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Abstract

Our interest is in the problem where independent samples are drawn from two di¤erent
discrete populations, possibly with a common parameter. The goal is to test hypothesis about
the parameters involved in this two sample situation. A number of tests are developed for the
above purpose based on the Hellinger distance and penalized versions of it. The asymptotic
distribution of the test statistics are derived. Extensive simulation results are provided, which
illustrate the theory developed and the robustness of the methods.

April 3, 2009

keywords and phrases: Minimum Hellinger distance estimator; Empty cell penalty; Asymptotic
distributions.

1 Introduction

Let X1; : : : ; Xm1 and Y1; : : : ; Ym2 be two independent random samples from two discrete popula-
tions X and Y with common support X = fx0; x1; : : :g and probability mass functions f�1(x) =
Pr�1(X = x) and f�2(x) = Pr�2(Y = x); x 2 X , �i 2 � � R, i = 1; 2; respectively: We denote
by n1(x) (n2(x)) the number of elements in the sample X1; : : : ; Xm1

(Y1; : : : ; Ym2
) that coincide

with x 2 X . We are interested in performing tests of hypothesis involving both �1 and �2. In
order to keep the exposition short and notation simple, we have assumed �1 and �2 to be scalar
parameters in this paper. The multiparameter cases can be handled by extensions of essentially
the same ideas. In this paper, therefore, we will restrict ourselves to the problem of testing

H0 : �1 = �2 (1)

on the basis of some new statistics introduced in this paper. The test statistics considered here are
based on the Hellinger distance between two di¤erent probability vectors. The unknown parameters
are estimated by minimizing the Hellinger distance between the data and the model probability
vectors, or a penalized version of it.
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The statistics are introduced in Section 2; their asymptotic distributions are also derived in
this section. The performance of the proposed tests are demonstrated numerically in Section 3.

2 Hellinger Distance: Estimation and Testing

The (twice) squared Hellinger distance between the probability vectors

di = (di(x0); : : : ; di(xj); : : :) =

�
ni(x0)

mi
; : : : ;

ni(xj)

mi
; : : :

�
; i = 1; 2; (2)

and
f�i = (f�i(x0); : : : ; f�i(xj); : : :) ; i = 1; 2; (3)

is given by

HD
�
di;f�i

�
= 2

1X
j=0

�
d
1=2
i (xj)� f1=2�i

(xj)
�2
; i = 1; 2; (4)

and the minimum Hellinger distance estimator of �i is de�ned as the value b�iH of � � R satisfying

b�iH = argmin
�i

HD
�
di;f�i

�
: (5)

See Beran (1977), Simpson (1987, 1989) and Basu et al. (1997) for more details on this method of
estimation.
It has been empirically observed that the minimum Hellinger distance estimator often performs

poorly in small samples �compared to the maximum likelihood estimator �when the data gen-
erating distribution is correctly speci�ed by the parametric model. To avoid this problem, one of
the suggestions is to use the penalized Hellinger distance (e.g. Harris and Basu 1994; Basu Harris
and Basu 1996; Basu and Basu 1998). In our context the penalized Hellinger distance between the
probability vectors di, de�ned in (2), and f�i ; de�ned in (3), is given by

PHD
�
di;f�i

�
=

1X
j2Ai

�
d
1=2
i (xj)� f1=2�i

(xj)
�2
+ h

1X
j2AC

i

f�i(xj) ; (6)

where h is a real, positive number and

Ai = fj : di(xj) > 0g and ACi = fj : di(xj) = 0g :

As in the de�nition given in (5), the minimum penalized Hellinger distance estimator of �i; i = 1; 2;
is given by b�iPH = argmin

�i
PHD

�
di;f�i

�
: (7)

While the penalized Hellinger distance is de�ned for any real, positive h, values around h = 1
appear to be preferable for small sample e¢ ciency; for the penalized distances h = 1 will be our
default value. The rationale of this choice is that h = 1 makes the weight on the empty cells
identical with that applied by likelihood based methods. Note that h = 2 generates the ordinary
Hellinger distance.
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As the probability of the empty cells eventually goes to zero it is intuitive that the results
based on the ordinary and penalized Hellinger distance will provide equivalent asymptotic results.
Mandal et al. (2008) prove that for any �xed h, the methods based on the ordinary Hellinger
distance and the penalized Hellinger distance have the same asymptotic inference properties in the
one sample problem.
Based on (5) and (6) it seems natural to consider test statistics of the type

HD
�
f b�1H ;f b�2H

�
(8)

and
HD

�
f b�1PH ;f b�2PH

�
(9)

for testing the null hypothesis in (1).
The idea of considering test statistics of the type (8) and (9) has been used before in the

literature. Kupperman (1957) considered, for the �rst time, the test statistic

2
m1m2

m1 +m2
DKull(f b�1 ;f b�2) ; (10)

where DKull(f b�1 ;f b�2) is the Kullback-Leibler divergence between f b�1 and f b�2 : Its expression is
given by

DKull(f b�1 ;f b�2) =
1X
j=0

fb�1(xj) log fb�1(xj)fb�2(xj) :
For more details about Kullback-Leibler divergence see Kullback (1985). The symbols b�1 andb�2 represent the maximum likelihood estimators of �1 and �2; respectively. Kupperman (1957)
established that the asymptotic distribution of the test statistic given in (10) is a chi-square with
one degree of freedom. This result was extended by Salicru et al (1994) by considering the family
of �-divergence test statistics

2
m1m2

m1 +m2
D�(f b�1 ;f b�2)

where D�(f b�1 ;f b�2) is the phi-divergence or phi-disparity between f b�1 and f b�2 : Its expression is
given by,

D�(f b�1 ;f b�2) =
1X
j=0

fb�2(xj)�
 
fb�1(xj)
fb�2(xj)

!
; � 2 �� (11)

where �� is the class of all convex functions � (x) ; x � 0; such that; � (1) = 0 and �00(1) 6= 0: In
(11) we shall assume the conventions 0� (0=0) = 0 and 0� (p=0) = p limu!1 � (u) =u; for p > 0:
Let � 2 �� be di¤erentiable at x = 1; then the function  (x) � � (x)� �0 (1) (x� 1) also belongs
to �� and has the additional property that  0 (1) = 0: This property, together with the convexity,

implies that  (x) � 0; for any x � 0: Further, D 

�
f b�1 ;f b�2

�
= D�

�
f b�1 ;f b�2

�
:

In particular if we replace � (x) = �4
�p
x� 1

2 (x+ 1)
�
in (11), we get

D�(f b�1 ;f b�2) = HD
�
f b�1 ;f b�2

�
:

For more details about �-divergences see Pardo (2006) and Lindsay (1994). These divergences
have also been referred to as disparities in the literature. Also see Sarkar and Basu (1995) who
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considered a linear combination of divergences with weights proportional to their sample sizes in
constructing an overall divergence involving two independent samples to test statistical hypotheses
of the type given in equation (1).
The joint likelihood function based on X1; : : : ; Xm1

and Y1; : : : ; Ym2
is given by

L (�1; �2) =
1Q
j=0

f�1(xj)
m1(xj)f�2(xj)

m2(xj)

and if we denote by e� the maximum likelihood estimate of the common parameter under the
hypothesis �1 = �2; the log likelihood ratio test statistic is given by

LRT = 2
h
logL

�b�1; b�2�� logL�e�; e��i (12)

whose asymptotic distribution is a chi-square with one degree of freedom.
Now, we denote,

d� =
1

m1 +m2

�
n1(x0); n2(x0); : : : ; n1(xj); n2(xj); : : :

�
(13)

and
f�1;�2 =

1

m1 +m2

�
m1f�1(x0);m2f�2(x0); : : : ;m1f�1(xj);m2f�2(xj); : : :

�
:

It is easy to see that the log likelihood ratio statistic in (12) is identical to

LRT = 2 (m1 +m2)
�
DKull

�
d�;f b�1;b�2

�
�DKull

�
d�;f e�;e�

��
(14)

and
LRT = 2 (m1 +m2)DKull

�
f b�1;b�2 ;f e�;e�

�
+ op(1) : (15)

The last equality follows using the same arguments that in Bishop (1975, page 525).
Formula (14) suggests the consideration of the following test statistic based on Hellinger distance

in order to test the null hypothesis in (1):

2 (m1 +m2)
�
HD

�
d�;f b�1H ;b�2H

�
�HD

�
d�;f e�H ;e�H

��
;

where b�iH was de�ned in (5) and e�H is de�ned bye�H = argmin
�
HD

�
d�;f�;�

�
:

Based on minimum penalized Hellinger distance estimators we can consider

2 (m1 +m2)
�
PHD

�
d�;f b�1PH ;b�2PH

�
� PHD

�
d�;f e�PH ;e�PH

��
;

where b�iPH was de�ned in (7). This statistic has been considered by Simpson in (1989).
Finally formula (15) suggest to us the test statistic

2 (m1 +m2)HD
�
f b�1H ;b�2H ;f e�H ;e�H

�
:

In the following Theorem we present the asymptotic distribution of the six test statistics introduced
here.
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Theorem 1 Let each of the sample sizes m1 and m2 go to in�nity at a rate such that the limiting
value of m1(m1+m2)

�1 belongs to the open interval (0; 1). Then each of the following test statistics

TH = 2
m1m2

m1 +m2
HD

�
f b�1H ;f b�2H

�
;

TPH = 2
m1m2

m1 +m2
HD

�
f b�1PH ;f b�2PH

�
;

SH = 2 (m1 +m2)
�
HD

�
d�;f b�1H ;b�2H

�
�HD

�
d�;f e�H ;e�H

��
;

SPH = 2 (m1 +m2)
�
PHD

�
d�;f b�1PH ;b�2PH

�
� PHD

�
d�;f e�PH ;e�PH

��
;

T �H = 2 (m1 +m2)HD
�
f b�1H ;b�2H ;f e�H ;e�H

�
;

T �PH = 2 (m1 +m2)HD
�
f b�1PH ;b�2PH ;f e�PH ;e�PH

�
;

asymptotically has a chi-square distribution with one degree of freedom under the null hypothesis.

Here b�H = �b�1H ; b�2H�T is the unrestricted minimizer of HD �d�;f�1;�2� over �1; �2 2 �, while e�H =�e�H ; e�H�T represents the minimizer under the null hypothesis (1). The corresponding minimizers
of the penalized Hellinger distance are denoted by b�PH = �b�1PH ; b�2PH�T and e�PH = �e�PH ; e�PH�T .
Proof. Assume that the null hypothesis given in equation (1) is true. Let I(�1) be the Fisher

information, i.e. I(�1) = E
h
@
@�1

log f�1(X)
i2
. A second order Taylor expansion of HD

�
fb�1H ;f b�2H

�
(see page 443 in Pardo 2006) gives

HD
�
f b�1H ; fb�2H

�
=
1

2

�b�1H � b�2H�2 I (�1) + op��b�1H � �1�2�+ op��b�1H � �2�2� :
By Simpson (1987) we know that

p
m1

�b�1H � �1� L�!
m1!1

N
�
0; I�1(�1)

�
p
m2

�b�2H � �1� L�!
m2!1

N
�
0; I�1(�1)

�
:

Therefore, r
m1m2

m1 +m2

�b�1H � b�2H� L�!
m1;m2!1

N
�
0; I�1(�1)

�
and

TH = 2
m1m2

m1 +m2
HD

�
f b�1H ;f b�2H

�
L�!

m1;m2!1
�21 :

By Mandal et al. (2008) we have

p
m1

�b�1PH � �1� L�!
m1!1

N
�
0; I�1(�1)

�
p
m2

�b�2PH � �1� L�!
m2!1

N
�
0; I�1(�1)

�
:

5
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Therefore,

TPH = 2
m1m2

m1 +m2
HD

�
f b�1PH ;f b�2PH

�
L�!

m1;m2!1
�21 :

We denote �1 = (�1; �1)
T . If we consider the function g (�1; �2) = �1 � �2 the null hypothesis (1)

can be written by g (�1; �2) = 0: We denote by B =
�
@g
@�

�
�=�1

= (1;�1): It is well known (see, for
instance, Sen and Singer 1993) that

p
n(e� � b�) = I�1F (�1)B

T
�
BI�1F (�1)B

T
��1

B
p
n(b� � �1) + op(1); (16)

where b� = �b�1; b�2�T is the unrestricted maximum likelihood estimator, e� = �e�; e��T is maximum
likelihood estimator restricted to the null hypothesis and

IF (�1) =
� m1+m2

m1
I (�1) 0

0 m1+m2

m2
I (�1)

�
:

The following results are routine extensions of the approach of Sarkar and Basu (1995):

SH =
p
m1 +m2

�b�H � e�H�T IF (�1)pm1 +m2

�b�H � e�H�+ op(1);
p
m1 +m2

�b� � �� = pm1 +m2

�b�H � ��+ op(1);
and p

m1 +m2

�e� � �� = pm1 +m2

�e�H � ��+ op(1):
Putting the above together with equation (16), we have

p
m1 +m2(e�H � b�H) = I�1F (�1)B

T
�
BI�1F (�1)B

T
��1

B
p
m1 +m2(b�H � �1) + op(1):

Now

SH =
p
m1 +m2

�b�H � e�H�T IF (�1)pm1 +m2

�b�H � e�H�+ op(1)
=
p
m1 +m2(b�H � �1)TBT

�
BI�1F (�1)B

T
��1

BI�1F (�1)IF (�1)I�1F (�1)B
T

�
�
BI�1F (�1)B

T
��1

B
p
m1 +m2(b�H � �1) + op(1)

=
p
m1 +m2(b�H � �1)TBT

�
BI�1F (�1)B

T
��1

B
p
m1 +m2(b�H � �1) + op(1) :

Taking into account that

p
m1 +m2(b�H � �1) L�!

m1;m2!1
N
�
0;IF (�1)�1

�
and using Ser�ing (1980), Theorem 4.4.4, we have

SH
L�!

m1;m2!1
�21 :

6
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The asymptotic distribution of SPH follows the same steps that the proof of SH taking into account
that p

m1 +m2(b�H � �1) = pm1 +m2(b�PH � �1) + op(1) :
Finally the asymptotic distributions of T �H and T

�
PH follow in a similar way because a second Taylor

expansion gives,

T �H =
p
m1 +m2

�b�H � e�H�T IF (�1)pm1 +m2

�b�H � e�H�+ op(1) ;
T �PH =

p
m1 +m2

�b�PH � e�PH�T IF (�1)pm1 +m2

�b�PH � e�PH�+ op(1) :
The techniques presented here for discrete models apply, in principle, to continuous models as

well. However, this may require additional accessories, such as kernel density estimation, for the
densities to be compatible when constructing the divergences. This makes the approach consider-
ably more complicated. We hope to take up the issue of continuous models in a separate, future
paper.

3 Simulation Study

To investigate the performance of the tests developed in the previous section, we present here the
results of an extensive simulation study based on the Poisson distribution. In this connection it
is useful to check whether the test statistics TH ; TPH , T �H and T �PH have simpli�ed expressions
under the Poisson model. We note that a direct calculation gives

HD
�
f�1 ;f�2

�
= 4

�
1� exp

�
��1 + �2

2

�
exp

�p
�1�2

��
where f�i , i = 1; 2 represents the probability vector of a Poisson random variable with parameter
�i. Some straightforward algebra based on the above gives

TH = 8
m1m2

m1 +m2

 
1� exp

 
�
b�1H + b�2H

2

!
exp

�qb�1Hb�2H�
!
;

TPH = 8
m1m2

m1 +m2

 
1� exp

 
�
b�1PH + b�2PH

2

!
exp

�qb�1PHb�2PH�
!
;

T �H = 8

(
m1

 
1� exp

 
�
b�1H + e�H

2

!
exp

�qb�1He�H�
!

+m2

 
1� exp

 
�
b�2H + e�H

2

!
exp

�qb�2He�H�
!)

;

7
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and

T �PH = 8

(
m1

 
1� exp

 
�
b�1PH + e�PH

2

!
exp

�qb�1PHe�PH�
!

+m2

 
1� exp

 
�
b�2PH + e�PH

2

!
exp

�qb�2PHe�PH�
!)

:

Figure 1: Histograms of the six test statistics and the LRT where m1=m2=100, �1=�2 and "=0
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Data for the �rst sample are generated from the (1� �)f�1 + �f�1c mixture, where our target
parameter is �1 and 100�% data are coming from a contaminating population with parameter �1c.
The second sample data are generated from the f�2 distribution. Assuming that the samples come
from pure Poisson distributions with densities f�1 and f�2 respectively, �1; �2 unknown, we are
interested in testing H0 : �1 = �2 against the alternative that they are not equal. (We will use
the ��� symbol for the unknown values of the parameters involved in the hypotheses, and the
���symbol to denote the actual distributions from which the data have been generated.) All the
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tests are performed at 5% level of signi�cance at common values of m1 and m2 chosen as 20, 30,
50, 75, 100 and 150. All the results are based on 10000 replications. Assuming binomial rejection
frequencies, the estimate of the standard deviation given a probability estimate p̂ may be computed
from [p̂(1� p̂)=10000]1=2. Hence the error will be no greater than [0:5(1� 0:5)=10000]1=2 = 0:005.
In Figure 1, the histograms of the six test statistics and the likelihood ratio test statistic are

plotted with the theoretical curve � the �2(1) density �overlaid. Here the sample sizes for the
both populations are 100, � = 0, �1 = �2 and the common value of the parameter is 5. Although
there are �ne di¤erences between the statistics, it is clear from the �gure that all the test statistics
approximate their asymptotic null distribution quite well.

Table 1: Comparison of the observed levels of the six tests and the LRT at nominal level 0:05
where �1 = �2 = 5 and � = 0.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.0612 0.0532 0.0742 0.0350 0.0650 0.0557 0.0473
30 0.0655 0.0563 0.0786 0.0396 0.0685 0.0586 0.0520
50 0.0586 0.0527 0.0672 0.0427 0.0596 0.0539 0.0487
75 0.0603 0.0566 0.0666 0.0480 0.0613 0.0573 0.0509
100 0.0597 0.0555 0.0683 0.0503 0.0608 0.0565 0.0527
150 0.0582 0.0535 0.0627 0.0505 0.0588 0.0542 0.0508

Seven tables are constructed and presented here. In the �rst table, the observed levels (the
proportion of statistics exceeding the chi-square critical value) of all the six tests at all the six
sample sizes are presented, together with the corresponding levels of the likelihood ratio test. Here
� = 0, so both samples represent pure Poisson data. While the observed levels of the likelihood
ratio test match the nominal level very closely, most of the other tests are somewhat liberal
(SPH being the exception). Except for SPH the observed probabilities of rejection are higher
(quite substantially for some small samples) than the nominal level. The penalty seems to have
a major e¤ect, however, and the penalized statistics appear to generate observed levels which are
signi�cantly closer to the nominal levels compared to the ordinary ones. The statistic SPH is very
conservative for small samples, but for sample sizes of 75 or larger and SPH appear to quite close
to the likelihood ratio test.
In Table 2, the e¤ect of the contaminant on the level is studied. Here �1 = �2 = 5, but � = 0:05,

so that the �rst sample is generated by a mixture of two Poissons, with the contaminating smaller
component having a mean of 15. It is clearly seen that all the six statistics based on the Hellinger
and penalized Hellinger distances largely discount the contaminating component, but the e¤ect of
the latter on the likelihood ratio test is quite disastrous. Note that the observed levels become
worse for all the methods as the sample size increases, since �xed amounts of contamination have
greater impact in larger samples.
In Table 3 we look at the power of the tests when both samples represent pure Poisson data, but

the �rst sample comes from a distribution with mean 5, and the second comes from a distribution
with mean 6. The powers of all the statistics are quite competitive with those of the likelihood
ratio test. Some of the tests have higher observed power than the likelihood ratio test, an artifact
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Table 2: Comparison of the observed levels of the six tests and the LRT at nominal level 0:05
where �1 = �2 = 5, � = 0:05 and �1c = 15.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.0839 0.0700 0.0911 0.0429 0.0905 0.0747 0.1476
30 0.0802 0.0715 0.0863 0.0484 0.0842 0.0749 0.1797
50 0.0853 0.0784 0.0891 0.0567 0.0871 0.0802 0.2286
75 0.0913 0.0867 0.0919 0.0698 0.0934 0.0884 0.2982
100 0.1006 0.0940 0.0999 0.0787 0.1026 0.0952 0.3673
150 0.1138 0.1019 0.1105 0.0874 0.1154 0.1033 0.4688

Table 3: Comparison of the observed powers of the six tests and the LRT at nominal level 0:05
where �1 = 5; �2 = 6 and � = 0.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.2853 0.2686 0.3124 0.2088 0.2934 0.2773 0.2706
30 0.3989 0.3927 0.4301 0.3363 0.4056 0.3994 0.3920
50 0.5695 0.5696 0.5931 0.5325 0.5746 0.5736 0.5733
75 0.7364 0.7419 0.7524 0.7209 0.7394 0.7435 0.7450
100 0.8487 0.8524 0.8595 0.8408 0.8501 0.8532 0.8559
150 0.9590 0.9615 0.9624 0.9586 0.9592 0.9615 0.9616

of their higher observed levels at the null under the true model.
In Table 4, we study the power of the tests under contamination. The values of �1 and �2 are the

same as in Table 3, but the �rst sample comes from a mixture of Poissons, with the contaminating
component having a mean of 15 and a weight of 5%. This leads to a severe loss in the power in
the likelihood ratio test, but all the other tests hold their levels pretty well.
The empirical critical values of the tests at 5% level of signi�cance are given in Table 5. The

values of �1 and �2 are taken to be 5 and � equal zero. The theoretical chi-square critical value
in this case is 3.8415. The empirical critical values of all the tests (except SPH) are higher than
their theoretical critical values, although the degree of in�ation is much smaller for the penalized
distances. The high power of some of the statistics in Table actually due to the true critical values
being much higher than that of the chi-square density with 1 degrees of freedom. All the empirical
critical values approach the theoretical value as the sample size increases; this happens much faster
for the penalized distances.
In Table 6 and 7 we have used the same data as was used in Table 3 and 4 respectively. But now

the empirical critical values (as presented in Table 5) have been used to determine the observed
power instead of the theoretical critical values. When �1 = 5, �2 = 6 and � = 0 we can see that

10
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Table 4: Comparison of the observed powers of the six tests and the LRT at nominal level 0:05
where �1 = 5; �2 = 6, � = 0:05 and �1c = 15.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.2611 0.2391 0.2773 0.1772 0.2714 0.2476 0.1539
30 0.3438 0.3260 0.3588 0.2646 0.3516 0.3337 0.1831
50 0.4724 0.4632 0.4804 0.4085 0.4771 0.4683 0.2325
75 0.5952 0.5960 0.5972 0.5556 0.5981 0.5992 0.2883
100 0.7162 0.7312 0.7126 0.7008 0.7193 0.7331 0.3566
150 0.8556 0.8682 0.8496 0.8522 0.8570 0.8697 0.4561

Table 5: Comparison of empirical critical values of the six tests and the LRT at nominal level 0:05
where �1 = �2 = 5, and � = 0 (here the chi-square critical value is 3.8415).

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 4.4331 3.9548 4.8967 3.3039 4.5926 4.0533 3.7896
30 4.2640 3.9608 4.6493 3.4807 4.3635 4.0349 3.7185
50 4.2050 4.0283 4.5314 3.6427 4.2470 4.0652 3.8910
75 4.1069 3.9385 4.3513 3.7271 4.1474 3.9683 3.8795
100 4.0501 3.9225 4.2609 3.7786 4.0795 3.9484 3.8265
150 3.9963 3.8587 4.1468 3.7674 4.0136 3.8699 3.8159

the powers of all the tests are very close to those of the likelihood ratio test and for �1 = 5, �2 = 6,
� = 0:05 and �1c = 15 all the tests perform much better than the likelihood ratio test.
On the whole, all the six proposed tests appear to do quite well in terms of their ability to

hold their levels and powers under contamination. Considering the entire evidence, TPH and T �PH
appear to be the most desirable statistics in terms of their closeness to the likelihood ratio test,
attained power, and robustness against contaminations.
It may take more extensive studies to determine whether the amount of penalty applied here

(h = 1) is optimal in terms of the desirable properties, or whether another choice can do better.
However, the choice of h = 1 makes the method identical to the likelihood ratio test in terms of
their treatment of the empty cells. In addition, a choice of h = 1=2 (results not reproduced here
for brevity) does not appear to produce any appreciable change in the results produced here. Thus
we believe the choice h = 1 is a sensible choice for our purpose.
Acknowledgements: This work was partially supported by Grant MTM2009-10072. The

authors would like to thank the referees for critically reading the paper and making useful sugges-
tions.
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Table 6: Comparison of the observed powers of the six tests and the LRT using the empirical
critical values at nominal level 0:05 where �1 = 5; �2 = 6, � = 0.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.2404 0.2587 0.2344 0.2584 0.2401 0.2596 0.2745
30 0.3580 0.3812 0.3567 0.3783 0.3569 0.3811 0.4032
50 0.5353 0.5509 0.5327 0.5562 0.5367 0.5513 0.5688
75 0.7140 0.7331 0.7124 0.7303 0.7137 0.7333 0.7411
100 0.8359 0.8471 0.8351 0.8452 0.8359 0.8466 0.8571
150 0.9559 0.9613 0.9559 0.9604 0.9560 0.9613 0.9624

Table 7: Comparison of the observed powers of the six tests and the LRT using the empirical
critical values at nominal level 0:05 where �1 = 5; �2 = 6, � = 0:05 and �1c = 15.

m1 = m2 TH TPH SH SPH T �H T �PH LRT
20 0.2161 0.2311 0.2028 0.2192 0.2170 0.2325 0.1565
30 0.3108 0.3158 0.2953 0.2993 0.3105 0.3166 0.1894
50 0.4419 0.4440 0.4234 0.4292 0.4439 0.4462 0.2300
75 0.5740 0.5876 0.5545 0.5671 0.5747 0.5884 0.2856
100 0.6998 0.7240 0.6829 0.7060 0.7011 0.7247 0.3574
150 0.8480 0.8673 0.8317 0.8563 0.8488 0.8678 0.4581
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