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Abstract— This work deals with the stability and synchro-
nization of systems with time-varying delays. We propose a
novel control scheme with position/velocity information channel
on the basis of Lyapunov-Krasovskii functional (LKF) and H∞
control theory by using Linear Matrix Inequality (LMI). The
proposed solution is efficient for different working conditions,
such as abrupt motion and wall contact, and this is illustrated
by various simulations.

Index Terms— Teleoperation System, Time-Varying Delay,
H∞ Control, Lyapunov-Krasovskii Functional, Linear Matrix
Inequality

I. INTRODUCTION

The concept of teleoperation implies a dual system, in
which a remote slave robot tracks the motion of a master ma-
nipulator. It must include a communication medium, so that
the position/velocity information of the master manipulator
handled by the human operator is delivered to the slave robot,
and the corresponding data of the slave is transmitted back
to the master. It constitutes a Networked Control System in
which the communication channels, especially the Internet,
introduce additional dynamics represented by time-varying
delays [11] [15]. In order to avoid a severe deterioration of
the global performance, these delays must be considered at
the control design stage [1] [2].

The passivity formalism represents the most popular ap-
proach for Velocity-Force (VF) schemes in teleoperation.
Since the cornerstone papers of Anderson and Spong [1],
Niemeyer and Slotine [10], the passivity, scattering and
wave variables allow for including arbitrary time delays
into systems in a passive and hence stable fashion. Besides,
another formulation is the passivity-based structure without
the transformation of wave variables. A recent approach
is the energy based time domain passivity control (ET-
DPC) [12]. Overall, passivity-based approaches can deal with
stabilization and velocity tracking under any time-varying
delays. But, as it was already noted in [12], passivity does not
allow for optimizing the system performance, which keeps
decreasing as the communication delays increase and does
not guarantee the position tracking in general.

Thus, from the point of view of performance, it is desirable
to design a controller ensuring the position tracking with
prescribed convergence rate, which of course will be linked
to the Quality of Service available from the network. Various
control strategies have been proposed in this area. In the
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case of a constant communication delay, Chopra et al. [3]
proposed a new system configuration for bilateral teleop-
eration in order to guarantee the position tracking. Later
on, Garcia-Valdovinos and Parra-Vega [6] designed a new
observer-based higher-order sliding mode impedance control
strategy.

The present paper aims at considering the case of variable
delays. With this aim in mind, Lyapunov approaches for
time-delay systems are helpful [11]. We will both ensure the
stability of the teleoperation system and realize high H∞
performance of the position tracking. In the case of time-
varying delays, many stability conditions have been proposed
in terms of Lyapunov-Krasovskii functionals (LKF), which
can be solved by Linear Matrix Inequality (LMI). Valuable
results can be found in the paper [4] by Fridman (see also
the included references). For H∞ performance consideration,
we will also use results from [4] [5] on the H∞ control of
systems with delays (see also [14] [16] for H∞ control with
time-varying delays). These two approaches will be helpful
to design a novel teleoperation system scheme, which makes
use of LKF to ensure the stability, and further, realize the
position tracking by H∞ control.

This paper is organized as follows: Section 2 introduces
and briefly explains the theorems to be used later. The
problem under consideration is briefly presented in section
3. In section 4, the bilateral teleoperation system using the
LKF and state-feedback H∞ control is given. Results of
simulation are presented in section 5. Finally we conclude
and discuss the future work in section 6.

II. PRELIMINARIES

In the next section, the teleoperation system will be
modeled as a linear time-varying delay system. This section
is devoted to the stability and the performance analysis of
this class of models, which is described by,

(Σ1)
{

ẋ(t) =
∑n

i=0 Aix(t− τi(t))
x(t0 + θ) = φ(θ), ẋ(t0 + θ) = φ̇(θ), θ ∈ [−h2, 0]

(1)
where, x(t) ∈ Rn is the state, τ0(t) ≡ 0, φ(θ) is the initial

condition, and the time-varying delays, τi(t) ∈ [h1, h2],
h1 ≥ 0, i = 1, 2, ..., n. Considering the following Lyapunov-
Krasovskii functional [4],



V (t, x(t), ẋ(t)) = x(t)T Px(t)

+
∫ t

t−h2

x(s)T Sax(s)ds +
∫ t

t−h1

x(s)T Sx(s)ds

+ h1

∫ 0

−h1

∫ t

t+θ

ẋ(s)T Rẋ(s)dsdθ

+
n∑

i=1

(h2 − h1)
∫ −h1

−h2

∫ t

t+θ

ẋ(s)T Raiẋ(s)dsdθ

(2)

Theorem 1: Suppose there exists n × n matrices P > 0,
R > 0, S > 0, Sa > 0, Rai > 0, P2, P3, Y1, Y2, i =
1, 2, ..., n, such that the condition (3) with notations (4) at the
top of next page is feasible, the system (1) is asymptotically
stable for time-varying delays τi(t) ∈ [h1, h2], i = 1, 2, ..., n.

Proof. The theorem is the extension of [9] and the proof
is straightforward.

Based on Theorem 1, the Lyapunov-Krasovskii functional
stability condition with several time-varying delays is used
to derive LMI stability conditions, which can be solved
efficiently. Further, this paper is not only concentrated in
the guarantee of stability, but also in the improvement of
the overall performances under time-varying delays, so we
employ Bounded Real Lemma (BRL) based on Theorem
1 [5].

Generally, given the following system,

(Σ2)
{

ẋ(t) =
∑n

i=0 Aix(t− τi(t)) + Bw(t)
z(t) = Cx(t) (5)

where, new term w(t) ∈ Rl is defined as the exogenous
disturbance signal, and z(t) ∈ Rq is seen as the objective
control output, C is a constant matrice.

For a prescribed scalar γ, we define the performance index,

J(w) =
∫ ∞

0

(z(t)T z(t)− γ2w(t)T w(t))dt (6)

Then, according to the theory of H∞ control, we can en-
sure the stability and optimize the performance of the system
with time-varying delays by verifying the performance index,

J(w) < 0 (7)

So, we obtain the following Theorem as follow,
Theorem 2: Suppose there exists n × n matrices P > 0,

R > 0, S > 0, Sa > 0, Rai > 0, P2, P3, Y1, Y2, i =
1, 2, ..., n, and a positive scale γ, such that the condition (8)
with notations (9) at the top of next page is feasible, the
system (5) is asymptotically stable and J(w) < 0 for time-
varying delays τi(t) ∈ [h1, h2], i = 1, 2, ..., n.

Proof. To ensure J(w) < 0, we consider the condition,

V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t) < 0 (10)

Integrating the resulting inequality in t from 0 to ∞,

∫ ∞

0

(V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t))dt

= V (∞, x(∞), ẋ(∞))− V (0, x(0), ẋ(0))

+
∫ ∞

0

(z(t)T z(t)− γ2w(t)T w(t))dt

< 0

(11)

Because V (0, x(0), ẋ(0)) = 0 and V (∞, x(∞), ẋ(∞)) ≥
0, we can assure J(w) < 0 by adding the term z(t)T z(t)−
γ2w(t)T w(t) into V̇ (t, x(t), ẋ(t)). Considering the system
of (14), we get,

V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t)

= x(t)T (S + Sa)x(t)

+ ẋ(t)T Px(t) + x(t)T Pẋ(t)

− x(t− h1)T Sx(t− h1)

− x(t− h2)T Sax(t− h2)

+ ẋ(t)T [h2
1R + (h2 − h1)2

n∑

i=1

Rai]ẋ(t)

− h1

∫ t

t−h1

ẋ(s)T Rẋ(s)ds

− (h2 − h1)
∫ t−h1

t−h2

ẋ(s)T
n∑

i=1

Raiẋ(s)ds

+ z(t)T z(t)− γ2w(t)T w(t)

(12)

Then, substituting for z(t) and w(t), the derivation process
is same as for Theorem 1. Applying the Jensen’s inequal-
ity [7], then obtain,

V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t)

≤ x(t)T (S + Sa + CT C)x(t) + ẋ(t)T Px(t) + x(t)T Pẋ(t)

− x(t− h1)T Sx(t− h1)− x(t− h2)T Sax(t− h2)

+ ẋ(t)T [h2
1R + (h2 − h1)2

n∑

i=1

Rai]ẋ(t)

− [x(t)T − x(t− h1)T ]R[x(t)− x(t− h1)]

−
n∑

i=1

vT
1iRaiv1i −

n∑

i=1

vT
2iRaiv2i

− w(t)T γ2Ilw(t)
(13)

where,

v1i =
∫ t−h1

t−τi(t)

ẋ(s)ds

v2i =
∫ t−τi(t)

t−h2

ẋ(s)ds, i = 1, 2, ..., n

(14)

By using the descriptor method and free weighting ma-
trices [4] [8], for some n × n matrices P2, P3, Y1, Y2,
the expression as follows is added into V̇ (t, x(t), ẋ(t)) +
z(t)T z(t)− γ2w(t)T w(t),



Γ1 =




Γ1
11 Γ1

12 R +
∑n

i=1 P T
2 Ai − nY T

1 nY T
1 −P T

2 A1 + Y T
1 ... −P T

2 An + Y T
1 Y T

1 ... Y T
1

> Γ1
22

∑n
i=1 P T

3 Ai − nY T
2 nY T

2 −P T
3 A1 + Y T

2 ... −P T
3 An + Y T

2 Y T
2 ... Y T

2

> > −S −R 0 0 0 0 0 0 0
> > > −Sa 0 0 0 0 0 0
> > > > −Ra1 0 0 0 0 0
> > > > > ... 0 0 0 0
> > > > > > −Ran 0 0 0
> > > > > > > −Ra1 0 0
> > > > > > > > ... 0
> > > > > > > > > −Ran




< 0 (3)

Γ1
11 = S + Sa −R + AT

0 P2 + PT
2 A0, Γ1

12 = P − PT
2 + AT

0 P3, Γ1
22 = −P3 − PT

3 + h2
1R + (h2 − h1)2

n∑

i=1

Rai

(4)

Γ2 =




Γ2
11 Γ2

12 R +
∑n

i=1 P T
2 Ai − nY T

1 nY T
1 −P T

2 A1 + Y T
1 ... −P T

2 An + Y T
1 Y T

1 ... Y T
1 P T

2 B
> Γ2

22

∑n
i=1 P T

3 Ai − nY T
2 nY T

2 −P T
3 A1 + Y T

2 ... −P T
3 An + Y T

2 Y T
2 ... Y T

2 P T
3 B

> > −S −R 0 0 0 0 0 0 0 0
> > > −Sa 0 0 0 0 0 0 0
> > > > −Ra1 0 0 0 0 0 0
> > > > > ... 0 0 0 0 0
> > > > > > −Ran 0 0 0 0
> > > > > > > −Ra1 0 0 0
> > > > > > > > ... 0 0
> > > > > > > > > −Ran 0
> > > > > > > > > > −γ2I




< 0

(8)

Γ2
11 = S + Sa −R + AT

0 P2 + PT
2 A0 + CT C, Γ2

12 = P − PT
2 + AT

0 P3, Γ2
22 = −P3 − PT

3 + h2
1R + (h2 − h1)2

n∑

i=1

Rai

(9)

0 =2[x(t)T PT
2 + ẋ(t)T PT

3 ]

[A0x(t) + Bw(t) +
n∑

i=1

Aix(t− h1)−
n∑

i=1

Aiv1i − ẋ(t)]

0 =2[x(t)T Y T
1 + ẋ(t)T Y T

2 ]

[nx(t− h2) +
n∑

i=1

v1i +
n∑

i=1

v2i − nx(t− h1)]

(15)
Setting,

η(t) =col{x(t), ẋ(t), x(t− h1), x(t− h2),
v11, v12, ..., v1n, v21, v22, ..., v2n, w(t)} (16)

Finally, if the LMI in (8) is feasible, we obtain,

V̇ (t, x(t), ẋ(t)) + z(t)T z(t)− γ2w(t)T w(t)

≤ η(t)T Γη(t) < 0
(17)

Note that if (8) holds, then the LMI (3) is feasible, thus the
system (5) is asymptotically stable under the H∞ constraint.

III. PROBLEM STATEMENT

A teleoperation system is composed of five entities: the
Human Operator, the Haptic Interface (Master), the Remote
Robot (Slave), the Environment and the Communication
Network. The master and the slave are actuated mechanical

systems with the same number N of DOF. All these entities
are connected according to the novel scheme given in Fig. 1,
where Fm(t) and Fs(t) are the actuated inputs of the master
and the slave, Fh(t) and Fe(t) are the effects of the human
operator and environment on the system, C1 and C2 are the
controllers, τ1(t) and τ2(t) are the network delays. xm(t)
and xs(t) are the state of the master and the slave, they are
composed with the speed vectors (θ̇m(t) and θ̇s(t)) and the
position vectors (θm(t) and θs(t)).

The following assumptions are made,

1) The master and the slave are linear dynamical systems.
2) The communication delays are bounded.
3) The data packet exchanged between the master and the

slave are time-stamped and the master and the slave
clock are synchronized.

4) The master and the slave systems have a local con-
troller ensuring the marginal stability (only the speed
stability).

The goal is to design the controllers C1 and C2 on each
side of the network ensuring the bilateral position tracking
of the master and the slave under communication delays. To
reach this goal, the human operator and the environment are
considered as an unknown inputs and the controllers have to
minimize their effects on the output tracking.

The expression of the controllers C1 and C2 are given by,



Fig. 1. Novel Teleoperation Control Scheme

Fs(t) =−Ks
0 θ̇s(t)−K1

1 θ̇s(t− τ̂1(t))−K2
1 θ̇m(t− τ1(t))

−K3
1 (θs(t− τ̂1(t)− θm(t− τ1(t)))

Fm(t) =−Km
0 θ̇m(t)−K1

2 θ̇s(t− τ2(t))−K2
2 θ̇m(t− τ̂2(t))

−K3
2 (θs(t− τ2(t)− θm(t− τ̂2(t)))

(18)
where the control gains (Ks

0 and Km
0 ) are local partial

state feedbacks. They are supposed to be known according
to the assumption 4. τ̂1(t) and τ̂2(t) are estimated network
delays between master and slave. Because of assumption 3,
the delays can be measured: τ̂1(t) = τ1(t), τ̂2(t) = τ2(t).
The control gains Kj

i , i = 1, 2, j = 1, 2, 3, are the ones to
be designed for the bilateral teleoperation.

Taking into account all the assumptions made, we can
describe the teleoperation problem as the stabilization of the
following linear system,

(Σ3)





ẋ(t) = Ax(t) + Bu(t) + Bw(t)
u(t) = −K0x(t)−K1x(t− τ1(t))

−K2x(t− τ2(t))
(19)

where, x(t), u(t) are respectively the state and input of
the complete system, which involve the master and slave in
general. The detailed explanation of the system state and the
input,

x(t) = col{θ̇s(t), θ̇m(t), θs(t)− θm(t)}
u(t) = col{Fs(t), Fm(t)}, w(t) = col{Fe(t), Fh(t)}

(20)
where, i = 1, 2,

K0 =
[
Ks

0 0 0
0 Km

0 0

]
, Ki =

[
K1

i K2
i K3

i

]
(21)

IV. MAIN RESULTS
The goal of this section is to provide a control design

scheme to achieve the stability of the system with guaranteed
performance. The stability conditions are ensured for the
global system. Firstly, the effect of the human operator and
the environment are neglected (i.e. w(t) = 0). The closed-
loop system can be written as,

(Σ4) : ẋ(t) = A0x(t)+A1x(t−τ1(t))+A2x(t−τ2(t)) (22)

where,

A0 = A−BK0, A1 = −BK1, A2 = −BK2 (23)

The following theorem provides LMI conditions allowing
the design of a stabilizing controller for the teleoperation
problem (i.e. the stability of 22),

Theorem 3: Suppose there exists matrices P > 0, R > 0,
S > 0, Sa > 0, Ra1 > 0, Ra2 > 0, P2, W1, W2, Y1,
Y2, and a positive scale ξ, such that the condition (24) with
notations (25) at the top of next page is feasible, the system
(22) is asymptotically stable for time-varying delays τ1(t),
τ2(t) ∈ [h1, h2]. The control gains are given by,

K1 = W1P
−1
2 , K2 = W2P

−1
2 (26)

Proof. We substitute the system (22) into Theorem 1,
a nonlinear matrix inequality is obtained due to the terms
PT

2 BK1, PT
2 BK2, PT

3 BK1, PT
3 BK2.

We choose P3 = ξP2, and multiply Γ1 in Theorem 1 by
diag{P−T

2 , ..., P−T
2 } at the left side, diag{P−1

2 , ..., P−1
2 } at

the right side, then we get Theorem 3.
Up to this, in this paper, the stability of teleoperation

system has been ensured. Next, on the basis of stability, we
need to improve the performance of system by optimizing
the tracking of position between the master and slave. So,
we will take into account the unknown input of the human
operator and the environment Fh(t) and Fe(t) (i.e. w(t) 6= 0)
on the base of state-feedback H∞ control.

In this context, the closed-loop system can be rewritten,

(Σ5)





ẋ(t) = A0x(t) + A1x(t− τ1(t))
+A2x(t− τ2(t)) + Bw(t)

z(t) = Cx(t)
(27)

where the exogenous disturbance signal w(t) =
col{Fe(t), Fh(t)}, the objective control output z(t) =
θs(t)− θm(t). C is a known matrice. The definition of A0,
A1, A2 can be found in (23).



Γ3 =




Γ3
11 Γ3

12 R−BW1 −BW2 − 2Y T
1 2Y T

1 Y T
1 + BW1 Y T

1 + BW2 Y T
1 Y T

1

> Γ3
22 −ξBW1 − ξBW2 − 2Y T

2 2Y T
2 Y T

2 + ξBW1 Y T
2 + ξBW2 Y T

2 Y T
2

> > −S −R 0 0 0 0 0
> > > −Sa 0 0 0 0
> > > > −Ra1 0 0 0
> > > > > −Ra2 0 0
> > > > > > −Ra1 0
> > > > > > > −Ra2




< 0 (24)

Γ3
11 = S + Sa −R + PT

2 AT + AP2 −BK0P2 − PT
2 KT

0 BT , Γ3
12 = P − P2 + ξPT

2 AT − ξPT
2 KT

0 BT

Γ3
22 = −ξP2 − ξPT

2 + h2
1R + (h2 − h1)2(Ra1 + Ra2)

(25)

Our objective is to minimize z(t) by using H∞ control
theory, that is to minimize the deviation of position between
the master and slave, θs(t)−θm(t). Based on Theorem 2, the
following result is proposed which allows the optimization
of the H∞ bound in form of LMI,

Theorem 4: Suppose there exists matrices P > 0, R > 0,
S > 0, Sa > 0, Ra1 > 0, Ra2 > 0, P2, W1, W2, Y1, Y2,
and positive scales γ and ξ, such that the condition (29) with
notations (30) is feasible, the system (27) is asymptotically
stable and J(w) < 0 for time-varying delays τ1(t), τ2(t) ∈
[h1, h2]. The control gains are given by,

K1 = W1P
−1
2 , K2 = W2P

−1
2 (28)

Γ4 =




Γ4
11 Γ4

12 Γ4
13

> Γ4
22 0

> > Γ4
33


 < 0 (29)

Γ4
11 = Γ3, Γ4

12 =




B
ξB
0
...
0




, Γ4
13 =




PT
2 CT

0
...
0




Γ4
22 = −γ2I, Γ4

33 = −I

(30)

Remark 1: Theorem 4 is an extended application of
Theorem 2, K1 and K2 are fixed by W1 and W2 under the
minimum value of γmin.

Remark 2: The H∞ control design objective is to min-
imize the norm of the closed-loop mapping w(t) → z(t).
More precisely, we look for a minimum characterization of
levels γ, which is defined as γmin, therefore, the bound
supw(‖ z(t) ‖2/‖ w(t) ‖2) < γmin is achievable in the
closed-loop system. Therefore, by Theorem 4, we can min-
imize the deviation of position z(t), in the condition of
exogenous disturbance input w(t), further achieve some
minimal level of synchronization, as the tracking of position.
Besides, the performance of synchronization is proportional
to the magnitude of γmin, the smaller γmin produces the
better performance of system.

V. SIMULATION

To evaluate the performance of the proposed approach of
teleoperation system, different working conditions have been

simulated in MATLAB/SIMULINK. The maximum ampli-
tude and sampling time of time-varying delays are 0.2s and
0.001s, which satisfy most network-based applications of
teleoperation system, as internet-based teleoperation system.
Notice that, the time-varying delays in two channels are not
correlated.

A. Tracking in abrupt changing motion

Fig. 2. Position Response in Abrupt Changing Motion

In order to simplify the system simulation, the master and
slave models can be described as mm/s and ms/s, where
the effective endpoint mass mm = 1kg and ms = 1kg,

A =




0 0 0
0 0 0
1 −1 0


 , B =




1 0
0 1
0 0


 (31)



Besides, as mentioned above, K0 is the local controller
that does not consider the impact of network, the poles are
given as [−100.0], then,

K0 =
(

100 0 0
0 100 0

)
(32)

According to the theorems above, the global controllers
K1 and K2 are obtained under γmin = 0.0066, which is
calculated by YALMIP/MATLAB,

K1 =
(−1.4474 1.5123 242.3349

)

K2 =
(
1.5699 −1.6499 −263.6271

) (33)

For simulation purpose, the human operator is modeled
as the pulse generator, as can be seen in upper Figure
of Fig. 2. Middle Figure of Fig. 2 shows the tracking
of position between the master and slave. It is clear that
the position tracking is achieved in this case. Moreover
lower Figure shows the value of the performance index∫ t

0
(z(s)T z(s) − γ2w(s)T w(s))ds < 0 in the simulation

process. This index is always negative which induces that the
prescribed performances are guaranteed. These three Figures
show the effectiveness of this approach.

B. Tracking in wall contact motion

Fig. 3. Position Response in Wall Contact Motion

We also performed simulation in wall contact motion,
where the slave is driven to the hard wall with a stiffness
of Ke = 30kN/m located at the position x = 1.0m. Like
in abrupt change of motion, the system shows, in Fig. 3, a
stable behavior with the global controllers, and the error that
the arrow has marked between the master and the slave stays
acceptable.

VI. CONCLUSIONS AND FUTURE WORKS

We have addressed the study of teleoperation system,
including the stability, and state synchronization. The main
problem concerned in this paper is the time-varying delays
in the communication line, with 2 channels. To solve this
problem, novel system architecture has been proposed, based
on the theory of Lyapunov-Krasovskii functional with H∞

control. Furthermore, on the basis of H∞ control, the paper
realizes the high performance of the position tracking.

Numerical simulations, achieved by YALMIP/SIMULINK
/MATLAB, have confirmed the accuracy of analysis, and
proved that the teleoperation system, designed by our theory,
Could run in different workshop conditions.

Future works will focus on expand the system class, for
example, the proposed theory in the paper can be extended to
nonlinear system, distributed system, and others. In this pa-
per, we have used time-stamps to estimate time delays, in the
future, the estimated delays could be eliminated, providing
a memoryless controller. At last, some real implementations
are being planned in our laboratory.
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