified cart-table model forces

us to keep the CoM of the robot at a constant height. A

more complete model could allow us to plan other types

of locomotions, for example to allow the robot to pass

under obstacles. We will try to integrate the possibilities

presented in [22].

Future experiments will also include manipulation tasks during

locomotion. This is possible with the presented method, but

not yet tested.

APPENDIX: TRAJECTORY FOLLOWING WITH SMALL COM

MOTIONS

The CoM and ZMP motions presented in Sec. IV-B1 can be

adapted to walk in-place at a position (x0, y0, θ0). The coordi-

nates of the left foot center are given by: footl(x0, y0, θ0) =
((x0 − L sin(θ0), y0 + L cos(θ0)) and of the right foot center:

footr(x0, y0, θ0) = (x0 + L sin(θ0), y0 − L cos(θ0)). Let us

note c0(x0, y0, θ0) : R+ → R
2 the corresponding CoM

motion:



c0(x0, y0, θ0)(t) =

(

x0 − ǫ sin(θ0) sin(ωt)

y0 + ǫ cos(θ0) sin(ωt)

)

This motion stays in a ball of size ǫ around (x0, y0) and

generates a ZMP motion that reaches successively the centers

of the feet. Let us note it zmp0(x0, y0, θ0):

zmp0(x0, y0, θ0)(t) =







x0 − ǫ(1 +
(

ω
ω0

)2

) sin(θ0) sin(ωt)

y0 + ǫ(1 +
(

ω
ω0

)2

) cos(θ0) sin(ωt)







Let us now describe the CoM and legs motions starting

from a static configuration qi and reaching a configuration

qf = (xf , yf , θf ). Without loss of generality, one can assume

that qi = (0, 0, 0). We consider as given the transient state

that initializes a walk in-place motion. At time (t = 0), the

robot is walking in-place and the CoM and ZMP are moving

towards the left foot.

Let f : [0, T ]→ [0, 1] be an increasing function of class C∞

such that f(0) = 0, ḟ(0) = 0, f̈(0) = 0, f(T ) = 1, ḟ(T ) = 0
and f̈(T ) = 0. One can write explicitly such a function by

using a degree 5 spline. In order to bound the variations of

the ZMP trajectory due to variations of f , we also request the

successive derivatives of f to be bounded, and require that for

all t ∈ [0, T ]:

1
ω2

0

(|xf |+ |yf |)|f̈(t)| < min(l1/6, l2/4)
2ǫω
ω2

0

|θf ||ḟ(t)| < l1/6
ǫ

ω2

0

|θf ||f̈(t)| < l1/6

ǫ
ω2

0

θ2
f

(

ḟ(t)
)2

< l2/4

Again, these inequalities can be guaranteed by choosing

T large enough, i.e. by following the path slowly enough.

The CS trajectory fCS : [0, T ] → CS such that for all

t ∈ [0, T ], fCS(t) = f(t)(qf − qi) goes from qi to qf in time

T , while staying on the segment [qi, qf ]. The CoM motion

designed to follow this trajectory by walking is:

c(t) = c0(fCS(t)) =

(

f(t)xf − ǫ sin(f(t)θf ) sin(ωt)

f(t)yf + ǫ cos(f(t)θf ) sin(ωt)

)

Note that the initial conditions on f guarantee the continuity

of the command derivative and of the ZMP position at time

(t = 0). The desired ZMP trajectory is:

zmpref (t) =







f(t)xf − ǫ(1 +
(

ω
ω0

)2

) sin(f(t)θf ) sin(ωt)

f(t)yf + ǫ(1 +
(

ω
ω0

)2

) cos(f(t)θf ) sin(ωt)







Following this trajectory, at time t
(n)
l , the ZMP is located at

the center of the left foot, the robot can lift its right foot and

move it to position footr(c(t
(n)
r )) and at time t

(n)
r , the ZMP is

located at the center of the right foot, the robot can lift its left

foot and move it to position footl(c(t
(n+1)
l )). The real ZMP

trajectory zmpreal differs from zmpref because of variations

of f . One can compute zmpreal by calculating the successive

derivatives of c. The error between the desired ZMP position

and its real position at time t is given by the equation:

zmpref (t)− zmpreal = − 1
ω2

0

f̈(t)

(

xf

yf

)

+ 2ǫω
ω2

0

θf ḟ(t) cos(ωt)

(

cos(f(t)θf )

sin(f(t)θf )

)

+ ǫ
ω2

0

θf f̈(t) sin(ωt)

(

cos(f(t)θf )

sin(f(t)θf )

)

− ǫ
ω2

0

θ2
f ḟ(t)2 sin(ωt)

(

sin(f(t)θf )

cos(f(t)θf )

)

At time t, the vector (cos(f(t)θf ), sin(f(t)θf )) follows the

robot orientation. Using the bounds on the derivatives of f ,

one can check that the ZMP error along this vector is less than

l1/2. In the same way, the error along the direction orthogonal

to the robot is less than l2/2. Therefore, for all n, at time t
(n)
l ,

the ZMP is under the left foot and at time t
(n)
r the ZMP is

under the right foot. During the double support phases, the

ZMP also stays inside the support polygon.

Overall, we have found a stable walk motion that goes

from qi to qf while keeping the CoM within ǫ distance

of the line segment between qi and qf . Once in qf , a C1

command can switch to a walk in-place trajectory then to a

static configuration.
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