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ABSTRACT 20 

Soils play a key role in shaping the environment and in risk assessment. We characterized the soils 21 

of bare agricultural plots using TerraSAR-X (9.5 GHz) data acquired in 2009 and 2010. We 22 

analyzed the behavior of the TerraSAR-X signal for two configurations, HH-25° and HH-50°, with 23 

regard to several soil conditions: moisture content, surface roughness, soil composition and soil-24 

surface structure (slaking crust). 25 

The TerraSAR-X signal was more sensitive to soil moisture at a low (25°) incidence angle than at 26 

a high incidence angle (50°). For high soil moisture (>25%), the TerraSAR-X signal was more 27 

sensitive to soil roughness at a high incidence angle (50°) than at a low incidence angle (25°).  28 

The high spatial resolution of the TerraSAR-X data (1 m) enabled the soil composition and slaking 29 

crust to be analyzed at the within-plot scale based on the radar signal. The two loamy-soil 30 

categories that composed our training plots did not differ sufficiently in their percentages of sand 31 

and clay to be discriminated by the X-band radar signal.  32 

However, the TerraSAR-X signal has the potential to detect low variations of soil moisture at the 33 

within-plot scale. Consequently, the spatial distribution of slaking crust could be detected when 34 

soil moisture variation is observed between soil crusted and soil without crust. Indeed, areas 35 

covered by slaking crust could have greater soil moisture and consequently a greater 36 

backscattering signal than soils without crust. 37 

 38 

Keywords: soil moisture, roughness, soil composition, slaking crust, X-band, TerraSAR-X images, 39 

within field plot scale. 40 
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1. INTRODUCTION 42 

Floods, drought and erosion are major issues for risk assessment. In the context of sustainable 43 

development, soil management is important for environmental and socioeconomic applications. 44 

Hence, there is a need for continuous information about key soil parameters to predict and 45 

understand these natural hazards [Wu & Wang, 2007]. Slaking crust (the disintegration of 46 

ploughed clods) is a key factor that controls runoff and erosion because of its influence on 47 

infiltration capacity [Cazenave & Valentin, 1992; Govers et al., 2000; King & Le Bissonnais, 48 

1992; Le Bissonnais & Singer, 1992]. Similarly, by conditioning the distribution of rainfall 49 

between infiltration, surface retention and runoff [Auzet et al., 2005; Cerdan et al., 2002; Valentin, 50 

2005], soil moisture and surface roughness play an important role in risk assessment [Loumagne et 51 

al., 1991, 2001; Oudin et al., 2003]. Nevertheless, monitoring and modeling these soil surface 52 

characteristics remain difficult because of their substantial variation over space and time [Boiffin 53 

et al., 1988; Brown et al., 1990; Zobeck & Onstad, 1987].  54 

In this context, satellite imagery is a powerful tool that can provide accurate and repetitive spatial 55 

data. Synthetic-aperture radar (SAR) techniques are particularly useful because they make it 56 

possible to monitor soil parameters under any weather conditions [Dobson & Ulaby, 1986; Fung, 57 

1994; Hallikainen et al., 1985; Ulaby et al., 1986]. For bare agricultural soils, the backscattered 58 

radar signal depends strongly on the geometric characteristics (roughness) and dielectric properties 59 

(moisture content, soil composition) of the soil. Many studies using data collected by space and 60 

airborne SAR scatterometers and model simulations have already shown the potential of radar data 61 

to retrieve soil parameters (roughness and moisture) [Baghdadi et al., 2002, 2006, 2007, 2008b; 62 

Dobson & Ulaby, 1986; Fung et al., 1992; Holah et al., 2005; Le Hegarat et al., 2002; Oh, 2004; 63 

Shi et al., 1997; Srivastava et al., 2003-2009; Ulaby et al., 1978; Zribi et al., 2005; Zribi & 64 

Dechambre, 2002].  65 
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Whatever the SAR configuration, the radar signal follows a logarithmic function with the soil-66 

surface roughness [Fung, 1994; Ulaby et al., 1986]. Ulaby et al. (1978) have shown that the 67 

influence of surface roughness decreases with increasing radar frequency. The dynamics of the 68 

relationship between the radar signal and roughness parameter are stronger in the L-band than in 69 

the C- and X-bands [Baghdadi et al., 2008a; Ulaby et al., 1986] Moreover, SAR data are more 70 

sensitive to soil roughness at high incidence angles [Baghdadi et al., 2008a, 2008b; Zribi & 71 

Dechambre, 2002].  72 

The SAR signal increases with increasing soil moisture for values between 0 and 35-40% 73 

[Baghdadi et al., 2007; Holah et al., 2005]. Beyond this threshold, the backscattering coefficient 74 

becomes constant and then decreases with increasing soil moisture [Holah et al., 2005]. Several 75 

studies in the C-band, with the SAR configuration fixed at a single polarization, have shown that 76 

the sensitivity of the radar signal to soil moisture is greater at low and medium incidence angles 77 

than at high incidence angles (approximately 0.2 dB/% for HH-20°-37° and approximately 0.1 78 

dB/% for HH-39°) [Baghdadi et al., 2006, 2008b; Beaudoin et al., 1990; Srivastava et al., 2003; 79 

Zribi & Dechambre, 2002]. 80 

However, few studies have been conducted in the X-band. The first results based on microwave 81 

measurements in the X-band have shown that an incidence angle of 25° is appropriate to observe 82 

soil moisture [Singh, 2005]. For the TerraSAR-X sensor, Paris Anguela et al. (2010) have found 83 

that the sensitivity of the radar signal to soil moisture is approximately 0.35 dB/% for the HH-25° 84 

configuration. 85 

The surface area of soil particles in a soil depends on the particle sizes which control the 86 

percentage of free and bound water [Srivastava et al., 2009]. Few studies have analyzed the 87 

response of the radar signal to soil composition in terms of grain-size distribution (percentages of 88 

sand and clay), but several studies have evaluated the effect of salt content on the radar signal. 89 

These studies have underlined the influence of salt concentrations on dielectric properties [Aly et 90 
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al., 2007; Lasne et al., 2008; Shao et al., 2003; Taylor, 1996]. Several studies have recommended 91 

high radar wavelengths (L-band) and wet soil conditions for better discrimination between saline 92 

and non-saline soil. Under the wettest conditions (soil moisture greater than 30%), the effects of 93 

salinity on the C-band are important for sandy soil but do not appear clearly in soils of finer 94 

composition due to salt retention by fine particles, such as silt and clay [Aly et al., 2007]. Also, 95 

grain-size distribution has an effect on dielectric behavior over the entire frequency range (1.4 to 96 

18 GHz) and is most pronounced at frequencies below 5 GHz [Hallikainen et al., 1985]. In the C-97 

band, decreasing soil clay content increases the sensitivity of the radar signal to soil moisture (0.22 98 

dB/% for clay soil: 49% clay, 35% silt and 16% sand; 0.33 dB/% for loamy soil: 17% clay, 48% 99 

silt and 35% sand) [Ulaby et al., 1978]. Because the distribution of grain sizes controls the amount 100 

of free water that interact with the incident microwave, the amount of free water gives significant 101 

contribution to SAR backscatter [Srivastava et al., 2006, 2009]. Recent methodology developed to 102 

retrieve soil moisture is based on this amount of free water which is controled by the grain size 103 

distribution [Srivastava et al., 2009]. 104 

In the X-band at HH polarization, Prakash et al. (2009) have shown a relationship between the 105 

specular scattering coefficient for bistatic scatterometer data and the sand percentage in the soil 106 

when surface roughness is less than 1.4 cm. For the TerraSAR-X sensor, Paris Anguela et al. 107 

(2010) have also shown (based on one plot and one SAR acquisition at HH-25°) that the SAR 108 

signal is 3 dB weaker for a soil composition with more clay (32% clay, 64.5% silt and 3.5% sand) 109 

than for a soil with less clay (17% clay, 79% silt and 4% sand).  110 

Because soil slaking depends primarily on material properties (moisture, organic-matter content 111 

and carbonate content) and decreases infiltration rates, the backscattered radar signal may be 112 

sensitive to this soil parameter. Nevertheless, few studies have examined the effect of soil slaking 113 

on the radar signal. In the X-band, Stolp & Janse (1986) have carried out a multiple linear 114 

regression to relate the backscattering coefficient (HH-15°) to the degree of slaking, the direction 115 
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of tillage and the incidence angle. Their results are promising and provide good estimates of the 116 

degree of slaking (with an accuracy between 78% and 56%).   117 

Finally, soil parameters are usually estimated from SAR imagery at plot or watershed scales. Few 118 

studies have been conducted at the within-plot scale. In fact, the speckle effects and low resolution 119 

(between 10 and 30 m) of the first-generation SAR data (ERS, RADARSAT-1 and ASAR) 120 

prevented the analysis of small-scale variations. The high spatial resolution of the TerraSAR-X 121 

sensor (1 m) provides access to soil-surface heterogeneities at a finer scale. Baghdadi et al. (2008a) 122 

have already mentioned signal variations from TerraSAR-X images within agricultural plots. 123 

Quantitative analysis were not conducted, but only observations were given from photo-124 

interpretation of SAR images. Paris Anguela et al. (2010) have made a preliminary diagnostic with 125 

an analysis from only one bare agricultural plot and in using only one TerraSAR image. In the 126 

present work we consolidated and completed these previous investigations in using large database 127 

of in situ measurements (soil composition, soil moisture and observations concerning the presence 128 

or the absence of crust) and TerraSAR-X images at different radar incidence angle. 129 

The main objective of this study is to analyze the potential of the TerraSAR-X radar sensor to 130 

characterize soil-surface parameters at the plot and within-plot scales. The effects of soil moisture, 131 

roughness, soil composition and slaking crust on the TerraSAR-X backscattering coefficient are 132 

analyzed only over agricultural plots.  133 

 134 

2. MATERIAL AND METHODS 135 

2.1. STUDY SITE 136 

The study site is the Orgeval watershed (104 km²), which is located to the east of Paris (France; 137 

48°51’N 3°07’E; Figure 1). The site has been managed since 1962 as an experimental basin for 138 

hydrological research by the Agricultural and Environmental Engineering Research Center 139 
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(CEMAGREF) research institute. The Orgeval watershed is mostly composed of agricultural plots 140 

intended for growing wheat and maize. It is flat and composed of loamy soils with average 141 

percentages of 17% clay, 78% silt, and 5% sand. This soil structure promotes crust development, 142 

which increases soil sealing and causes runoff [Boiffin et al., 1990; Eimberck, 1990]. 143 

 144 

2.2. SATELLITE DATA 145 

2.2.1. SAR data: 146 

Fourteen TerraSAR-X images (X-band) were acquired in 2009 and 2010 in Spotlight mode (pixel 147 

spacing ~1 m) with HH polarization and incidence angles of 25° and 50°. The incidence angles of 148 

each TerraSAR image are summarized in Table 1.  149 

Radiometric calibration of the MGD (Multi Look Ground Range Detected) TerraSAR images was 150 

carried out using the following equation [Fritz, 2007]: 151 

σ° = (Ks . DN² - NEBN) . sin(θ) (1) 

This equation transforms the digital number of each pixel DN (amplitude of the backscattered 152 

signal) into a backscattering coefficient (σ
o
) corrected for sensor noise (NEBN) on a linear scale. 153 

This calibration takes into account the radar incidence angle (θ) and the calibration constant (Ks) 154 

provided in the image data. The backscattering coefficients are then calculated in decibels by the 155 

following formula: 156 

σ
o
dB = 10 . log10 (σ°) (2) 

This radiometric calibration makes it possible to perform multi-temporal analysis of the different 157 

images. All of the images were then co-registered using aerial orthophotos (50-cm spatial 158 

resolution) with a root mean square error of the control points of approximately one pixel (i.e., 1 159 



Author-produced version of the article published in Remote Sensing Of Environment, 2011, 115(8), 1801-
1810. 
The original publication is available at http://www.sciencedirect.com/ 
doi : 10.1016/j.rse.2011.02.021 
 

8 

m). This co-registration error was overcome by removing the boundary pixels (two pixels wide) 160 

from each training plot relative to the limits defined by the GPS control points. 161 

 162 

2.2.2. Optical data: 163 

One optical IKONOS image was acquired on March 14, 2009 in multispectral mode (pixel spacing 164 

~ 4 m). The IKONOS image was calibrated for TOA (top of atmosphere) reflectance and co-165 

registered using aerial orthophotos with a root mean square error of the control points of 166 

approximately one pixel (i.e., 4 m). 167 

 168 

2.3. EXPERIMENTAL MEASUREMENTS 169 

Simultaneously to the TerraSAR-X acquisitions, ground measurements were performed in thirteen 170 

bare training plots in 2009 and 2010 (± three hours around the satellite overpass time) (Figure 2). 171 

All training plots were flat (slope < 1%). Four soil-surface parameters were observed or measured: 172 

moisture content (at the 0-5-cm depth), surface roughness, soil composition, and slaking crust. 173 

Meteorological data (precipitation and temperature) were also obtained from five meteorological 174 

stations installed in the basin. Each station is less than 5 km from the center of each plot. Figure 3 175 

shows the mean values of meteorological data recorded in 2009 (a) and 2010 (b) at the five 176 

stations. 177 

 178 

2.3.1. Soil roughness (Hrms): 179 

Measurements of soil roughness were carried out in all of the training plots using 1-m-long needle 180 

profilometers with 2-cm sampling intervals. Ten roughness profiles along and across the direction 181 

of tillage (five parallel and five perpendicular) were established in each training plot. Two 182 

parameters can be calculated from these measurements: the average root mean square surface 183 
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height (Hrms) and the correlation length (l) [Ulaby et al., 1986]. The Hrms values of the plots 184 

obtained during the two field surveys (March to May 2009 and March 2010) varied between 0.4 185 

and 3.9 cm. The lower values (0.4 to 1.5 cm) corresponded to sown plots, whereas the higher 186 

values (above 1.5 cm) corresponded to fallow and recently ploughed plots. The correlation length 187 

(L) varies from 2.3 cm in sown fields to 9.3 cm in ploughed fields. As shown in Figure 4, the 188 

relationship between the Hrms and the correlation length can be modeled by a linear regression 189 

[Davidson et al. 2003, Baghdadi et al. 2008a]. Nevertheless, inverting the two parameters Hrms 190 

and L separately in the inversion of radar measurements seems to be a difficult task because our 191 

TerraSAR images contain a single band per pixel (one polarization and one incidence angle). 192 

The error on the roughness computation is influenced mainly by the roughness profiles length, the 193 

number of profiles, and the horizontal resolution (sampling interval) of profiles. 194 

According to Oh and Kay (1998), the roughness profiles length should be at least 40L and 200L 195 

(where L is the correlation length) in order to obtain the Hrms and the correlation length with a 196 

precision of 10%. Lievens et al. (2009) and Callens et al. (2006) have demonstrated that shorter 197 

profiles result in lower Hrms and correlation length. A significant underestimation of roughness 198 

parameters is observed for short profiles and large correlation length. The number of averaged 199 

profiles that is required to obtain a standard deviation on Hrms and L less than 10% is dependent 200 

of profile length. Lievens et al. (2009) demonstrated that less than 10 averaged profiles are 201 

required for 1 m profile to obtain a standard deviation of Hrms lower than 10%, whereas the same 202 

accuracy (better than 10%) for correlation length only becomes feasible for at least 15 averaged 203 

profiles. The precision on the correlation length measurements should be about 15 to 20% for the 204 

range of correlation length measured within our bare agricultural fields, with 1m profile and 10 205 

average profiles (higher standard deviation for large correlation length). The precision associated 206 

with the measurements of Hrms and L, were also dependent on the horizontal spacing between 207 

height points (∆x). Oh and Kay (1998) suggested that the surface should be sampled at a spacing 208 
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no longer than 0.2L and no more than 0.5L for the same precision of about 5% on the correlation 209 

length and the Hrms surface height, respectively. For our range of correlation length, the accuracy 210 

of roughness parameters with a spacing of 2 cm should be better than ± 10% for Hrms and 211 

between ± 10% and ± 20% for large and small correlation lengths, respectively. According to 212 

Lievens et al. (2009), an increase in horizontal spacing causes a decrease in Hrms and an increase 213 

in correlation length, which are more pronounced for surfaces with small correlation length. 214 

Moreover, the standard deviation of roughness parameters with a spacing of 1.5 cm is better than 215 

±5% for Hrms and better than ±15% for correlation length. 216 

Also, only the relationship between the Hrms surface height and the radar signal was used in this 217 

study; ten 1-m-long profiles are not sufficient to estimate L parameter with accuracy lower than 218 

15% [Oh & Kay, 1998]. 219 

Finally, most of our training plots don’t have marked row directions because they correspond to 220 

old winter ploughed without row direction (isotropic surface). 221 

 222 

2.3.2. Soil moisture (mv):  223 

In most studies of microwave measurements carried out over bare soils, experimental relationship 224 

between soil moisture and backscattering coefficient are provided by mean volumetric water 225 

contents measured to a soil depth, generally 0-5 cm. At X-band, no experimental measurements 226 

were conducted in field condition and the low penetration of this radar wavelength is only based 227 

on theoretical study. So, the penetration depth of the X-band is not yet known. 228 

In this study, between fifteen and twenty-eight gravimetric soil-moisture samples (depth: 0-5 cm) 229 

were collected per day for each training plot. The location of each gravimetric measurement was 230 

recorded using a GPS device. 231 
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All gravimetric measurements were converted into volumetric moisture (mv) based on bulk 232 

density. Five bulk-density measurements were made for each training plot using 9-cm-long 233 

cylindrical samples with volumes of 500 cm
-3
. Bulk-density values varied between 0.9 and 1.4 234 

g.cm
-3
. The soil moisture of each plot (or part of a plot) was assumed to be equal to the mean value 235 

estimated from the samples collected in that plot (or part of a plot). The two field surveys in 2009 236 

and 2010 covered a large range of soil moisture, between 12.6% and 39.8% (see Table 1). The 237 

standard deviation of soil moisture measurements varied between 0.6% and 2.75%per each 238 

training plot (or part of a plot).  239 

 240 

2.3.3. Soil composition: 241 

Soil composition was analyzed only in the training plots studied in 2009. For each training plot, 242 

ten soil samples were analyzed for their percentages of clay, sand and silt. The analysis showed 243 

that the surface soils within the training plots could be classified into two categories of loam:  244 

- soil I: clay = 24% ± 1.9%; silt = 71% ± 1.7%; sand = 5% ± 1.5%. 245 

- soil II: clay = 16% ± 0.9%; silt = 78% ± 2%; sand = 6% ± 1.3%. 246 

The major differences between these two soils corresponded to small variations in clay and silt 247 

content (clay = 8%, silt = 7%). The largest difference in clay content between soil I and soil II was 248 

found in plot D (~10%), and the smallest value was found in plot G (~3%). The differences in sand 249 

content were very small (mean ~1%). 250 

 251 

2.3.4. Slaking crust:  252 

The structure of bare soils can be modified by the energy of impact of raindrops, and a slaking 253 

crust can be formed on the soil surface. A slaking crust decreases the infiltrability of the soil, 254 



Author-produced version of the article published in Remote Sensing Of Environment, 2011, 115(8), 1801-
1810. 
The original publication is available at http://www.sciencedirect.com/ 
doi : 10.1016/j.rse.2011.02.021 
 

12 

favoring runoff. This phenomenon is commonly observed on loamy soils and is dependent on soil 255 

composition (clay and silt content, organic matter and carbonate content).  256 

The presence or absence of slaking crust on the soil surface was noted during the 2009 field 257 

survey. Slaking crust blocks the porosity of the soil surface, creating a layer of compacted soil that 258 

is often visible to the naked eye. The stagnation of water and the presence of a thin, continuous 259 

and consistent surface layer (crust) indicate the spatial extent of the slaking crust.   260 

In March 2009, we observed slaking crust with a thickness of approximately 1 cm on soil II 261 

(16% ± 0.9% clay, 78% ± 2% silt and 6% ± 1.3% sand). In April and May 2009, no slaking crusts 262 

were observed within the training plots due to tillage operations that had removed the soil crusts 263 

and increased the porosity of the topsoil. 264 

 265 

3. RESULTS 266 

3.1. TERRASAR-X SIGNAL AND SOIL-SURFACE ROUGHNESS 267 

For bare soils, surface roughness plays an important role in the amount of energy returned to the 268 

radar instrument. The sensitivity of the TerraSAR-X signal (σ°) in HH polarization to surface 269 

roughness (Hrms) at the plot scale was analyzed for both incidence angles (25° and 50°). The 270 

database was classified into three soil-moisture groups: 10% < mv < 15% (low), 15% < mv < 25% 271 

(medium) and 25% < mv < 40% (high). For each incidence angle and soil-moisture group, the 272 

relationship between σ° and Hrms was analyzed.  273 

For high soil moisture, σ° could be modeled by a logarithmic function according to Hrms for either 274 

incidence angle (Figures 4a and 4b), and σ° was more sensitive to surface roughness at a high 275 

incidence angle (50°) than at a low incidence angle (25°). The mean difference between the σ° 276 

values of the smoothest (Hrms = 0.7 cm) and roughest areas (Hrms = 3 cm) reached a maximum of 277 

1.9 dB at 25° (Figure 5a) and approximately 3.5 dB at 50° (Figure 5b). Similar dynamics of the 278 
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TerraSAR-X signal and surface roughness have been observed by Baghdadi et al. (2008a). 279 

Moreover, at an incidence angle of 25°, the backscattering coefficient quickly reaches its 280 

maximum level for an Hrms of approximately 0.8 cm (Figure 5a). Beyond this threshold, the 281 

backscattering coefficient becomes constant regardless of the roughness. Roughness values of less 282 

than 0.8 cm are rare in agricultural areas. Therefore, for agricultural applications, soil-roughness 283 

mapping is not feasible using X-band SAR data at a low incidence angle.  284 

For medium soil moisture, the backscattering coefficient was almost constant for Hrms surface 285 

heights between 1.1 and 2.7 cm at either incidence angle (Figures 4a and 4b).  286 

The lack of roughness data for low soil-moisture conditions made it possible to perform only 287 

partial observations for the 50° incidence angle. As observed for medium soil moisture, σ° values 288 

for low soil moisture seem to be independent of surface roughness for Hrms surface heights 289 

between 1.1 and 2.7 cm (Figure 5b). 290 

The backscattering coefficients of soils with the same roughness but different soil-moisture levels 291 

(medium and high) were also compared. At a 25° incidence angle and for Hrms values between 292 

1.1 and 2.7 cm, the backscattering coefficient of a soil with medium moisture content was 293 

approximately 4.0 dB lower than that of the same soil with high moisture content (Figure 5a). This 294 

difference of 4.0 dB was larger than that observed between smooth (Hrms ~ 0.4 cm) and rough 295 

(Hrms ~ 3 cm) soils (1.9 dB). At a 50° incidence angle and for Hrms surface heights between 0.8 296 

and 2.7 cm, the backscattering coefficient of a soil with medium moisture content was 297 

approximately 1.5-5 dB lower than that of the same soil with high moisture content (Figure 5b). 298 

The difference in the backscattering coefficient between soils with different levels of moisture was 299 

smaller than the dynamics of the backscattering coefficient with changes in roughness at high soil 300 

moisture (3 dB for Hrms values between 0.8 and 2.7 cm, Figure 5b) for the smoothest areas and 301 

larger for the roughest areas. The lack of roughness data with low moisture content made it 302 

possible to perform only partial observations. At a 50° incidence angle and for Hrms values 303 
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between 1.2 and 2.9 cm, the backscattering coefficient for low soil moisture was lower by 304 

approximately 4-6 dB than that of soils with high soil moisture (Figure 5b). This difference was 305 

larger than the difference in backscattering coefficient between soils with different levels of 306 

roughness at high soil moisture (2.1 dB for Hrms between 1.2 cm and 2.9 cm, Figure 5b).  307 

In conclusion for agricultural bare plots, the effects of soil roughness on the TerraSAR-X signal 308 

are small and function of the moisture content. Consequently, the backscattering coefficient σ° 309 

(dB) in the X-band cannot be expressed as the sum of one function dependent on soil moisture and 310 

another dependent on Hrms surface height, as is commonly assumed for the L- and C-bands 311 

[Baghdadi et al., 2006; Zribi & Deschambre, 2002]. 312 

 313 

3.2. TERRASAR-X SIGNAL AND SOIL MOISTURE CONTENT 314 

The high spatial resolution of the TerraSAR data (1 m) made it possible to analyze the radar signal 315 

according to soil moisture at the plot and within-plot scales. The mean backscattering coefficient 316 

was estimated for each training plot according to the scale of interest and plotted as a function of 317 

in situ soil-moisture measurements regardless of roughness. Figure 6 illustrates the dynamics of 318 

the radar backscattering coefficient versus soil moisture for HH polarization at low (25°) and high 319 

(50°) incidence angles. Overall, the scattering behavior of the soil increased with soil moisture. 320 

The wide range of soil-moisture measurements (13-40%) made it possible to establish linear 321 

relationships between the radar signal and the soil moisture for each incidence angle. The 322 

sensitivity of the radar signal to soil moisture was 0.411 dB/% for the TerraSAR-X data at 25° 323 

(Figure 6a). Paris Anguela et al. (2010) have observed a sensitivity of the same order using a 324 

single TerraSAR-X image and simulated data from the IEM model (X-HH-26°: 0.35 dB/%). For 325 

the high incidence angle (50°), the sensitivity of the TerraSAR-X signal to soil moisture decreased 326 

to 0.323 dB/% (Figure 6b). This analysis demonstrates that the SAR signal in the X-band is 327 

slightly more sensitive to soil moisture at a low incidence angle (25°), but soil-moisture mapping 328 
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can be carried out with either low or high incidence angles (because both showed high 329 

sensitivities). This decreasing radar sensitivity with increasing incidence angle is consistent with 330 

other studies performed using C-band SAR data. Indeed, several studies using C-band data (ERS, 331 

RADARSAT, ASAR) have shown higher sensitivities between the radar signal and soil moisture 332 

for low incidence angles (0.2-0.3 dB/%) than for high incidence angles (0.1 dB/%) [Baghdadi et 333 

al., 2008a; Le Hégarat et al., 2002; Quesney et al., 2000; Srivastava et al., 2003]. Finally, the 334 

sensitivity of the radar signal to soil moisture appears to be higher in the X-band than in the C-335 

band, regardless of the incidence angle. Theoretical surface backscattering models show 336 

approximately the same sensitivity between radar signal and soil moisture for these two radar 337 

wavelengths (Fung, 1994). The increasing in the sensitivity of radar signal to soil moisture at X-338 

band could be due particularly to volume scattering effect. First, radar signal increases with soil 339 

moisture for C- and X-bands. In the other hand, the volume scattering term is certainly higher at C-340 

band than at X-band for low and medium moistures due to more important penetration of waves. 341 

This means that at C-band, the dynamic of radar signal with soil moisture variation could be lower 342 

at C-band because of this scattering term added for low and medium soil moistures. This decrease 343 

in radar dynamic induces a decreasing of sensitivity at C-band.  344 

 345 

3.3. TERRASAR-X SIGNAL AND SOIL COMPOSITION 346 

The sensitivity of the TerraSAR-X signal to soil composition was studied using images acquired in 347 

2009 because the soil-composition analysis focused on the training plots measured in 2009. 348 

Heterogeneities within plots were observed in the TerraSAR-X images only on March 17 and 18, 349 

2009 (Figures 2 and 7). These variations within the training plots were also observed in the 350 

IKONOS image (Figure 7j).  351 

To investigate these differences, soil samples were taken in each training plot to determine the 352 

particle-size distribution within plots. According to the soil-composition analysis, the zones with 353 
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low radar-signal values (darker zones) were more clayey (soil I: 24% clay, 71% silt and 5% sand) 354 

than the zones with high radar-signal values (brightest zones; soil II: 16% clay, 78% silt and 6% 355 

sand). Also, the variations in the TerraSAR-X signal within plots were spatially correlated with the 356 

variations in soil composition on the two acquisition dates (March 17 and 18). 357 

The mean differences in σ° between soil-II zones and soil-I zones had the same order of magnitude 358 

for the HH-25° (March 17: 2.6 dB) and HH-50° (March 18: 2.3 dB) configurations. Indeed, these 359 

two acquisitions occurred within an interval of less of 24 hours (ensuring the same surface 360 

conditions). Thus, according to these observations, the TerraSAR-X data allow to map limits of 361 

our two soils within the plots regardless of the incidence angle.  362 

Simulations using the IEM radar-backscattering model [Fung, 1994] were also carried out for the 363 

two soil compositions (I and II). The surface-roughness (Hrms, l) and soil moisture (mv) values 364 

measured during the field survey were used to run the simulations. In the IEM model, the 365 

Hallikainen equations [Hallikainen et al., 1985] are used to calculate the dielectric constant 366 

according to the percentages of sand and clay. Our results showed that the X-band data did not 367 

discriminate the two soil categories (the variations between these soil categories were less than 1 368 

dB in the X-band). These results were expected because the difference in soil composition between 369 

soil categories II and I was small. Indeed, the two soil compositions measured within the plots had 370 

a maximum mean difference in clay content of approximately 10% (training plot D). Several 371 

studies in the C- and L-bands have shown that the radar signal is directly dependent on the amount 372 

of sand and clay, but only for soil compositions that are very different (differences in clay content 373 

of more than 30%) [Dobson & Ulaby, 1981; Schmugge et al., 1976; Ulaby et al., 1978]. 374 

Similarly, the mean differences in sand content between the two soil categories did not exceed 1%. 375 

Prakash et al. (2009) has shown that the specular-scattering coefficient of X-band bistatic 376 

scatterometer data at HH polarization is strongly dependent on the percentage of sand in the soil 377 

when the surface is smooth. The change in the specular-scattering response with variations in soil 378 
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composition is difficult to observe when the soil is rough (Hrms > 1.4 cm). On March 2009, the 379 

smoothest training plots had a roughness of approximately 1.9 cm. Therefore, changes in 380 

scattering with changes in soil composition within our rough plots were not clear in the TerraSAR 381 

data. 382 

Thus, the TerraSAR-X signal was not directly sensitive to the soil composition in our training 383 

plots. Nevertheless, the spatial variation in the TerraSAR signal at the within-plot scale was 384 

correlated with the spatial distribution of soil composition in some TerraSAR-X acquisitions. 385 

Therefore, soil composition should affect other soil parameters that directly influence the 386 

TerraSAR-X signal. 387 

 388 

3.4. TERRASAR-X SIGNAL AND SOIL CRUST 389 

During the field survey in March 2009, slaking crust was observed on soil II and not on soil I. We 390 

studied the effect of the soil-II crust on the radar signal for seven training plots of 2009. Because 391 

soil crusts modify the water-retention properties and infiltration rates of the soil [Augeard, 2006; 392 

Musy & Soutter, 1991], the differences in soil moisture between soil II and soil I (mvsoil II - mvsoil I) 393 

were compared to the differences in the TerraSAR signal (σ°soil II - σ°soil I). The acquisitions on 394 

March 17 and 18, 2009 differed from the other 2009 acquisitions by their greater variation in 395 

signal and soil moisture within the training plots. The mean difference in signal calculated from 396 

the March 17 and March 18 images between the soil-II and soil-I zones was approximately +2.5 397 

dB (Table 3) for a mean difference in moisture content of approximately +4.5% (2.9-7.2%, 398 

depending on the training plot) (Table 2). The difference in soil moisture between soils I and II can 399 

be explained by the difference in the soil-surface structure (i.e., the presence or absence of slaking 400 

crust). During the winter dry period (March 11 to March 22, Figure 3), soil I dries faster than soil 401 

II. In soil II, evaporation is limited by the crust, and the moisture content is retained longer than in 402 

soil I. Thus, the moisture-content values of soil I were lower than those of soil II. Because the 403 
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TerraSAR signal is highly sensitive to soil moisture (section 3.2), the variations in moisture 404 

content between the two soils generated differences in the backscattered signal. 405 

On March 25 and 26, the mean difference in signal between soil-II and soil-I zones was less than 1 406 

dB (Table 3) for an average difference in moisture content of less than 1% (Table 2). Thus, no 407 

variation in either soil moisture or TerraSAR-X signal was observed within the plots on these 408 

dates. After rainy events (2.7 mm on March 23 and 4.7 mm only three hours before the March 25 409 

acquisition; Figure 3), the moisture content of soil I increased strongly (by approximately +4.5%) 410 

because soil I absorbed both precipitation and streaming water coming from soil II. The moisture 411 

content of soil II increased slightly (by approximately 1%) because the soil crust prevented water 412 

infiltration and favored hydric inertia. On March 17 and 18, soil II had greater moisture content 413 

than soil I. Because the moisture content of soil I increased and the moisture content of soil II 414 

stayed constant, the difference in moisture content between the two soils disappeared. For the 415 

other acquisition dates between April 8 and May 11, 2009, tillage had destroyed the soil crust and 416 

increased the porosity of soil II. Without crust, the compositions of the two soils were too similar 417 

to generate a difference in moisture content between soil I and soil II (< 1%), and no differences in 418 

signal were observed between the two soils. 419 

Thus, variations in the TerraSAR-X signal within plots were correlated with differences in the 420 

soil-surface structure between the two soils. The slaking crust on soil II generated differences in 421 

moisture content between soil I and soil II under certain conditions. For a single training plot 422 

located within the same study area, Paris Anguela et al. (2010) have shown that a soil with a 423 

smaller percentage of clay (soil B: 17% clay, 79% silt and 4% sand) had a TerraSAR signal (HH-424 

25°) 3 dB stronger than that of a more clayey soil (soil A: 32% clay, 64.5% silt and 3.5% sand). 425 

The driest upper millimeters of soil B and the low X-band penetration at high moisture content 426 

[Nolan & Fatland, 2003] were used to explain the difference in signal between soil B and soil A. 427 

 428 



Author-produced version of the article published in Remote Sensing Of Environment, 2011, 115(8), 1801-
1810. 
The original publication is available at http://www.sciencedirect.com/ 
doi : 10.1016/j.rse.2011.02.021 
 

19 

4. CONCLUSIONS 429 

This study analyzes the potential of high-spatial-resolution data from the TerraSAR-X sensor to 430 

monitor the soil-surface characteristics of bare agricultural soils (roughness, moisture, composition 431 

and structure) at plot and within-plot scales. The backscattering coefficients obtained from multi-432 

temporal SAR acquisitions at HH polarization and two incidence angles (25° and 50°) were 433 

compared to ground observations and measurements. Our results are promising for retrieving soil 434 

moisture information from TerraSAR-X data and for monitoring the dynamics of slaking crust 435 

hydric states within plots. The results are summarized below.  436 

� For high soil moisture (25 < mv < 40%), the sensitivity of the TerraSAR-X backscattering 437 

coefficient to soil roughness is slightly higher at a 50° incidence angle (3.5 dB) than at a 438 

25° incidence angle (1.9 dB). Moreover, for either incidence angle, the variation in the 439 

radar signal with surface roughness is smaller for soils with moisture contents between 440 

15% and 25% than for soils with moisture contents over 25%. The sensitivity of the 441 

TerraSAR signal at 25° to soil roughness for areas with high moisture content (25% < mv 442 

< 40%) is lower than the difference in signal between two areas with different moisture 443 

contents (15% < mv < 25% and 25% < mv < 40%). At 50°, the change in σ° with surface 444 

roughness for high soil moisture is larger than the variation in the signal between two 445 

smooth soils (Hrms ~ 0.8 cm) with different soil moisture levels (15% < mv <25% and 446 

25% < mv < 40%) and is slightly smaller in the case of rough areas (Hrms ~ 2.7 cm). 447 

Therefore, in the X-band, a high incidence angle (50°) is the optimal configuration for soil-448 

roughness monitoring in agricultural areas (bare soils).  449 

� The sensitivity of the TerraSAR-X signal to soil moisture is greater at a low incidence 450 

angle than at a high incidence angle (25°: 0.411 dB/%; 50°: 0.323 dB/%). Thus, an increase 451 

in moisture content of approximately 5% generates an increase in the backscattered signal 452 

of approximately 2.0 dB at a 25° incidence angle and 1.6 dB at a 50° incidence angle.  453 
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� The X-band SAR signal is not sensitive to slight differences in soil composition in bare 454 

agricultural fields (the maximum differences in our plots were 10% in clay and 1% in 455 

sand). No direct influence of soil composition on the radar signal was observed. 456 

Nevertheless, two TerraSAR-X acquisitions have shown signal variations within reference 457 

plots in the Orgeval study site that are spatially correlated with differences in soil 458 

composition at both high (50°) and low (25°) incidence angles (March 17 and 18, 2009). 459 

No TerraSAR-X signal variations were observed without crust or when there were no 460 

contrast of soil moisture between the soil crusted (II) and not crusted (I). So, when 461 

variations of composition engender variations of soil moisture (due to variations of soil 462 

structure and meteorological conditions), the spatial extent of soil composition can be 463 

observed within plots on TerraSAR-X signal.  464 

� Variations in the TerraSAR-X signal within reference plots are correlated with the hydric 465 

evolution of soil crust. Soil with slaking crust (soil II) has a greater hydric inertia than soil 466 

without crust (soil I). Consequently, following rainfall or dry events, soil moisture in the 467 

upper centimeters may differ between the two soil structures, resulting in variations in the 468 

TerraSAR-X signal within the field. Thus, it is sometimes possible to track surface 469 

degradation due to the slaking process using the TerraSAR-X sensor. 470 

Because of the low sensitivity to surface roughness and the high sensitivity to soil moisture, the 471 

use of TerraSAR-X data at HH polarization with a single incidence angle is a promising method 472 

for estimating soil parameters. Further studies are needed to analyze the complementary 473 

polarizations and incidence angles. Similarly, the synergy between the X-band (TerraSAR-X) and 474 

other SAR wavelengths (PALSAR/ALOS, RADARSAT-2, ASAR/ENVISAT) should be 475 

examined. 476 

 477 
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Tables and Figures 633 

Table 1. Characteristics of TerraSAR images and in situ soil-moisture measurements. 634 

SAR acquisition date 

dd/mm/yy 
Incidence angle 

In situ soil moisture (%) 

[Min; Max] 

17/03/09 25° [24.7; 32.3] 

18/03/09 50° [24.5; 29.8] 

25/03/09 50° [24.1; 31.0] 

26/03/09 25° [23.9; 32.7] 

08/04/09 25° [16.8; 27.5] 

09/04/09 50° [15.2; 26.3] 

17/04/09 25° [14.1; 16.4] 

20/04/09 50° [18.3; 23.9] 

11/05/09 25° [25.8; 31.3] 

01/03/10 50° [33.4; 39.8] 

02/03/10 25° [32.7; 39.0] 

04/03/10 25° [27.3; 34.3] 

12/03/10 50° [12.6; 29.0] 

13/03/10 25° [14.9; 26.3] 

 635 

 636 

 637 

Table 2. Variations in soil moisture within the training plots (%). For each date and training plot, 638 

the difference in soil moisture between soil II and soil I is shown. Slaking crust was observed on 639 

soil II on March 17, 18, 25 and 26, 2009. N.A.: not available. 640 

TerraSAR-X acquisition date (dd/mm/yy) 
Training 

plot ID 
17/03/09 

HH-25° 

18/03/09 

HH-50° 

25/03/09 

HH-50° 

26/03/09 

HH-25° 

08/04/09 

HH-25° 

09/04/09 

HH-50° 

17/04/09 

HH-25° 

20/04/09 

HH-50° 

11/05/09 

HH-25° 

A N.A. N.A. N.A. N.A. N.A. N.A. 1.6 0.1 N.A. 

B N.A. 5.2 N.A. 2.7 0.5 1.4 0.9 0.2 0.2 

C 4.7 3.7 0.5 -1.6 -1.4 -0.3 1.0 0.6 1.1 

D 5.1 7.2 N.A. 1.0 N.A. -1.4 0.1 0.4 0.4 

E 3.1 2.9 0.2 -1.0 -0.4 0.1 0.1 0.7 N.A. 

F N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 

G N.A. N.A. N.A. N.A. N.A. N.A. 0.7 0.9 0.1 

Mean 

(mvsoil II - mvsoil I) 

of training plots 

C, D, E 

4.3 4.6 0.3 -0.5 -0.6 -0.5 0.4 0.6 0.7 

 641 

 642 
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 643 

Table 3.  Variations in the TerraSAR-X signal within the training plots (dB). For each date and 644 

training plot, the difference between the radar signal of soil II and that of soil I is shown. Slaking 645 

crust was observed on soil II on March 17, 18, 25, and 26, 2009. N.A.: not available. 646 

TerraSAR-X acquisition date (dd/mm/yy) 

Training plot ID 17/03/09 

HH-25° 

18/03/09 

HH-50° 

25/03/09 

HH-50° 

26/03/09 

HH-25° 

08/04/09 

HH-25° 

09/04/09 

HH-50° 

17/04/09 

HH-25° 

20/04/09 

HH-50° 

11/05/09 

HH-25° 

A 1.6 1.5 0.5 0.8 0.3 -0.1 -0.2 0.1 1.4 

B 2.7 2.1 -2.3 -0.7 0.6 -0.4 -0.5 0.5 -0.6 

C 2.4 2.3 -0.1 -0.1 0.4 0.3 0.1 0.7 0.3 

D 2.6 2.3 -1.1 0.1 0.7 0.8 -0.5 0.6 -0.2 

E 2.8 2.3 -0.4 -0.2 0.8 1.3 N.A. 0.5 0.3 

F 2.2 2.6 0.1 -0.4 0.7 0.8 -0.7 N.A. 1.2 

G 1.1 1.1 -0.5 0.1 0.7 0.8 -0.1 0.9 0.1 

Mean 

(σ° soil II - σ° soil I) 

of training plots 

C, D, E 

2.6 2.3 -0.5 -0.1 0.6 0.8 -0.2 0.6 0.1 

 647 

 648 

 649 

  650 

Figure 1. Location of the Orgeval watershed (France; central coordinates: 48°51’N, 3°07’E). 651 

 652 
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 653 

Figure 2. A portion of a TerraSAR-X image (HH-25°, 17 March 2009) of the Orgeval site (central 654 

coordinates: 48°52’N, 3°06’E). Field surveys were performed in seven plots (A to G) in 2009 and 655 

six plots (H to M) in 2010. The reference plots are outlined in black. 656 

 657 

 658 

 659 
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(a) 
 

 

(b) 

 661 

Figure 3. Meteorological data averaged over the five stations installed in the basin: daily 662 

precipitation (mm) and minimum and maximum temperatures in 2009 (a) and 2010 (b). 663 
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 664 

 

Figure 4. Hrms surface height versus correlation length from measurements carried out in this 665 

campaign. 666 

667 
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 667 

 

(a) medium mv:  σ° = 0.62.ln(Hrms) - 7.0; R² = 0.1; RMSE = 0.7 cm 

      high mv:        σ° = 1.32.ln(Hrms) - 3.5; R² = 0.3; RMSE = 0.9 cm 

 

(b) low mv:         σ° = 0.20.ln(Hrms) - 12.9; R² = 0.5; RMSE = 0.1 cm 
medium mv:  σ° = 0.01.ln(Hrms) - 10.3; R² = 0.1; RMSE = 0.6 cm 

high mv:        σ° = 2.43.ln(Hrms) - 08.7; R² = 0.7; RMSE =1.0 cm 

Figure 5. The sensitivity of the TerraSAR-X signal (at HH polarization) to soil roughness for 668 

incidence angles of 25° (a) and 50° (b). Each point corresponds to one training plot (mean 669 

values). 670 
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(a) RMSE =1.32% 

 

(b) RMSE =1.14% 

Figure 6. The sensitivity of the TerraSAR-X signal (at HH polarization) to soil moisture in the top 671 

0–5-cm soil layer for incidence angles of 25° (a) and 50° (b). Each point corresponds to one 672 

training plot or portion of a plot. 673 
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a) 

HH-25° – March 17, 2009 

b) 

HH-50° – March 18, 2009 

 
c) HH-50° – March 25, 2009 

 
d) HH-25° – March 26, 2009 

 
e) HH-25° – April 08, 2009 

 
f) HH-50° – April 09, 2009 

g) 

HH-25° – April 17, 2009 

 
h) HH-50° – April 20, 2009 

i) 

HH-25° – May 11, 2009 

 
j) IKONOS – March 14, 2009 

(RGB: Near Infra Red, Blue, 

Green) 

Figure 7. Variations in signal strength within training plot C (outlined in black) for each 674 

TerraSAR-X acquisition (a-i). A subset of the IKONOS image acquired on March 14, 2009 is also 675 

shown (j). For the 17 and 18 March acquisitions, Soil I is outlined with a dotted black line (darker 676 

zone), and soil II corresponds to the brighter zones. 677 


