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Hypothesis testing for two discrete populations based on the Hellinger distance

Introduction

Let X 1 ; : : : ; X m1 and Y 1 ; : : : ; Y m2 be two independent random samples from two discrete populations X and Y with common support X = fx 0 ; x 1 ; : : :g and probability mass functions f 1 (x) = Pr 1 (X = x) and f 2 (x) = Pr 2 (Y = x); x 2 X , i 2 R, i = 1; 2; respectively: We denote by n 1 (x) (n 2 (x)) the number of elements in the sample X 1 ; : : : ; X m1 (Y 1 ; : : : ; Y m2 ) that coincide with x 2 X . We are interested in performing tests of hypothesis involving both 1 and 2 . In order to keep the exposition short and notation simple, we have assumed 1 and 2 to be scalar parameters in this paper. The multiparameter cases can be handled by extensions of essentially the same ideas. In this paper, therefore, we will restrict ourselves to the problem of testing

H 0 : 1 = 2 (1)
on the basis of some new statistics introduced in this paper. The test statistics considered here are based on the Hellinger distance between two di¤erent probability vectors. The unknown parameters are estimated by minimizing the Hellinger distance between the data and the model probability vectors, or a penalized version of it.

The statistics are introduced in Section 2; their asymptotic distributions are also derived in this section. The performance of the proposed tests are demonstrated numerically in Section 3.

Hellinger Distance: Estimation and Testing

The (twice) squared Hellinger distance between the probability vectors d i = (d i (x 0 ); : : : ; d i (x j ); : : :) = n i (x 0 ) m i ; : : : ; n i (x j ) m i ; : : : ; i = 1; 2;

(2) and f i = (f i (x 0 ); : : : ; f i (x j ); : : :) ; i = 1; 2;

(3) is given by

HD d i ; f i = 2 1 X j=0 d 1=2 i (x j ) f 1=2 i (x j ) 2 ; i = 1; 2; (4) 
and the minimum Hellinger distance estimator of i is de…ned as the value b i H of R satisfying

b i H = arg min i HD d i ; f i : (5) 
See [START_REF] Beran | Minimum Hellinger distance estimates for parametric models[END_REF], [START_REF] Simpson | Minimum Hellinger distance estimation for analysis of count data[END_REF][START_REF] Simpson | Hellinger deviance tests: E¢ ciency, breakdown points and examples[END_REF] and [START_REF] Basu | Minimum distance estimation: the approach using density based distances[END_REF] for more details on this method of estimation. It has been empirically observed that the minimum Hellinger distance estimator often performs poorly in small samples -compared to the maximum likelihood estimator -when the data generating distribution is correctly speci…ed by the parametric model. To avoid this problem, one of the suggestions is to use the penalized Hellinger distance (e.g. [START_REF] Harris | Hellinger distance as a penalized log likelihood[END_REF]; [START_REF] Basu | Tests of hypothesis in discrete models based on the penalized Hellinger distance[END_REF][START_REF] Basu | Penalized minimum disparity methods for multinomial models[END_REF]. In our context the penalized Hellinger distance between the probability vectors d i , de…ned in (2), and f i ; de…ned in [START_REF] Basu | Minimum distance estimation: the approach using density based distances[END_REF], is given by

P HD d i ; f i = 1 X j2Ai d 1=2 i (x j ) f 1=2 i (x j ) 2 + h 1 X j2A C i f i (x j ) ; (6) 
where h is a real, positive number and

A i = fj : d i (x j ) > 0g and A C i = fj : d i (x j ) = 0g :
As in the de…nition given in [START_REF] Bishop | Discrete Multivariate Analysis: Theory and Practice[END_REF], the minimum penalized Hellinger distance estimator of i ; i = 1; 2; is given by b

i P H = arg min i P HD d i ; f i : (7) 
While the penalized Hellinger distance is de…ned for any real, positive h, values around h = 1 appear to be preferable for small sample e¢ ciency; for the penalized distances h = 1 will be our default value. The rationale of this choice is that h = 1 makes the weight on the empty cells identical with that applied by likelihood based methods. Note that h = 2 generates the ordinary Hellinger distance.

As the probability of the empty cells eventually goes to zero it is intuitive that the results based on the ordinary and penalized Hellinger distance will provide equivalent asymptotic results. [START_REF] Mandal | Minimum Hellinger Distance Inference and the Empty Cell Penalty: Asymptotic Results[END_REF] prove that for any …xed h, the methods based on the ordinary Hellinger distance and the penalized Hellinger distance have the same asymptotic inference properties in the one sample problem.

Based on ( 5) and ( 6) it seems natural to consider test statistics of the type

HD f b 1 H ; f b 2 H ( 8 
)
and

HD f b 1 P H ; f b 2 P H (9) 
for testing the null hypothesis in [START_REF] Basu | Penalized minimum disparity methods for multinomial models[END_REF]. The idea of considering test statistics of the type ( 8) and ( 9) has been used before in the literature. [START_REF] Kupperman | Further application to information theory to multivariate analysis and statistical inference[END_REF] considered, for the …rst time, the test statistic

2 m 1 m 2 m 1 + m 2 D Kull (f b 1 ; f b 2 ) ; (10) 
where

D Kull (f b 1 ; f b 2 ) is the Kullback-Leibler divergence between f b 1 and f b 2 : Its expression is given by D Kull (f b 1 ; f b 2 ) = 1 X j=0 f b 1 (x j ) log f b 1 (x j ) f b 2 (x j ) :
For more details about Kullback-Leibler divergence see [START_REF] Kullback | Kullback information[END_REF]. The symbols b 1 and b 2 represent the maximum likelihood estimators of 1 and 2 ; respectively. [START_REF] Kupperman | Further application to information theory to multivariate analysis and statistical inference[END_REF] established that the asymptotic distribution of the test statistic given in [START_REF] Lindsay | E¢ ciency versus robustness: the case for minimum Hellinger distance and related methods[END_REF] is a chi-square with one degree of freedom. This result was extended by Salicru et al (1994) by considering the family of -divergence test statistics

2 m 1 m 2 m 1 + m 2 D (f b 1 ; f b 2 )
where D (f b 1 ; f b 2 ) is the phi-divergence or phi-disparity between f b 1 and f b 2 : Its expression is given by,

D (f b 1 ; f b 2 ) = 1 X j=0 f b 2 (x j ) f b 1 (x j ) f b 2 (x j ) ! ; 2 (11) 
where is the class of all convex functions (x) ; x 0; such that; (1) = 0 and 00 (1) 6 = 0: In (11) we shall assume the conventions 0 (0=0) = 0 and 0 (p=0) = p lim u!1 (u) =u; for p > 0: Let 2 be di¤erentiable at x = 1; then the function (x) (x) 0 (1) (x 1) also belongs to and has the additional property that 0 (1) = 0: This property, together with the convexity, implies that (x) 0; for any x 0:

Further, D f b 1 ; f b 2 = D f b 1 ; f b 2 :
In particular if we replace (x) = 4 p x 1 2 (x + 1) in [START_REF] Mandal | Minimum Hellinger Distance Inference and the Empty Cell Penalty: Asymptotic Results[END_REF], we get

D (f b 1 ; f b 2 ) = HD f b 1 ; f b 2 :
For more details about -divergences see [START_REF] Pardo | Statistical Inference Based on Divergence Measures[END_REF] and [START_REF] Lindsay | E¢ ciency versus robustness: the case for minimum Hellinger distance and related methods[END_REF]. These divergences have also been referred to as disparities in the literature. Also see [START_REF] Sarkar | On disparity based robust tests for two discrete populations[END_REF] who considered a linear combination of divergences with weights proportional to their sample sizes in constructing an overall divergence involving two independent samples to test statistical hypotheses of the type given in equation ( 1).

The joint likelihood function based on X 1 ; : : : ; X m1 and Y 1 ; : : : ; Y m2 is given by

L ( 1 ; 2 ) = 1 Q j=0 f 1 (x j ) m1(xj ) f 2 (x j ) m2(xj )
and if we denote by e the maximum likelihood estimate of the common parameter under the hypothesis 1 = 2 ; the log likelihood ratio test statistic is given by

LRT = 2 h log L b 1 ; b 2 log L e ; e i (12) 
whose asymptotic distribution is a chi-square with one degree of freedom. Now, we denote,

d = 1 m 1 + m 2 n 1 (x 0 )
; n 2 (x 0 ); : : : ; n 1 (x j ); n 2 (x j ); : : :

and

f 1; 2 = 1 m 1 + m 2 m 1 f 1 (x 0 ); m 2 f 2 (x 0 ); : : : ; m 1 f 1 (x j ); m 2 f 2 (x j ); : : : :
It is easy to see that the log likelihood ratio statistic in ( 12) is identical to

LRT = 2 (m 1 + m 2 ) D Kull d ; f b 1; b 2 D Kull d ; f e ; e (14) 
and

LRT = 2 (m 1 + m 2 ) D Kull f b 1; b 2 ; f e ; e + o p (1) : (15) 
The last equality follows using the same arguments that in Bishop (1975, page 525). Formula ( 14) suggests the consideration of the following test statistic based on Hellinger distance in order to test the null hypothesis in (1):

2 (m 1 + m 2 ) HD d ; f b 1 H ; b 2 H HD d ; f e H ; e H ;
where b i H was de…ned in ( 5) and e H is de…ned by e H = arg min HD d ; f ; :

Based on minimum penalized Hellinger distance estimators we can consider

2 (m 1 + m 2 ) P HD d ; f b 1 P H ; b 2 P H P HD d ; f e P H ; e P H ;
where b i P H was de…ned in [START_REF] Kullback | Kullback information[END_REF]. This statistic has been considered by Simpson in (1989). Finally formula [START_REF] Sen | Large Sample Methods in Statistics[END_REF] suggest to us the test statistic

2 (m 1 + m 2 ) HD f b 1 H ; b 2 H ; f e H ; e H :
In the following Theorem we present the asymptotic distribution of the six test statistics introduced here.

Theorem 1 Let each of the sample sizes m 1 and m 2 go to in…nity at a rate such that the limiting value of m 1 (m 1 +m 2 ) 1 belongs to the open interval (0; 1). Then each of the following test statistics 

T H = 2 m 1 m 2 m 1 + m 2 HD f b 1 H ; f b 2 H ; T P H = 2 m 1 m 2 m 1 + m 2 HD f b 1 P H ; f b 2 P H ; S H = 2 (m 1 + m 2 ) HD d ; f b 1 H ; b
HD f b 1 H ; f b 2 H = 1 2 b 1 H b 2 H 2 I ( 1 ) + o p b 1 H 1 2 + o p b 1 H 2 2 :
By [START_REF] Simpson | Minimum Hellinger distance estimation for analysis of count data[END_REF] we know that

p m 1 b 1 H 1 L ! m1!1 N 0; I 1 ( 1 ) p m 2 b 2 H 1 L ! m2!1 N 0; I 1 ( 1 ) : Therefore, r m 1 m 2 m 1 + m 2 b 1 H b 2 H L ! m1;m2!1 N 0; I 1 ( 1 )
and 

T H = 2 m 1 m 2 m 1 + m 2 HD f b 1 H ; f b 2 H L ! m1;m2!1
p m 1 b 1 P H 1 L ! m1!1 N 0; I 1 ( 1 ) p m 2 b 2 P H 1 L ! m2!1 N 0; I 1 ( 1 ) : A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT Therefore, T P H = 2 m 1 m 2 m 1 + m 2 HD f b 1 P H ; f b 2 P H L ! m1;m2!1 2 1 :
We denote 1 = ( 1 ; 1 )

T . If we consider the function g ( 1 ; 2 ) = 1 2 the null hypothesis (1) can be written by g ( 1 ; 2 ) = 0: We denote by B = @g @ = 1

= (1; 1): It is well known (see, for instance, Sen and Singer 1993) that 

p n( e b ) = I 1 F ( 1 )B T BI 1 F ( 1 )B T 1 B p n( b 1 ) + o p (1); (16 
I F ( 1 ) = m1+m2 m1 I ( 1 ) 0 0 m1+m2 m2 I ( 1 )

:

The following results are routine extensions of the approach of [START_REF] Sarkar | On disparity based robust tests for two discrete populations[END_REF]:

S H = p m 1 + m 2 b H e H T I F ( 1 ) p m 1 + m 2 b H e H + o p (1) 
; Putting the above together with equation ( 16), we have

p m 1 + m 2 b = p m 1 + m 2 b H + o p (1) 
p m 1 + m 2 ( e H b H ) = I 1 F ( 1 )B T BI 1 F ( 1 )B T 1 B p m 1 + m 2 ( b H 1 ) + o p (1): Now S H = p m 1 + m 2 b H e H T I F ( 1 ) p m 1 + m 2 b H e H + o p (1) = p m 1 + m 2 ( b H 1 ) T B T BI 1 F ( 1 )B T 1 BI 1 F ( 1 )I F ( 1 )I 1 F ( 1 )B T BI 1 F ( 1 )B T 1 B p m 1 + m 2 ( b H 1 ) + o p (1) = p m 1 + m 2 ( b H 1 ) T B T BI 1 F ( 1 )B T 1 B p m 1 + m 2 ( b H 1 ) + o p (1) :
Taking into account that

p m 1 + m 2 ( b H 1 ) L ! m1;m2!1 N 0;I F ( 1 ) 1
and using Ser ‡ing (1980), Theorem 4.4.4, we have

S H L ! m1;m2!1 2 1 :
The asymptotic distribution of S P H follows the same steps that the proof of S H taking into account that p

m 1 + m 2 ( b H 1 ) = p m 1 + m 2 ( b P H 1 ) + o p (1)
: Finally the asymptotic distributions of T H and T P H follow in a similar way because a second Taylor expansion gives,

T H = p m 1 + m 2 b H e H T I F ( 1 ) p m 1 + m 2 b H e H + o p (1)
;

T P H = p m 1 + m 2 b P H e P H T I F ( 1 ) p m 1 + m 2 b P H e P H + o p (1) :
The techniques presented here for discrete models apply, in principle, to continuous models as well. However, this may require additional accessories, such as kernel density estimation, for the densities to be compatible when constructing the divergences. This makes the approach considerably more complicated. We hope to take up the issue of continuous models in a separate, future paper.

Simulation Study

To investigate the performance of the tests developed in the previous section, we present here the results of an extensive simulation study based on the Poisson distribution. In this connection it is useful to check whether the test statistics T H ; T P H , T H and T P H have simpli…ed expressions under the Poisson model. We note that a direct calculation gives

HD f 1 ; f 2 = 4 1 exp 1 + 2 2 exp p 1 2
where f i , i = 1; 2 represents the probability vector of a Poisson random variable with parameter i . Some straightforward algebra based on the above gives 

T H = 8 m 1 m 2 m 1 + m 2 1 exp b 1 H + b 2 H 2 ! exp q b 1 H b 2 H ! ; T P H = 8 m 1 m 2 m 1 + m 2 1 exp b 1 P H + b 2 P H 2 ! exp q b 1 P H b 2 P H ! ; T H = 8 ( m 1 1 exp b 1 H + e H 2 ! exp q b 1 H e H ! +m 2 1 exp b 2 H + e H 2 ! exp q b 2 H e H !) ; A C C E P T E D M A N U S C

!)

: )f 1 + f 1c mixture, where our target parameter is 1 and 100 % data are coming from a contaminating population with parameter 1c . The second sample data are generated from the f 2 distribution. Assuming that the samples come from pure Poisson distributions with densities f 1 and f 2 respectively, 1 ; 2 unknown, we are interested in testing H 0 : 1 = 2 against the alternative that they are not equal. (We will use the " " symbol for the unknown values of the parameters involved in the hypotheses, and the " " symbol to denote the actual distributions from which the data have been generated.) All the

A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT

tests are performed at 5% level of signi…cance at common values of m 1 and m 2 chosen as 20, 30, 50, 75, 100 and 150. All the results are based on 10000 replications. Assuming binomial rejection frequencies, the estimate of the standard deviation given a probability estimate p may be computed from [p(1 p)=10000] 1=2 . Hence the error will be no greater than [0:5(1 0:5)=10000] 1=2 = 0:005.

In Figure 1, the histograms of the six test statistics and the likelihood ratio test statistic are plotted with the theoretical curve -the 2 (1) density -overlaid. Here the sample sizes for the both populations are 100, = 0, 1 = 2 and the common value of the parameter is 5. Although there are …ne di¤erences between the statistics, it is clear from the …gure that all the test statistics approximate their asymptotic null distribution quite well. Seven tables are constructed and presented here. In the …rst table, the observed levels (the proportion of statistics exceeding the chi-square critical value) of all the six tests at all the six sample sizes are presented, together with the corresponding levels of the likelihood ratio test. Here = 0, so both samples represent pure Poisson data. While the observed levels of the likelihood ratio test match the nominal level very closely, most of the other tests are somewhat liberal (S P H being the exception). Except for S P H the observed probabilities of rejection are higher (quite substantially for some small samples) than the nominal level. The penalty seems to have a major e¤ect, however, and the penalized statistics appear to generate observed levels which are signi…cantly closer to the nominal levels compared to the ordinary ones. The statistic S P H is very conservative for small samples, but for sample sizes of 75 or larger and S P H appear to quite close to the likelihood ratio test.

In Table 2, the e¤ect of the contaminant on the level is studied. Here 1 = 2 = 5, but = 0:05, so that the …rst sample is generated by a mixture of two Poissons, with the contaminating smaller component having a mean of 15. It is clearly seen that all the six statistics based on the Hellinger and penalized Hellinger distances largely discount the contaminating component, but the e¤ect of the latter on the likelihood ratio test is quite disastrous. Note that the observed levels become worse for all the methods as the sample size increases, since …xed amounts of contamination have greater impact in larger samples.

In Table 3 we look at the power of the tests when both samples represent pure Poisson data, but the …rst sample comes from a distribution with mean 5, and the second comes from a distribution with mean 6. The powers of all the statistics are quite competitive with those of the likelihood ratio test. Some of the tests have higher observed power than the likelihood ratio test, an artifact In Table 4, we study the power of the tests under contamination. The values of 1 and 2 are the same as in Table 3, but the …rst sample comes from a mixture of Poissons, with the contaminating component having a mean of 15 and a weight of 5%. This leads to a severe loss in the power in the likelihood ratio test, but all the other tests hold their levels pretty well.

The empirical critical values of the tests at 5% level of signi…cance are given in Table 5. The values of 1 and 2 are taken to be 5 and equal zero. The theoretical chi-square critical value in this case is 3.8415. The empirical critical values of all the tests (except S P H ) are higher than their theoretical critical values, although the degree of in ‡ation is much smaller for the penalized distances. The high power of some of the statistics in Table actually due to the true critical values being much higher than that of the chi-square density with 1 degrees of freedom. All the empirical critical values approach the theoretical value as the sample size increases; this happens much faster for the penalized distances.

In Table 6 and 7 we have used the same data as was used in Table 3 and 4 respectively. But now the empirical critical values (as presented in Table 5) have been used to determine the observed power instead of the theoretical critical values. When 1 = 5, 2 = 6 and = 0 we can see that the powers of all the tests are very close to those of the likelihood ratio test and for 1 = 5, 2 = 6, = 0:05 and 1c = 15 all the tests perform much better than the likelihood ratio test.

On the whole, all the six proposed tests appear to do quite well in terms of their ability to hold their levels and powers under contamination. Considering the entire evidence, T P H and T P H appear to be the most desirable statistics in terms of their closeness to the likelihood ratio test, attained power, and robustness against contaminations.

It may take more extensive studies to determine whether the amount of penalty applied here (h = 1) is optimal in terms of the desirable properties, or whether another choice can do better. However, the choice of h = 1 makes the method identical to the likelihood ratio test in terms of their treatment of the empty cells. In addition, a choice of h = 1=2 (results not reproduced here for brevity) does not appear to produce any appreciable change in the results produced here. Thus we believe the choice h = 1 is a sensible choice for our purpose. 
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 1 Figure 1: Histogram s of the six test statistics and the LRT where m 1 =m 2= 100, 1= 2 and "=0

2 H

 2 HD d ; f e H ; e H ; S P H = 2 (m 1 + m 2 ) P HD d ; f b 1

	P H ; b 2 P H

P HD d ; f e P H ; e P H ; T H = 2 (m 1 + m 2 ) HD f b 1 H ; b 2 H ; f e H ; e H ; T P H = 2 (m 1 + m 2 ) HD f b 1 P H ; b 2 P H ; f e P H ; e P H ; asymptotically has a chi-square distribution with one degree of freedom under the null hypothesis. Here b H = b 1 H ; b 2 H T is the unrestricted minimizer of HD d ; f 1; 2 over 1 ; 2 2 , while e H = e H ; e H T represents the minimizer under the null hypothesis (1). The corresponding minimizers of the penalized Hellinger distance are denoted by b P H = b 1 P H ; b 2 P H T and e P H = e P H ; e P H T . Proof. Assume that the null hypothesis given in equation (1) is true. Let I( 1 ) be the Fisher information, i.e. I( 1 ) = E h @ @ 1 log f 1 (X) i 2 . A second order Taylor expansion of HD f b 1 H ; f b 2 H (see page 443 in Pardo 2006) gives

Table 1 :

 1 Comparison of the observed levels of the six tests and the LRT at nominal level 0:05 where 1 = 2 = 5 and = 0.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.0612 0.0532 0.0742 0.0350 0.0650 0.0557 0.0473
	30	0.0655 0.0563 0.0786 0.0396 0.0685 0.0586 0.0520
	50	0.0586 0.0527 0.0672 0.0427 0.0596 0.0539 0.0487
	75	0.0603 0.0566 0.0666 0.0480 0.0613 0.0573 0.0509
	100	0.0597 0.0555 0.0683 0.0503 0.0608 0.0565 0.0527
	150	0.0582 0.0535 0.0627 0.0505 0.0588 0.0542 0.0508

Table 2 :

 2 Comparison of the observed levels of the six tests and the LRT at nominal level 0:05 where 1 = 2 = 5, = 0:05 and 1c = 15.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.0839 0.0700 0.0911 0.0429 0.0905 0.0747 0.1476
	30	0.0802 0.0715 0.0863 0.0484 0.0842 0.0749 0.1797
	50	0.0853 0.0784 0.0891 0.0567 0.0871 0.0802 0.2286
	75	0.0913 0.0867 0.0919 0.0698 0.0934 0.0884 0.2982
	100	0.1006 0.0940 0.0999 0.0787 0.1026 0.0952 0.3673
	150	0.1138 0.1019 0.1105 0.0874 0.1154 0.1033 0.4688

Table 3 :

 3 Comparison of the observed powers of the six tests and the LRT at nominal level 0:05 where 1 = 5; 2 = 6 and = 0.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.2853 0.2686 0.3124 0.2088 0.2934 0.2773 0.2706
	30	0.3989 0.3927 0.4301 0.3363 0.4056 0.3994 0.3920
	50	0.5695 0.5696 0.5931 0.5325 0.5746 0.5736 0.5733
	75	0.7364 0.7419 0.7524 0.7209 0.7394 0.7435 0.7450
	100	0.8487 0.8524 0.8595 0.8408 0.8501 0.8532 0.8559
	150	0.9590 0.9615 0.9624 0.9586 0.9592 0.9615 0.9616
	of their higher observed levels at the null under the true model.		

Table 4 :

 4 Comparison of the observed powers of the six tests and the LRT at nominal level 0:05 where 1 = 5; 2 = 6, = 0:05 and 1c = 15.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.2611 0.2391 0.2773 0.1772 0.2714 0.2476 0.1539
	30	0.3438 0.3260 0.3588 0.2646 0.3516 0.3337 0.1831
	50	0.4724 0.4632 0.4804 0.4085 0.4771 0.4683 0.2325
	75	0.5952 0.5960 0.5972 0.5556 0.5981 0.5992 0.2883
	100	0.7162 0.7312 0.7126 0.7008 0.7193 0.7331 0.3566
	150	0.8556 0.8682 0.8496 0.8522 0.8570 0.8697 0.4561

Table 5 :

 5 Comparison of empirical critical values of the six tests and the LRT at nominal level 0:05 where 1 = 2 = 5, and = 0 (here the chi-square critical value is 3.8415).

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	4.4331 3.9548 4.8967 3.3039 4.5926 4.0533 3.7896
	30	4.2640 3.9608 4.6493 3.4807 4.3635 4.0349 3.7185
	50	4.2050 4.0283 4.5314 3.6427 4.2470 4.0652 3.8910
	75	4.1069 3.9385 4.3513 3.7271 4.1474 3.9683 3.8795
	100	4.0501 3.9225 4.2609 3.7786 4.0795 3.9484 3.8265
	150	3.9963 3.8587 4.1468 3.7674 4.0136 3.8699 3.8159

Table 6 :

 6 Comparison of the observed powers of the six tests and the LRT using the empirical critical values at nominal level 0:05 where 1 = 5; 2 = 6, = 0.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.2404 0.2587 0.2344 0.2584 0.2401 0.2596 0.2745
	30	0.3580 0.3812 0.3567 0.3783 0.3569 0.3811 0.4032
	50	0.5353 0.5509 0.5327 0.5562 0.5367 0.5513 0.5688
	75	0.7140 0.7331 0.7124 0.7303 0.7137 0.7333 0.7411
	100	0.8359 0.8471 0.8351 0.8452 0.8359 0.8466 0.8571
	150	0.9559 0.9613 0.9559 0.9604 0.9560 0.9613 0.9624

Table 7 :

 7 Comparison of the observed powers of the six tests and the LRT using the empirical critical values at nominal level 0:05 where 1 = 5; 2 = 6, = 0:05 and 1c = 15.

	m 1 = m 2	T H	T P H	S H	S P H	T H	T P H	LRT
	20	0.2161 0.2311 0.2028 0.2192 0.2170 0.2325 0.1565
	30	0.3108 0.3158 0.2953 0.2993 0.3105 0.3166 0.1894
	50	0.4419 0.4440 0.4234 0.4292 0.4439 0.4462 0.2300
	75	0.5740 0.5876 0.5545 0.5671 0.5747 0.5884 0.2856
	100	0.6998 0.7240 0.6829 0.7060 0.7011 0.7247 0.3574
	150	0.8480 0.8673 0.8317 0.8563 0.8488 0.8678 0.4581
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