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No-information secretary problems with

cardinal payoffs and Poisson arrivals

Elżbieta Z. Ferenstein a,∗, Anna Krasnosielska a,1

aFaculty of Mathematics and Information Science, Warsaw University of
Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland

Abstract

No-information secretary problem with Poisson stream of applicants is considered.
The values of the applicants are random variables drawn from uniform distribution.
The goal is to maximize the expectation of the value of the applicant under the
condition that the decision maker can only stop on a candidate best so far. We also
consider two modifications of this problem.

Key words: Poisson process, Cowan-Zabczyk-Bruss model, relative rank, random
horizon, inverse Robbins’ problem

1 Introduction

The no-information best choice problem (secretary problem) was considered
by many authors (see Ferguson (1989) or Szajowski (2009) for an extensive
bibliography). In the paper we consider generalizations of the problem pre-
sented in Bearden (2006): There is a single secretarial position available. The
applicants are interviewed sequentially at times τ1, τ2, . . . of jumps of a Poisson
process. The time of observations is limited by T , where T is finite and known.
This means that the number of interviewed secretaries is random. Moreover,
rejected applicants cannot be recalled. The values X1, X2, . . . of subsequent of
the applicants are i.i.d. random variables with uniform distribution on (0, 1)
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and they are unobservable. The decision about acceptance or rejecting should
be made during the interviewing process based only on relative ranks of the
applicants interviewed so far. The goal is to maximize the expectation of the
reward. In the paper we consider two kind of rewards:
(A) The reward is Xi if the i-th applicant is the best so far and arrived on
the interviewing process before time T , and 0 otherwise.
(B) The reward is Xi if the i-th applicant is the best so far and arrived on
interviewing process before time T and there were no more then N − 1 appli-
cants before her, and 0 otherwise, where N is fixed and known. This means
that the decision maker (DM) admitted to the interviewing process only N
candidates.
The above models describe the situation when the DM is satisfied only with
the best applicant among those interviewed so far or none. Additionally, it is
possible that the DM will not have chosen an applicant by time T , because in
(A) the number of applicants is Poisson distributed random variable and in
(B) it is truncated one.

A generalization of the classical secretary problem to a problem with random
number of arrivals was considered in Presman and Sonin (1972). The authors
showed that this problem can be reduced to an optimal stopping problem for
a certain Markov chain with an infinite number of states and an unbounded
number of steps. Then they showed how to find the optimal strategy. Bruss
(1984) also considered the problem with random number of candidates and
proved the e−1 - law of the best choice. Porosiński (1987) showed that if
number of candidates has geometrical distribution then an optimal stopping
rule is of barrier type and the limiting probability is constant and equal to
e−1. An interesting approach to problem with random number of candidates
was presented in Samuel-Cahn (1996). She showed that the problem can be
translated to a problem with discounting.

The Poisson-arrivals version of secretary problem was introduced by Cowan
and Zabczyk (1978) and later generalized to Poisson processes with unknown
arrival intensity by Bruss (1987). Stewart (1981) adopted a Bayesian approach
to the secretary problem with unknown number of candidates by assuming a
prior distribution on N . Secretary problem with costs per observation and
Poisson process was considered in Bojdecki (1978). Bruss (2000, 2003) intro-
duced a general class of optimal stopping time problems covering a version of
classical secretary problem with Poisson process and found its solution known
as the odds-theorem and odds-algorithm.

Elfving (1967) considered the best choice problem with a Poisson process and
discounting. He found a differential equation which allows one to compute the
optimal mean reward. The Elfving problem was generalized to the problem
with random horizon by Ferenstein and Krasnosielska (in press). In the pa-
per authors adopted the theorem concerning stopping problem with random
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horizon of Samuel-Cahn by introducing Poisson process. Krasnosielska (2009)
modified Elfving problem assuming that the process of decision making starts
at random time. Another approach to the best choice problem connected with
a Poisson process was presented in Ferenstein and Sierociński (1997), where
the authors analyzed the optimal stopping time problem of a risk process.

Bruss and Swan (2009) generalized the other version of the secretary problem
known as Robbins’ problem introducing Poisson process.

Rasmussen and Pliska (1976) considered no-information secretary problem
with a discount penalty function α and known number of observations N . In
their model the DM receives the reward αk if the k-th candidate is chosen and
is the best among all candidates, and 0 otherwise. Bearden (2006) analyzed the
version of the secretary problem known as inverse Robbins’ problem. However,
in his problem the reward for the DM from accepting the i-th candidate is
Xi if she is the best so far or the last one. The decision is based only on
relatives ranks of candidates observed so far. Bearden (2006) showed that an
optimal strategy is to pass c − 1 applicants and to stop at the first j ∈ {c, c +

1, . . . , N − 1} with rank 1, where c ∈ {
⌊√

N
⌋
,
⌈√

N
⌉

}, and if such a j does not
exist, then stop at N . Bearden problem was also considered by Samuel-Cahn
(2007). She analyzed different kinds of distribution of the random variables Xi

and their influence on the optimal strategy and the optimal expected reward.
Szajowski (2009) modified the Bearden model introducing discounted cost of
stress connected with time.

There also exist experimental studies on the behavior of the DMs in situations
similar to those considered in mathematical models related to best choice prob-
lems (see Bearden, Rapoport and Murphy (2006), Seale and Rapoport (2000),
or Stein, Seale and Rapoport (2003) for an extensive bibliography on the sub-
ject). The experiments showed that the DMs have a tendency to shorten the
time of observation in comparison with the optimal strategy obtained from a
mathematical model.

The above models can be used to solve many problems concerning everyday life
like: tourist problem (finding the best hotel room on the highway), asset selling
problem, job search problem, marriage problem. In mentioned situations the
number of future observations (e.g. the number of apartments which we will
meet on our way by the end of the day or the number of future job offers)
is unknown and the times when these offers appear are not known either. In
some situation the number of observation is random and can not be limited
(e.g. the number of future job offers in the Internet). In some other situations
we know that there will not be more than N offers, but their exact number is
not known (for example the number of hotels on the highway from one city to
the other one). Therefore, in this case we should use the model with reward
as in problem (B). Hence, the model with a Poisson process or with a Poisson
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process and a limited number of applicants better describe the situations of
real life and in consequence allow one to find a better strategy of behavior.
Our models tell us what to do in order to maximize the expected value of the
reward.

The paper is organized as follows: In Section 2, we formulate and solve a model
with reward for Problem (A). In Section 3, a model with reward for Problem
(B) is considered. Additionally in Appendix, we consider the Bearden problem
under the assumption that we are interested only with the best candidate and
we compare the result with Bearden problem.

2 Model with Poisson process

In the section we consider two equivalent optimal stopping problems with
Poisson stream of offers.

Assumptions. Assume that {Xi} ∞
i=1 is a sequence of i.i.d. random variables

with uniform distribution on (0, 1). The random variable Xi appears at time
τi of jump of the Poisson process N(s), s ≥ 0, with intensity 1, i = 1, 2, . . ..
Moreover, assume that the sequences of X’s and τ ’s are independent. Define
Yn = 1 if Xn = max{X1, . . . , Xn}, and Yn = 0 otherwise, n = 1, 2, . . ..

Problem A. Let Fn = σ(Y1, . . . , Yn, τ1, . . . , τn). Denote by M the set of all
stopping times t adapted to the sequence { Fn} ∞

n=1. Let XiI(τi ≤ T )I(Yi = 1)
be the reward for the DM making selection at τi, where T > 0 is finite and
known horizon and I(A) denotes the indicator function of the event A. The
aim of the DM is to find the optimal mean reward

V = sup
t∈M

E(XtI(τt ≤ T )I(Yt = 1))

and an optimal stopping time σ ∈ M, that is E(XσI(τσ ≤ T )I(Yσ = 1)) = V .

Problem A’. Define the sequence of Ln as follows: L1 = 1 and Ln = min{k >
Ln−1 : Yk = 1} for n = 2, 3, . . .. Let F̃n = σ{L1, . . . , Ln, τ1, . . . , τLn }. Denote
by M̃ the set of all stopping times t̃ adapted to the sequence { F̃n} ∞

n=1. Let
XLi

I(τLi
≤ T ) be the reward for the DM making selection at τLi

. The aim of
the DM is to find the optimal mean reward

Ṽ = sup
t̃∈M̃

E(XLt̃
I(τLt̃

≤ T ))

and an optimal stopping time σ̃ ∈ M̃, that is E(XLσ̃
I(τLσ̃

≤ T )) = Ṽ .

4
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Note that if N(T ) = 0, then the payoff of any strategy in the above problems
is equal to zero.

Theorem 2.1 Problems A and A’ are equivalent, that is V = Ṽ .

Proof. Note that Yi and Yj, i 6= j, are independent and have the distribution:
P (Yi = 1) = 1/i and P (Yi = 0) = (i − 1)/i (Rényi (1962)). Moreover, Xi is
independent of Yk for k = 1, 2, . . . , i − 1, and the sequences of Y ’s and τ ’s
are also independent. Since the reward XiI(τi ≤ T )I(Yi = 1) is not adapted
to the filtration Fi we can replace it by X̂i = E(XiI(τi ≤ T )I(Yi = 1)| Fi) =
i/(i + 1)I(τi ≤ T )I(Yi = 1). Since X̂i = 0 if Yi = 0, and E(X̂i+1| Fi) =
1/(i + 2)(1 − exp(−(T − τi)))I(τi ≤ T ), it is never profitable to stop when
Yi = 0 and τi ≤ T . Hence, we infer that V = Ṽ .

Remark 2.1 Note that the sequences of L’s and τ ’s are independent. More-
over, the reward XLi

I(τLi
≤ T ) is not adapted to the filtration F̃i, so we can

replace it by X̃i = E(XLi
I(τLi

≤ T )| F̃i). From the definition of the random
variable Ln we have

X̃i =
Li

(Li + 1)
I(τLi

≤ T ).

Therefore, the Problem A’ is equivalent to finding an optimal stopping time
σ̃ ∈ M̃, that is E(X̃σ̃) = Ṽ .

In what follows we will use the below definition and theorem concerning the
monotone case. Let

An = {X̃n ≥ E(X̃n+1| F̃n)}, n = 1, 2, . . . .

Definition 2.1 We say that we are in the monotone case if A1 ⊂ A2 ⊂ . . .
and P (

⋃∞
n=1 An) = 1.

Set

s = inf{n ≥ 1 : X̃n ≥ E(X̃n+1| F̃n)}. (1)

Theorem 2.2 In the monotone case, if s ∈ M̃ and

lim inf
n→ ∞

∫

{s>n}

X̃+
n dP = 0, (2)

then E(X̃s) > E(X̃r) for all r ∈ M̃ for which

lim inf
n→ ∞

∫

{r>n}

X̃−
n dP = 0. (3)

5
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Proof. See Theorem 3.3 from Chow, Robbins, and Siegmund (1971, p. 55).

Theorem 2.3 The stopping time

σ̃ = inf{n ≥ 1 : τLn ≥ T − ln(2Ln + 1)},

where inf ∅ = +∞, is optimal for Problem A’.

Proof. Note that (Ln, τn) is a Markov chain and P (L1 = 1) = 1,

P (L2 = k2) = P (L2 = k2|L1 = 1) =
1

k2(k2 − 1)
, (4)

P (Ln = kn|Ln−1 = kn−1) =
kn−1

kn(kn − 1)
, (5)

for 1 < k2 < k3 < . . .. Hence,

E(X̃n+1| F̃n)) =
2Ln + 1

2(Ln + 1)
(1 − exp(−(T − τLn)))I(τLn ≤ T ).

In Problem A’, {X̃n ≥ E(X̃n+1| F̃n)} = {T ≥ τLn ≥ T − ln(2Ln +1)} ∪ {τLn >
T } = {τLn ≥ T − ln(2Ln +1)} because {τLn > T } ⊂ {τLn ≥ T − ln(2Ln +1)}.
To show that An ⊂ An+1 it is enough to note that if τLn ≥ T − ln(2Ln + 1),
then τLn+1 ≥ T − ln(2Ln+1 + 1). Moreover,

P (
∞⋃

n=1

An) = 1 − lim
n→ ∞ P (τLn < T − ln(2Ln + 1)) ≥ 1 − lim

n→ ∞ P (τn < T ) = 1.

Condition (3) is satisfied for all r ∈ M̃ because X̃i ≥ 0 for all i ≥ 1. Condition
(2) is satisfied because of the following inequalities:

0 ≤
∫

{s>n}

X̃+
n dP ≤ P (τLn < T − ln(2Ln + 1)) ≤ P (τn < T ).

Note that P (σ̃ < ∞) = 1, hence σ̃ is optimal stopping time in M̃.

To compute the optimal mean reward we need to find the distribution of the
random variable Lσ̃. Note that {Lσ̃ = k} = {Lσ̃ = k} ∩ {σ̃ ≤ k}, hence

P (Lσ̃ = k) = P (L1 = k, σ̃ = 1) +
k∑

i=2

P (Li = k, σ̃ = i)

6
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= I(k = 1)I(T − ln 3 > 0) exp(−T + ln 3)

+
k∑

i=2

( 1

k(k − 1)

k−1∑

m=1

(
mP (Li−1 = m)I(T − ln(2m + 1) > 0)

×
(
1 − exp(−T + ln(2m + 1))

m∑

j=0

(T − ln(2m + 1))j

j!

))

−P (Li = k)(1 − exp(−T + ln(2k + 1)))I(T − ln(2k + 1) > 0)
)
. (6)

The probability P (Li = k) for i ∈ {1, 2} is obtained from (4), for i ≥ 3 it can
be computed by recursion from the following relation:

P (Li = k) =
k−1∑

n=1

n

k(k − 1)
P (Li−1 = n).

Theorem 2.4 The optimal mean reward

Ṽ =
∞∑

k=1

[ k

k + 1

(
1 − exp(−T )

k−1∑

i=1

T

i!

)
P (Lσ̃ = k)

]
,

where P (Lσ̃ = k) is given by (6).

Proof. Proof follows from equality Ṽ = E(X̃σ̃) = E( Lσ̃

Lσ̃+1
E(I(τLσ̃

≤ T )|Lσ̃))
and Remark 2.1.

Proposition 2.1 The stopping time σ = Lσ̃ is optimal for Problem A.

3 Model with Poisson process and limited number of applicants

In the section we consider two equivalent optimal stopping problems with
Poisson stream of offers and limited number of observations.

Let the assumptions of Section 2 be satisfied. Let Fn, F̃n, M, M̃ and Ln

be defined as in Section 2. Moreover, assume that the number N of available
applicants is known and fixed. We will assume that N ≥ 2, because the case
N = 1 is trivial.

Problem B. Let XiI(τi ≤ T )I(Yi = 1)I(i ≤ N) be the reward for the DM
making selection at τi. The aim of the DM is to find

V N = sup
t∈M

E(XtI(τt ≤ T )I(Yt = 1)I(t ≤ N))

7
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and σN ∈ M such that E(XσN
I(τσN

≤ T )I(σN ≤ N)I(YσN
= 1)) = V N .

Problem B’. Let X̃N
i = Li/(Li + 1)I(τLi

≤ T )I(Li ≤ N) be the reward for
the DM making selection at τi. The aim of the DM is to find

Ṽ N = sup
t̃∈M̃

E(X̃N
t̃ ),

and σ̃N ∈ M̃ such that E(X̃N
σ̃N

) = Ṽ N .

Note that if N(T ) = 0, then the payoff of any strategy in the above problems
is equal to zero.

Theorem 3.1 Problems B and B’ are equivalent, that is V N = Ṽ N .

Theorem 3.2 The stopping time

σ̃N = inf{n ≥ 1 : Ln ≥ N or τLn > T or gN(Ln) ≥ 1 − exp(−(T − τLn))},

where inf ∅ = +∞, is optimal for Problem B’.

Proof. Note that

E(X̃N
n+1| F̃n)) =

Ln

2

( 1

Ln

+
1

Ln + 1
− 1

N
− 1

N + 1

)

×(1 − exp(−(T − τLn)))I(τLn ≤ T )I(Ln ≤ N − 1).

Hence,

{X̃N
n ≥ E(X̃N

n+1| F̃n)}

= {Ln ≥ N } ∪ {τLn > T } ∪ {gN(Ln) ≥ 1 − exp(−(T − τLn))},

where gN(Ln) = 2Ln(2Ln + 1 − Ln(Ln + 1)(1/N + 1/(N + 1)))−1. Let us
note that the random variable gN(Ln) is increasing with respect to n because
it is increasing with respect to Ln and Ln is increasing with respect to n,
and gN(Ln) is greater than 2

3
for all n such that Ln < N , a.e.. Moreover,

1−exp(−(T −τLn)) is decreasing with respect to n, a.e.. Considerations similar
to those in Section 2 show that we are in the monotone case. To show it, it is
enough to notice that P (X̃N

n ≥ E(X̃N
n+1| F̃n)) ≥ P (τLn > T ) = 1 − P (τLn ≤ T )

and X̃N
i ≤ X̃i. Note that P (σ̃N < ∞) = 1, hence σ̃N is optimal stopping time

in M̃.

8
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To compute the optimal mean reward we need to find the distribution of the
random variable Lσ̃N

. Note that

P (Lσ̃N
= k) = I(L1 = k)P ({gN(1) ≥ 1 − exp(−(T − τ1))} ∪ {τ1 > T })

+
k∑

i=2

P (Li = k, Li−1 < N, τLi−1
≤ T, gN(Li−1) < 1 − exp(−(T − τLi−1

)),

({Li ≥ N } ∪ {τLi
> T } ∪ {gN(Li) ≥ 1 − exp(−(T − τLi

))})).

The above probabilities satisfy

P ({gN(1) ≥ 1 − exp(−(T − τ1))} ∪ {τ1 > T })

= I(N ∈ {2, 3}) + I(N ≥ 4) exp(−((T + ln(1 − gN(1))) ∨ 0)),

and

P (Li = k, Li−1 < N, τLi−1
≤ T, gN(Li−1) < 1 − exp(−(T − τLi−1

)),

({Li ≥ N } ∪ {τLi
> T } ∪ {gN(Li) ≥ 1 − exp(−(T − τLi

))}))

=
N −1∑

m=1

(mP (Li−1 = m)

k(k + 1)
I
(
m(m + 1) <

N(N + 1)

2N + 1

)
(1 − exp(hN(m, T )))

×
m−1∑

n=0

hN (m, T )n

n!

)
− I(k < N)P (Li = k)I

(
k(k + 1) <

N(N + 1)

2N + 1

)

×(1 − exp(hN(k, T )))
k−1∑

n=0

hN(k, T )n

n!
, (7)

where hN(k, T ) = (T ∧ (T + ln(1 − gN(k)))) ∨ 0.

Theorem 3.3 The optimal mean reward

Ṽ N =
N∑

k=1

[ k

k + 1

(
1 − exp(−T )

k−1∑

i=1

T

i!

)
P (Lσ̃N

= k)
]
,

where the distribution of Lσ̃N
is given by (7).

Proposition 3.1 The stopping time σN = Lσ̃N
is optimal for Problem B.

9
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Appendix

In Appendix we consider two equivalent optimal stopping problems without
a Poisson process.

Assumptions. Assume that {Xi} ∞
i=1 is the sequence of i.i.d. random variables

with uniform distribution on (0, 1). Let Yn and Ln, n = 1, 2, . . . be defined as
in Section 2. Moreover, assume that the number N of available applicants is
known and fixed and the applicants are interviewed sequentially in a random
order and all orders are equally likely.

Problem C. Let F ∗
n = σ(Y1, . . . , Yn). Denote by M ∗ the set of all stopping

times t∗ adapted to the sequence { F ∗
n } ∞

n=1. Let XiI(Yi = 1)I(i ≤ N) be the
reward for the DM for accepting the i-th applicant. The aim of the DM is to
find the optimal mean reward

V ∗ = sup
t∗ ∈M∗

E(Xt∗ I(Yt∗ = 1)I(t∗ ≤ N))

and an optimal stopping time σ∗ ∈ M ∗, that is E(Xσ∗ I(σ∗ ≤ N)I(Yσ∗ = 1)) =
V ∗.

Problem C’. Let F̃ ∗
n = σ{L1, . . . , Ln}. Denote by M̃ ∗ the set of all stopping

times t̃∗ adapted to the sequence { F̃n
∗ } ∞

n=1. Let X̃∗
i = Li/(Li + 1)I(Li ≤ N).

The aim is to find the optimal mean reward

Ṽ ∗ = sup
t̃∗ ∈M̃∗

E(X̃∗
t̃∗ )

and an optimal stopping time σ̃∗ ∈ M̃ ∗ such that E(X̃∗
σ̃∗ ) = Ṽ ∗.

Theorem 3.4 Problems C and C’ are equivalent, that is V ∗ = Ṽ ∗.

Let us remind that the difference between this model and Bearden’ model is
that we are interested in stopping on the best applicant so far while the DM
in Bearden’ model is interested in stopping on the best applicant so far or
on the last one. Hence, we analyze the influence of the decision making in

10
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the last step. The problem can be applied in situation where we know the
number of observations and we are interested in choosing the best one from
the interviewed to that time or none.

Theorem 3.5 The stopping time

σ̃∗ = inf
{
n ≥ 1 : Ln ≥ n0},

where

n0 =




√√√√N(N + 1)

(2N + 1)
+

1

4
− 1

2




and inf ∅ = +∞, is optimal for Problem C’.

Proof. Note that

E(X̃∗
n+1| F̃ ∗

n)) =
Ln

2

( 1

Ln
+

1

Ln + 1
− 1

N
− 1

N + 1

)
I(Ln ≤ N − 1).

Hence,

{X̃∗
n ≥ E(X̃∗

n+1| F̃ ∗
n)} =

{
Ln(Ln + 1) ≥ N(N + 1)

2N + 1

}
∪ {Ln ≥ N }

=
{
Ln(Ln + 1) ≥ N(N + 1)

2N + 1

}
= {Ln ≥ n0}.

Note that P (σ̃∗ < ∞) = 1 and all assumptions of Theorem 2.2 are satisfied,
hence σ̃∗ is optimal stopping time in M̃ ∗.

Proposition 3.2 The stopping time σ∗ = inf{n ≥ n0 : Yn = 1} is optimal
for Problem C.

Theorem 3.6 For Problem C,

V ∗ =
1

2
+

n0 − 1

2

( 1

n0
− 1

N
− 1

N + 1

)

is the optimal mean reward.

Proof. The proof follows from the observation that

V ∗ =
N∑

k=n0

P (Yk = 1)E(Xk|Yk = 1)
k−1∏

i=n0

P (Yi = 0) =
N∑

k=n0

( 1

k + 1

)(n0 − 1

k − 1

)
.
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If we are interested in finding the best candidate among those interviewed so
far or none at all, we should omit the first n0 candidates and hire the first who
is the best so far. Comparing this problem with the problem considered in
Bearden (2006), using our procedure we will reject about 0.7

√
N candidates,

while in Bearden (2006) we reject about
√

N applicants.
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