

Genetic characterization of Bulgarian rotavirus isolates and detection of rotavirus variants: challenges for the rotavirus vaccine program?

Zornitsa Valentinova Mladenova, Miren Iturriza-Gomara, Mathew Esona,

James J. Gray, Neli Korsun

▶ To cite this version:

Zornitsa Valentinova Mladenova, Miren Iturriza-Gomara, Mathew Esona, James J. Gray, Neli Korsun. Genetic characterization of Bulgarian rotavirus isolates and detection of rotavirus variants: challenges for the rotavirus vaccine program?. Journal of Medical Virology, 2010, 83 (2), pp.348. 10.1002/jmv.21919. hal-00602310

HAL Id: hal-00602310 https://hal.science/hal-00602310

Submitted on 22 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Journal of Medical Virology

Genetic characterization of Bulgarian rotavirus isolates and detection of rotavirus variants: challenges for the rotavirus vaccine program?

Journal:	Journal of Medical Virology
Manuscript ID:	JMV-10-1950.R1
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	18-Jul-2010
Complete List of Authors:	Mladenova, Zornitsa; National Reference Laboratory of Enteroviruses, Department of Virology, National Center of infectious and Parasitic Diseases Iturriza-Gomara, Miren; Enteric Virus Unit, Virus Reference Department, Centre for Infections, Health Protection Agency Esona, Mathew; Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases, NCIRD, CDC Gray, James; Specialist Virology Centre, Microbiology, Norfolk and Norwich University Hospital Korsun, Neli; National Reference Laboratory of Enteroviruses, Department of Virology, National Center of infectious and Parasitic Diseases
Keywords:	rotavirus, genotype, mutant, rotavirus vaccine

Table 1. Distribution of the four common rotavirus G-P genotype combinations detectedduring four rotavirus seasons and number of rotavirus strains selected for sequenceanalysis and described in the study (marked in bold)

GENOTYPE	Total No of R No c	DTAVIRUS STRAINS detected/ FROTAVIRUS STRAINS sequenced							
	ROTAVIRUS SEASON								
	2004/2005	2005/2006	2006/2007	2007/2008					
G1P[8]	7/1	16	35 / 3	139 / 3					
G2P[4]	3	1	142 / 2	88 / 3					
G4P[8]	25	7 / 1	1	7 / 3					
G9P[8]	2	136 / 1	109 / 2	45					

Table 2. List of the 19 Bulgarian rotavirus strains selected for analysis. The common

amino acid substitutions in different lineages are bolded

8		1				
9 10 11	Rotavirus strain ID	Year/place of collection	PCR genoty pe	Sequence genotype	Reference strain	Key aa polymorphism
12	BG149/2005	May 2005/Sofia-region	G1	lineage I	WA	N94S; D97E ; S146N ;
13 14						M217T; I218V
15	BG1053/2007	July 2007/Sofia	G1	lineage II	WA	D97E; I218V
16	BG1120/2007	August 2007/Sofia	G1	lineage I	WA	D97E ; S146N ; L147F;
17				-		M217T; I218V
18 10	BG1153/2007	August 2007/Sofia	G1	lineage II	WA	D97E; I218V
20	BG1670/2007	November 2007/ Sofia	G1	lineage I	WA	T91N; N94S; G96D;
21				-		D97E; S146N;
22						M217T; I218V
23	BG45/2008	December 2007/Pleven	G1	lineage II	WA	D97E; I218V
24	BG389/2008	May 2008/Sofia	G1	lineage I	WA	D97E ; S146N ; L147F;
25 26				C C		M217T; I218V
27						• •
28	BG80/2006	January 2006/Sofia	G2		DS-1	A87T; D96N; N213D
29	BG915/2007	June 2007/Sofia	G2		DS-1	A87T: D96N: N213D
30 31	BG1643/2007	November 2007/Sofia-region	G2		DS-1	A87T: D96N: N213D
32	BG1726/2007	August 2007/Varna	G2		DS-1	A87T: D96N: N213D
33	BG683/2008	August 2008/Sofia-region	G2		DS-1	A87T: D96N: N213D
34		6 6				, ,
35 36 37	BG170/2006	March 2006/Pleven-region	G4	lineage I	ST3	-76N; F79S; R143K; V145T
38 39 40	BG1385/2007	September 2007/Sofia-region	G4	lineage IX	ST3	D74N; N75D; F79S ; S87T; P90Q; T96N; V145A
41 42 43	BG623/2008	July 2008/Sofia-region	G4	lineage I	ST3	-76N; F79S; R143K; V145T
44 45 46	BG773/2008	September 2008/Sofia-region	G4	lineage I	ST3	-76N; F79S; T96N; R143K; V145A
47						
48	BG167/2005	October 2005/Sofia	G9	lineage III,	WI61	A87T; N100D;
49				sub-lineage d		K150E; T208I;
50						А220Т
52	BG4/2007	January 2007/Sofia	G9	lineage III,	WI61	A87T ; G94R; N100D ;
53				sub-lineage d		K150E; T208I;
54						A220T
55	BG825/2007	June 2007/Sofia-region	G9	lineage III,	WI61	A87T; N100D;
56 57				sub-lineage d		K150E; T208I;
58						A220T

Figure 1. Phylogenetic tree based on partial VP7 gene (nt 201-771) of G1 rotavirus isolates constructed using Neighbor-joining method of MEGA4. The sequence nomenclatures show the origin, name and laboratory number, and season of circulation (where data are available). Bulgarian G1 strains are marked by the symbol **.** On the right, the clustering of the strains into lineages is represented.

Figure 2. Phylogenetic analysis of the partial nt sequences of VP7 gene (nt 126-717) of rotaviruses with G2 genotype. The phylogenetic tree was constructed based on Neighbor-joining method (MEGA 4 analytical software). Nomenclature of the sequences indicates the origin, name and laboratory number, season of isolation (where possible). The Bulgarian rotavirus strains are indicated by the symbols \blacktriangle .

0.05

Figure 3. Phylogenetic analysis of the partial nt sequences of VP7 gene (nt 178-560) of rotaviruses with G4 genotype. The phylogenetic tree was constructed based on Neighbor-joining method (MEGA 4 analytical software). Nomenclature of the sequences indicates the origin, name and laboratory number, season of isolation (where possible). The Bulgarian rotavirus strains are indicated by the symbols **■**. On the right, the clustering of the strains into lineages is represented.

Figure 4. Phylogenetic analysis of the partial nt sequences of VP7 gene (nt 165-914) of rotaviruses with G9 genotype. The phylogenetic tree was constructed based on Maximum-Likelihood method (MEGA 4 analytical software). Nomenclature of the sequences indicates the origin, name and laboratory number, season of isolation (where possible). The Bulgarian rotavirus strains are indicated by the symbol \blacklozenge . On the right, the clustering of the strains into lineages and sub-lineages is represented.

2		
3 4	1	Genetic characterization of Bulgarian rotavirus isolates and detection of
5		
6 7	2	rotavirus variants: challenges for the rotavirus vaccine program?
8 9 10	3	
10 11 12	4	Zornitsa Mladenova ^{1,*} , Miren Iturriza-Gomara ² , Mathew D. Esona ³ , James Gray ⁴ ,
13 14	5	Neli Korsun ¹
15 16	6	
17 18 19	7	¹ National Reference Laboratory of Enteroviruses, Department of Virology, National Center
20 21	8	of infectious and Parasitic Diseases, Sofia, Bulgaria
22 23	9	² Enteric Virus Unit, Virus Reference Department, Centre for Infections, Health Protection
24 25 26	10	Agency, London, United Kingdom
27 28	11	³ Gastroenteritis and Respiratory Viruses Laboratory Branch, Division of Viral Diseases,
29 30	12	NCIRD, CDC, USA
31 32 33	13	⁴ Specialist Virology Centre, Microbiology, Norfolk and Norwich University Hospital,
34 35	14	Norwich, UK
36 37	15	
38 39 40	16	Running title: Genetic diversity of Bulgarian rotavirus strains
41 42	17	
43 44	18	*Correspondence to: Zornitsa Mladenova
45 46 47	19	National Reference Enterovirus Laboratory, Department of Virology, National Center of
48 49	20	Infectious and Parasitic Diseases, 44A, Stoletov Blvd., Sofia 1233, Bulgaria
50 51 52	21	Phone: +359 2 931 23 22/ ext. 247
52 53 54	22	Fax: +359 2 943 30 75
55 56	23	E-mail: zornitsavmbg@vahoo.com
57 58	-	
59 60		
		lohn Wilov & Sons

1 Abstract

Annually 20-70% of all hospital admissions and 20% of fatal diarrhea cases among children less than 5 years of age occur due to severe rotavirus diarrhea. Universal immunization is the major strategy aimed at controlling rotavirus infection. The main objective of the present study was to elucidate the evolutionary relationships of the most common rotavirus strains co-circulating in Bulgaria. The sequence and phylogenetic analysis revealed strain diversity and circulation of different rotavirus variants belonging to a single genotype. A mutated G4P[8] strain with the insertion of an asparagine residue in position 76; G2, G9 and G1 variants with amino acid substitutions in the antigenic regions A, B and/or C were all identified in this study in the absence of an immunization program. Rotavirus strain surveillance in both the pre- and post-vaccine eras is of increasing importance in order to assess the effectiveness of the rotavirus vaccines for protection against disease associated with a diverse population of rotavirus strains.

15 Key words: rotavirus, genotype, mutant, rotavirus vaccine

1 Introduction

Human group A rotaviruses have been recognized as the most important etiological agents of severe diarrhea in infants and young children throughout the world. The WHO estimates that annually 20-70% of all hospitalizations and 20% of fatal diarrhea cases in children <5vears of age occur due to severe rotavirus infection [Parashar et al.; 2006; Estes and Kapikian, 2007]. Rotavirus vaccination is recognized currently as the best strategy for the global control and prevention of severe rotavirus illnesses in young children, as recommended by WHO. As vaccination becomes used more widely, the knowledge of strain distribution pre- and post-vaccine introduction becomes of increasing importance in order to monitor any possible changes in strain distribution and assess vaccine efficacy against co-circulating and potential emerging rotavirus strains.

Rotaviruses are classified as a genus within the *Reoviridae* family and contain a genome of 11 segments of double-stranded RNA which encode 6 structural (VP1-VP4 and VP6, VP7) and 6 non-structural (NSP1-NSP6) proteins [Estes and Kapikian, 2007]. The VP7 and VP4 gene segments code for two outer capsid proteins, a glycoprotein (G) and a protease-sensitive protein (P) that define genotypes/serotypes and form the basis for classifying group A rotaviruses into G and P types [Estes and Kapikian, 2007]. The VP7 and VP4 coded proteins elicit neutralizing antibodies after natural rotavirus infection or rotavirus vaccination.

To date, 23 different G genotypes and 32 P genotypes have been described [Matthijnssens et al., 2008; Schumann et al., 2009; Solberg et al., 2009; Trojnar et al., 2009; Ursu et al.,

~		
3		
Δ		
-		
5		
6		
-		
1		
8		
Š		
9		
1	0	
ż	ĭ	
1	1	
1	2	
ż	~	
I	3	
1	4	
4	Ē	
I	0	
1	6	
1	7	
1	'	
1	8	
1	a	
ן ר	2	
2	0	
2	1	
~	-	
2	2	
2	3	
~	2	
2	4	
2	5	
~	č	
2	6	
2	7	
- -	0	
2	o	
2	9	
S	ñ	
J	υ	
3	1	
ົ	\mathbf{a}	
J	2	
3	3	
z	л	
2	Ξ	
3	5	
ຊ	6	
2	Ξ	
3	1	
ર	R	
2	2	
3	9	
4	0	
,		
4		
4	2	
1	ົ	
+	3	
4	4	
Δ	5	
7	5	
4	6	
۵	7	
7	-	
4	8	
Δ	a	
-	2	
5	υ	
5	1	
-	÷	
ວ	2	
5	3	
, ,	1	
C	4	
5	5	
F	é	
0	0	
5	7	
ᄃ	Q	
2	J	
_	~	
5	9	
5 6	9 0	

1	2009; Matthijnssens et al., 2009], indicating extensive genomic diversity within group A
2	rotaviruses. Rotavirus genotypes G1P[8] G2P[4], G3P[8], G4P[8] and G9P[8] are
3	associated most frequently with diarrhea in children. However, other uncommon G and P
4	types (for example G5, G6, G8, G10, G12, P[9], P[11] and P[14]) have been reported in a
5	variety of locations worldwide [Desselberger et al., 2001; Santos and Hoshino, 2005].
6	Some of these genotypes such as G5P[8] in Brazil, G8P[6] in Malawi, and G10P[11] in
7	India are important causes of diarrhea in countries where they are found [Alfieri et al.,
8	1996; Cunliffe et. al., 1999; Iturriza-Gomara et al., 2004], and are likely to emerge by
9	zoonotic introduction. Zoonotic transmission and reassortment with human adapted strains
10	play a major role in the emergence and spread of rotavirus strains in the human population
11	[Iturriza-Gómara et al., 2001; Martella et al., 2010]. Another mechanism important for the
12	generation of strain diversity, which could lead to emergence of antibody escape mutants,
13	is the accumulation of point mutations [Estes and Kapikian, 2007].

14

15 National and international strain surveillance networks have been established worldwide to 16 document the prevalence of local strains and to monitor for possible emergence of 17 uncommon G and P genotypes prior to the introduction of rotavirus vaccination and during 18 the implementation of vaccination programs. In this context, the Bulgarian Rotavirus 19 Surveillance Network was established in order to investigate the rotavirus epidemiology and strain diversity in the country in pre- and post-vaccine eras. In previous studies it was 20 21 demonstrated high incidence of rotavirus gastroenteritis among hospitalized children less 22 than 5 years of age and co-circulation of common and uncommon rotavirus G-P genotype 23 combinations [Mladenova et al., 2010; Tcheremenskaia et al., 2007]. The objective of the

3 4	1	present study was to provide baseline molecular-genetic data on rotavirus strain diversity in
5 6 7	2	the absence of rotavirus vaccination in Bulgaria and to compare the findings in other
$\begin{array}{c} 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 546\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$	3	countries.
		John whey & Johns

1 Materials and methods

Rotavirus specimens

From January 2005 to August 2008, a total of 1015 rotavirus-positive stool samples were collected from children less than 9 years of age and adults, who presented with acute diarrhea at nine different hospitals in Bulgaria [Mladenova et al., 2010]. After genotyping for the G and P genotypes using primers and protocols described previously [Gouvea et al., 1990; Gentsch et al., 1992; Iturriza-Gomara et al., 2000; Iturriza-Gomara et al., 2001; Iturriza-Gomara et al., 2004; Simmonds et al., 2008], 19 rotavirus strains comprising four G4P[8], five G2P[4], three G9P[8] and seven G1P[8], representing four of the five globally common strains in circulation were selected at random for the present study (Table 1). The rotavirus strains selected for investigation were collected from children under the age of 5 years.

15 VP7 and VP4 characterization by sequence analysis:

The extracted dsRNA of each of the 19 selected strains was denatured at 97°C for 5 min and RT-PCR was carried out using a One- Step RT-PCR kit (Oiagen, Valencia, CA) according to manufacturer's instructions. Forward and reverse primers described previously were used for the amplification of the gene encoding VP7 and the VP8* portion of the VP4 gene segment [Gouvea et al., 1990; Gentsch et al., 1992; Iturriza-Gomara et al., 2000; Iturriza-Gomara et al., 2001; Iturriza-Gomara et al., 2004; Simmonds et al., 2008]. After denaturation of the dsRNA, reverse transcription (RT) of each gene from each sample was carried out for 30 min at 50°C, followed by 15 min at 95°C to inactivate the reverse

Journal of Medical Virology

transcriptase and activate the DNA polymerase. The cDNA was then subjected to 30 cycles of PCR in a GeneAmp PCR System 9700 thermal cycler (Applied Biosystems, Foster City, CA) using the following conditions: 60 sec at 94°C; 60 sec at 50°C; 60 sec at 72°C, followed by a single 7 min extension at 72°C and a 4°C cooling step. Amplicons were purified with the QIAquick PCR purification kit (Qiagen, Hilden, Germany) according to the manufacturer's protocol. Sequencing of each amplicon was performed with the same consensus primers used for RT-PCR, using a Big Dye Terminator cycle sequencing Ready kit v3.1 (Perkin-Elmer, Applied Biosystems). Automated separation and base-calling of cycle sequencing products was carried out using an ABI 3100 sequencer (Applied Biosystems). The VP7 and VP4 gene derived sequences are freely available from the `≤ W€ author upon request.

Phylogenetic analysis

The rotavirus chromatogram sequencing files were edited manually and contigs were prepared using CLC Main Workbench program [http://www.clcbio.com/index.php?id=1220]. The rotavirus genotype was confirmed by alignment of each of the Bulgarian sequences with sequences published in the GenBank database using BLAST search [http://www.ncbi.nlm.nih.gov]. Dendrograms were constructed after multiple alignments using ClustalX and neighbor-joining or maximum parsimony method listed in the MEGA 4 analytical package [Tamura et al., 2007] and 1000 bootstrap replicates were used for statistical evaluation. Bootstrap values of >80 were used to define genetic lineages among clusters of sequences. Genetic distances were calculated

- 1 by the Kimura two-parameter method. The accession numbers and strains used for this
- 2 study are shown in Appendix 1.

Results

2 Genetic diversity among G1 isolates

Phylogenetic analysis was conducted on the following G1 Bulgarian rotaviruses: BG149/2005, BG1053/2007, BG1120/2007, BG1153/2007, BG1670/2007, BG45/2008 and BG389/2008. The phylogenetic tree, based on the classification described by Phan et al. [2007], revealed that Bulgarian G1 rotaviruses belonged to two different lineages (Figure 1). Four of the Bulgarian G1 rotaviruses that circulated during different rotavirus seasons -BG149/2005, BG1120/2007, BG1670/2007 and BG389/2008 were grouped within lineage I, together with G1 strains detected worldwide during last ten years. The similarity in nucleotide (nt) and deduced amino acid (aa) sequences of these rotaviruses varied in range of 94-99% and 97-100%, respectively. Based on the deduced as sequence, strains 97'SH19, CMH026, Dhaka 3-03, ChZ678 and two Bulgarian strains BG149/2005 and BG1670/2007 had a substitution at position 94 in antigenic region A, while the Japanese isolate 7154J and Bulgarian strains BG1120/2007 and BG389/2008 possess as change in antigenic region B (aa 147).

The remaining three Bulgarian G1s (BG1053/2007, BG1153/2007 and BG45/2008) belonged to cluster II together with G1 rotaviruses from Europe, Latin America and Asia. These strains showed a similarity level of 99% with an G1 strain from Paraguay (Py03SR286), isolated in 2003 and was also similar to a G1 strain SI-201 detected in Slovenia three years later. The amino acid (aa) substitutions of the Bulgarian and the reference G1 strain WA are shown in Table 2.

Genetic diversity among G2 strains

A total of five G2 strains, representing different seasons of circulation (including BG80/2006, BG915/2007, BG1643/2007, BG1726/2007, and BG683/2008) were selected for VP7 sequence analysis. The data revealed that the Bulgarian G2 strains belonged to one, highly homogenous cluster (95-99% similarity at the nt and aa levels; Figure 2). The comparison with the reference G2 strain DS-1 showed that all Bulgarian G2 rotaviruses sequenced displayed aa changes, similar to that described for G2 strains isolated since the mid-1990's - two as changes within antigenic region A (as 87 and as 96), and additional as substitution in position aa 213 in antigenic region C (Table 2).

11 Genetic diversity among G4 isolates

Four Bulgarian G4 strains (BG170/2006, BG1385/2007, BG623/2008 and BG773/2008) were analyzed through sequencing of the VP7 encoding gene (Figure 3). Strains BG170/2006, BG623/2008 and BG773/2008 clustered in lineage I, together with human strains Py99355, J-4614 and RUS-Nov08-3260 detected in Paraguay, Japan and Russia, respectively. They showed 98-99% and 100% homology at the nt and deduced amino acid (aa) level, respectivelly. All 6 strains in this cluster possessed an insertion of three nts (ATA) which led to the insertion of a single asparagine residue at position 76 in the aa sequence in relation to prototype strain ST-3 (Table 2). Three additional aa substitutions, one in position 79 close to the antigenic region A and one in the region B (aa 143 and aa 145) were also observed.

The fourth strain, BG1385/2007, shared 85-86% and 94-97% homology at the nt and aa levels, respectively, with the other three Bulgarian G4 strains described above and other

human and animal G4 rotaviruses presented in the GenBank database to date. This strain was closely related to a Hungarian G4 human rotavirus detected in 2004, Hu/BP1125. The phylogenetic analysis indicated that these two strains formed a separate lineage from those previously described, and denominated lineage IX following the classification of Stupka et al., [2009]. The differentiation of the new lineage IX was supported by nt and aa similarity distances (data not shown). Neither G4 strain in this new lineage possessed the insertion at position 76, and differed from the reference strain ST3 in seven as positions: as 74, as 75 and as 79 in close proximity to antigenic region A; three within region A; as 87, as 90, and aa 96 and aa 145 in the antigenic region B (Table 2).

11 Genetic diversity among G9 isolates

The genes encoding VP7 of three Bulgarian G9 rotaviruses (one from the rotavirus season 2005/2006 and two from the season 2006/2007) were sequenced. The Bulgarian G9 strains were closely related to each other with nt identity of 96-98%, but distantly related to G9 prototype strains WI61 and 116E isolated from USA and India (85-86% nt similarity). Detailed analysis clearly demonstrated that all Bulgarian G9s belonged to lineage III, sub-lineage d and were genetically similar to G9 strains isolated recently in Europe, Asia, America and Australia (Figure 4). The aa substitutions of the Bulgarian G9s and the reference G9 strain WI61 are shown in Table 2.

21 Genetic diversity among P[8] genotype

The partial VP4 gene (VP8*) of nine rotavirus strains with a P[8] genotype, two in combination with G4 VP7 genotype (BG623/2008 and BG777/2008), one with G2 genotype (BG683/2008), three with G1 specificity (BG1153/2007; BG45/2008 and BG389/2008) and three G9 rotavirus strains, were sequenced and analyzed. All of the P[8] sequences were clustered in lineage III, except the two G1 strains (BG1153/2007 and BG45/2008) which belonged to WA-like P[8] lineage I (data not shown). The nt homology among strains grouped within lineage III ranged between 96% and 98%.

1 Discussion

The study described above is the first detailed molecular genetic investigation of rotavirus strain diversity in Bulgaria. Rotavirus surveillance in Bulgaria between January 2005 and August 2008 showed significant morbidity attributable to rotavirus infection in the country, with an incidence of rotavirus diarrhea of between 28 and 43%. Strain characterization showed that 95% of the strains were of the same rotavirus genotypes distributed worldwide, and an annual shift in the predominant rotavirus strain between each of the four rotavirus seasons, defined as starting in September of one calendar year though to August of the following year [Mladenova et al., 2010]. To gain insight into the relationships between the prevalent rotavirus strains in Bulgaria and the common rotaviruses circulating worldwide, 19 previously genotyped rotavirus strains (seven G1P[8] strains, five G2P[4], four G4P[8], and three G9P[8]) collected during these four rotavirus seasons were selected at random and subjected to sequence and phylogenetic analysis of the VP7 gene segment (G genotype). In addition, the partial VP4 gene (VP8*) of 9 rotavirus strains with P[8] genotype (two with G4 genotype, one with G2 genotype, three with G1 specificity, and all three G9 rotavirus strains), were also sequenced. The phylogenetic analyses showed that the Bulgarian rotaviruses with G1, G2, G4 and G9 specificities displayed considerable sequence similarity with the rotavirus lineages of rotavirus strains detected in the last 10 years worldwide. Furthermore, the sequence data revealed co-circulation of different rotavirus variants of a single genotype with nt and aa changes in antigenic regions A, B and/or C.

Journal of Medical Virology

One of the main driving forces of rotavirus evolution is genetic drift. Point mutations are extremely frequent events because rotavirus RNA-dependent RNA polymerase is errorprone with a mutation rate of 5×10^{-5} per nt per replication [Blackhall et al., 1996]. Some point mutations are highly conserved and are inherited by the rotavirus progeny. The most significant are those mutations within the antigenic regions which may lead to the generation of antibody escape mutants. Such antibody escape mutants may lead to the emergence "epidemics" and infect large proportions of the populations causing symptoms even in individuals who may have previously been primed either through naturally acquired wild time rotavirus infections or though vaccination. Furthermore, the emergence and accumulation of nt mutations followed by amino acid transitions in uncommon human-animal reassortants and zoonotic rotavirus strains could drive the adaptation of these strains in the human host and their transformation from sporadic to epidemic/ pandemic strains. The rapid dissemination of G9 rotaviruses in the human population in the early 1990s may have been the result of both genetic shift between animal G9P[6] and human rotavirus strain with P[8] specificity and the continuous adaptation of the newly emerged strain to the human host as a result of genetic drift. Thus, after a decade of sporadic infections with no, or limited, onward transmission, the G9 genotype evolved, acquired a replicative advantage and became one of the five most prevalent human genotypes transmitted worldwide [Santos and Hoshino, 2005].

In Bulgaria, G4P[8] rotavirus strains were the dominant rotavirus G-P combination (65.8%) in the 2004/2005 rotavirus season, but had low prevalence of 0.3-4.3% throughout the next three seasons until their re-emergence in August 2008. The sequence data provided

Journal of Medical Virology

information that the G4 strains detected in 2005/2006 and the newly-introduced strain in 2007/2008 were genetic variants with an aa insertion close to antigenic region A. The first G4P[8] mutants with such insertion were reported in Argentina in 1998, Uruguay in 1999 and Brazil from 2000 to 2004. A year later, in 2005, this strain was responsible for a large outbreak of acute gastroenteritis affecting over 64,000 individuals and causing 56 deaths in Nicaragua [Bucardo et al., 2005]. The detailed analysis revealed that this unique insertion together with several other minor mutations led to modification of the secondary structure of the VP7 protein in these human G4 strains, and this change, was probably the trigger for the large outbreak described in Nicaragua in which a high attack rate was observed in adults suggested lack of protection conferred by previous rotavirus infections [Bucardo et al., 2007]. Unfortunately, a G4 isolate, which circulated during 2004/2005 rotavirus season, when the G4 was detected as a dominant strain, was not available for genetic characterization. Sequence analysis of such isolates might have shed some light on whether the predominance of G4P[8] in 2004/2005 was related to the introduction of the strain possessing the insertion or with any other genetic changes which may have also correlated with the emergence of an antibody escape mutant, including the emergence of the novel genetic lineage described in this paper.

The G4 rotavirus strain BG1385 showed the closest genetic relatedness with the human rotavirus BP1125/2004 found in Hungary and thought to be of potential zoonotic origin based on its genetic constellation – G4-P[6]-GGII-B, respectively VP7-VP4-VP6-NSP4 [Banyai et al., 2009]. The VP7 gene of these two strain showed high degree of similarity of nt and aa similarity (96% and 97% respectively), and only four aa substitution were found between the two strains, all outside the antigenic regions (aa 64, aa82, aa162 and aa 171)...

The VP4 associated with the Bulgarian stain was however a P[8], which may indicate that
 this strain may have undergone reassortment with a human strains, but elucidating its likely
 origin and evolution will require further work.

G2 rotaviruses were the second genotype found most commonly during the four-year study period in Bulgaria. Their incidence throughout the different rotavirus seasons varied from a sporadic spread during seasons 2004/2005 and 2005/2006 to an epidemic scale in 2006/2007, with an incidence of 49.3% among patients with confirmed rotavirus diarrhea. The comparison with the reference G2 strains S2 and DS-1 showed that all Bulgarian G2 rotaviruses sequenced, displayed two as changes at positions as 87 (Ala-Thr) and as 96 (Asp-Asn) in the antigenic region A. The same as substitution at position as 96 was reported by Iturriza-Gomara and colleagues [Iturriza-Gómara et al., 2001] who linked it with the failure to react with G2-specific monoclonal antibodies. In another study based on the antigenic and genetic variation of the VP7 gene of human G2 rotaviruses isolated in various African countries, two strains which displayed the same aa change and an additional substitution in antigenic region C, have not reacted with either IC10 or S2-2G10 G2-specific monoclonal antibodies [Page and Steele, 2004]. Therefore, the aa substitutions in one or more antigenic regions in the newly emerging G2 rotavirus variant could explain the evasion of pre-existing immunity.

A total of three G9 and seven G1 strains were investigated in order to characterise Bulgarian G9 and G1 rotaviruses by sequencing of their VP7 genome segments and to compare them with other G9 and G1 rotaviruses circulating in different countries. The results showed the co-circulation of variants in Bulgaria similar to those which have been

Page 25 of 32

Journal of Medical Virology

detected in different parts of the world during the last few years [Banyai et al., 2009;
Gentch et al., 2009]. Overall, these data support the likelihood that the introduction of new
genetic variants in Bulgaria may be facilitated by current globalization, by transnational
and transcontinental transport, trade and migration.

In summary, a decision on the introduction of rotavirus vaccine into the routine vaccination schedule in Bulgaria is pending. Rotavirus molecular genetic and epidemiological investigations provide baseline data for the prevalence and strain diversity of rotaviruses in Bulgaria in the pre-vaccine era. Active surveillance and detailed genetic characterization of the common rotavirus strains in the pre-vaccine era are extremely important in order to gather and update information of the currently circulating variants and to identify candidate virus strains suitable for the next generation of rotavirus vaccine. The monitoring of the new variants of the common rotavirus strains in the post-vaccine era, which will have emerged spontaneously or selected under the vaccine pressure, will contribute to assessing their epidemic potential, global spread and impact on the global rotavirus vaccine program.

REFERENCES

- 2 Alfieri AA, Leite JP, Nakagomi O, Kaga E, Woods PA, Glass RI, Gentsch JR. 1996.
- 3 Characterization of human rotavirus genotype P[8]G5 from Brazil by probe-hybridization
- 4 and sequence. Arch Virol 141(12):2353-2364.
- 5 Bányai K, Gentsch JR, Martella V, Bogdán A, Havasi V, Kisfali P, Szabó A, Mihály I,
- Molnár P, Melegh B, Szücs G. 2009. Trends in the epidemiology of human G1P[8]
 rotaviruses: a hungarian study. J Infect Dis 200 (Suppl 1):S222-S227.
- 8 Bányai K, Bogdán A, Domonkos G, Kisfali P, Molnár P, Tóth A, Melegh B, Martella V,
- 9 Gentsch JR, Szucs G. 2009. Genetic diversity and zoonotic potential of human rotavirus
- 10 strains, 2003-2006, Hungary. J Med Virol, 81(2):362-370.
- Blackhall J, Fuentes A, Magnusson G. 1996. Genetic stability of a porcine rotavirus RNA
 segment during repeated plaque isolation. Virology 225(1):181-190.
- 13 Bucardo F, Karlsson B, Nordgren J, Paniagua M, González A, Amador JJ, Espinoza F,
- 14 Svensson L. 2007. Mutated G4P[8] rotavirus associated with a nationwide outbreak of
- 15 gastroenteritis in Nicaragua in 2005. J Clin Microbiol 45(3):990-997.
- 16 Cunliffe N, Gondwe JS, Broadhead RL, Molyneux ME, Woods PA, Breese JS, Glass RI,
- 17 Gentsch JR, Hart AC. 1999. Rotavirus G and P types in children with acute diarrhea in
- Blantyre, Malawi, from 1997 to 1998: predominance of novel P[6]G8 strains. J Med Virol
 57:308-312.
- 20 Desselberger U, Iturriza-Gomara M, Gray JJ. 2001. Rotavirus epidemiology and 21 surveillance. In: Desselberger U, Gray JJ, editors. Gastroenteritis Viruses. Chichester: John
- 22 Wiley & Sons Ltd. p 125-152.

Journal of Medical Virology

1	
2	
3	
1	
5	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
 /0	
49 50	
50	
51 50	
5∠ 50	
53	
54	
55	
56	
57	
58	
59	
60	

l

1	Estes MK, Kapikian AZ. 2007. Rotaviruses. In: Knipe DM, Howley PM, Griffin DE,
2	editors. Fields Virology. Fifth ed. Philadelphia: Lippincott Williams and Wilkins. p 1917-
3	1974.
4	Gentsch JR, Glass RI, Woods P, Gouvea V, Gorziglia M, Flores J, Das BK, Bhan MK.
5	1992. Identification of group A rotavirus gene 4 types by Polymerase Chain Reaction. J
6	Clin Microbiol 30:1365-1375.
7	Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V,
8	Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B,
9	Glass RI. 2005. Serotype diversity and reassortment between human and animal rotavirus
10	strains: Implications for rotavirus vaccine programs. Journal of Infectious Diseases
11	192:S146-S159.
12	Gentsch JR, Hull JJ, Teel EN, Kerin TK, Freeman MM, Esona MD, Griffin DD, Bielfelt-
13	Krall BP, Banyai K, Jiang B, Cortese MM, Glass RI, Parashar UD; collaborating
14	laboratories of the National Rotavirus Strain Surveillance System. 2009. G and P types of
15	circulating rotavirus strains in the United States during 1996-2005: nine years of
16	prevaccine data. J Infect Dis 200 (Suppl 1):S99-S105.
17	Giammanco MD, Coniglio MA, Pignato S, Giammanco G. 2009. An economic analysis of
18	rotavirus vaccination in Italy. Vaccine 27:3904-3911.
19	Gouvea V, Glass RI, Woods P, Kaniguchi K, Clark HF, Forrester B, Fang Z. 1990.
20	Polymerase chain reaction amplification and typing of rotavirus nucleic acid from stool
21	specimens. J Clinic Microbiol 28:276-282.

2	
3	
4	
5	
6	
7	
1	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
20	
20	
27	
28	
29	
30	
24	
31	
32	
33	
34	
35	
36	
27	
31	
38	
39	
40	
41	
42	
43	
44	
77 15	
46	
41	
48	
49	
50	
51	
52	
52	
00	
54	
55	
56	
57	
58	
50	
09	
60	

1	Iturriza-Gómara	М,	Cubitt	D,	Desselberger	U,	Gray	J.	2001.	Amino	acid	substitution
---	-----------------	----	--------	----	--------------	----	------	----	-------	-------	------	--------------

- 2 within the VP7 protein of G2 rotavirus strains associated with failure to serotype. J Clin
 - 3 Microbiol 39:3796-3798.
- 4 Iturriza-Gomara M, Green J, Brown D, Desselberger U, Gray J. 2000. Diversity within the
- 5 VP4 Gene of Rotavirus P[8] Strains: implications for reverse transcription-PCR
 6 genotyping. J Clin Microbiol 38:898-901.
- 7 Iturriza-Gomara M, Isherwood B, Desselberger U, Gray J. 2001. Reassortment in vivo:
 8 driving force for diversity of human rotavirus strains isolated in the United Kingdom
- 9 between 1995 and 1999. J Virol 75:3696-3705.
- 10 Iturriza-Gomara M, Kang G, Gray J. 2004. Rotavirus genotyping: keeping up with an
 11 evolving population of human rotaviruses. J Clin Virol 31:259-265.
- 12 Iturriza-Gómara M, Kang G, Mammen A, Jana AK, Abraham M, Desselberger U, Brown
- 13 D, Gray JJ. 2004. Characterization of G10P[11] rotaviruses causing acute gastroenteritis in
- 14 neonates and infants in Vellore, India. J Clin Microbiol 42:2541-2547.
- 15 Martella V, Bányai K, Matthijnssens J, Buonavoglia C, Ciarlet M. 2010. Zoonotic aspects
- 16 of rotaviruses. Vet Microbiol 140(3-4):246-255.
- 17 Matthijnssens J, Ciarlet M, Heiman E, Arijs I, Delbeke T, McDonald S, Palombo EA,
- 18 Iturriza-Gomara M, Maes P, Patton JT. Rahman M, Van Ranst M. 2008. Full genome-based
- 19 classification of rotaviruses reveals a common origin between human Wa-like and porcine
- 20 rotavirus strains and human DS-1-like and bovine rotavirus strains. J Virol 82:3204–3219.
- 21 Matthijnssens J, Bilcke J, Ciarlet M, Martella V, Bányai K, Rahman M, Zeller M, Beutels

22 P, Van Damme P, Van Ranst M. 2009. Rotavirus disease and vaccination: impact on

23 genotype diversity. Future Microbiol 4:1303-1316.

Journal of Medical Virology

2	
2	
3	
4	
5	
6	
2	
1	
8	
9	
10	
10	
11	
12	
12	
13	
14	
15	
16	
47	
17	
18	
19	
20	
20	
21	
22	
23	
20	
24	
25	
26	
27	
21	
28	
29	
30	
30	
31	
32	
33	
24	
34	
35	
36	
27	
57	
38	
39	
<u>4</u> 0	
44	
41	
42	
43	
11	
44	
45	
46	
<u>4</u> 7	
11	
48	
49	
50	
50	
21	
52	
53	
51	
54	
55	
56	
57	
51	
E0	
58	
58 59	

1	Mladenova Z, Korsun N, Geonova T, Iturriza-Gomara M. 2010. Molecular epidemiology
2	of rotaviruses in Bulgaria: annual shift of the predominant genotype. Eur J Clin Microbiol
3	Infect Dis 29:555-562.
4	Page NA, Steele AD. 2004. Antigenic and genetic characterization of serotype G2 human
5	rotavirus strains from the African continent. J Clin Microbiol 42:595-600.
6	Parashar UD, Gibson CJ, Bresse JS, Glass RI. 2006. Rotavirus and severe childhood
7	diarrhea. Emerg Inf Dis 12:304-306.
8	Phan TG, Khamrin P, Quang TD, Dey SK, Takanashi S, Okitsu S, Maneekarn N, Ushijima
9	H. 2007. Detection and genetic characterization of group A rotavirus strains circulating
10	among children with acute gastroenteritis in Japan. J Virol, 81:4645-4663.
11	Santos N, Hoshino Y. 2004. Global distribution of rotavirus serotypes/genotypes and its
12	implication for the development and implementation of an effective rotavirus vaccine. Rev
13	Med Virol 15:29-56.
14	Schumann T, Hotzel H, Otto P, Johne R. Evidence of interspecies transmission and
15	reassortment among avian group A rotaviruses. Virology 2009; 386:334-43.
16	Simmonds MK, Armah G, Asmah R, Banerjee I, Damanka S, Esona M, Gentsch JR, Gray
17	JJ, Kirkwood C, Page N, Iturriza-Gómara M. 2008. New oligont primers for P-typing of
18	rotavirus strains: Strategies for typing previously untypeable strains. J Clin Virol 42:368-
19	373.
20	Solberg OD, Hasing ME, Trueba G, Eisenberg JN. Characterization of novel VP7, VP4, and
21	VP6 genotypes of a previously untypeable group A rotavirus. Virology 2009 385:58-67.
22	Stupka JA, Carvalho P, Amarilla AA, Massana M, Parra GI; Argentinean National

23 Surveillance Network for Diarrheas. 2009. National Rotavirus Surveillance in Argentina:

1	high incidence of G9P[8] strains and detection of G4P[6] strains with porcine
2	characteristics. Infect Genet Evol, 9(6):1225-1231.
2	Tomura K. Dudlay I. Noi M. Kumar S. 2007. MECAA: Malacular Evolutionary Constian
3	Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics
4	Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596-1599.
5	Tcheremenskaia O, Marucci G, De Petris S, Ruggeri FM, Dovecar D, Sternak SL,
6	Matyasova I, Dhimolea MK, Mladenova Z, Fiore L; Rotavirus Study Group. 2007.
7	Molecular epidemiology of rotavirus in Central and Southeastern Europe. J Clin Microbiol
8	45:2197-2204.
9	Trojnar E, Otto P, Johne R The first complete genome sequence of a chicken group A
10	rotavirus indicates independent evolution of mammalian and avian strains. Virology 2009;
11	386:325–33.
12	Ursu K, Kistafi P, Rigo D, Ivanics E, Erdelvi K, Dan A, Melegh B, Matrella V, Banyai K
13	Molecular analysis of the VP7 gene of pheasant rotaviruses identifies a new genotype
14	designated G23. Arch Virol 2009; 154:1365-1369.
15	Vesikari T, Karvonen A, Prymula R, Schuster V, Tejedor JC, Cohen R, Meurice F, Han
16	HH, Damaso S, Bouckenooghe A. 2007. Efficacy of human rotavirus vaccine against
17	rotavirus gastroenteritis during the first 2 years of life in European infants: randomised,
18	double-blind controlled study. Lancet 370:1757-1763.

1 APPENDIX 1

2 Nucleotide sequence accession numbers

Reference rotavirus strains and the accession numbers of their VP7 sequences used in this study were as follow: for G1 analysis: 7154/JP (EF079070); Dhaka 3-03 (EF960735); CMH036 (EF199716); Bangla11 (EF690757); VN-281 (DO508167); MW4097 (FJ386452); Mvd9816 (AF480293); TF14 (AF183860); PA305/97 (DO377585); Chi-45 (GAU26371); PA32 (DQ377574); Egypt-7 (GAU26373); 88H249 (AB081795); Kor-64 (GAU26378); Ban-59 (GAU26366); Fin-220 (Z80294); Fin-308 (Z80297); Cos70 (U26370); AU007 (AB081799); PAF166 (DQ377578); Py03SR286 (EF179190); SI-201 (EF011972); K2 (D16323); WA (K02033); AU19 (AB018697); R479 (EU033975); 97'SH19 (AF260949); bovine T449 (M92651); porcine C60 (L24164); porcine SW2021 (AF426162); Z678 (EU708572); for G2 analysis: S2 (M11164); TE65 (AF106295); TW9259 (AF044349); RMC/G66 (AY603152); Bangla84 (EF690801); CU12762 (DQ236075); CH-146 (DQ904518); Bangla23 (EF690806); CH-86 (DQ904517); J-4787 (DQ904511); Sc27 (AJ293722); CH-61 (DQ904516); 23G2 (AY660563); KO-2 (AF401754); VN-19 (DQ904513); Bangla2 (EF690807); RUS-Nov05-202 (FJ529394); DC2020 (FJ436809); DS-1 (EF672581); Bangla164 (EF690805); for G4 analysis: Py99355 (DQ015686); J-4614 (DQ904520); RUS-Nov08-3260 (FJ529401); HU/BP1125 (AM992548); AgrP/9 (AY115858); Arg928 (AF373918); GR1107 (AF161823); ST3 (EF672616); Hochi (AB039035); PV5257 (M86832); VA75 (M86833); Gottfried (X06759); M3014 (X99126); CMP121 (DQ683522); CMP166 (DQ683520); VN846 (EF545000); E931 (EU708602); Arg990 (AF373890); BP1547 (AM992555); O-1 (AB180972); O11-4 (EU348714); P14-3 (EU348713); Arg4605 (FJ712693); D151

(AJ488586); ICB2185 (AF192267); Arg/P23 (AY115859); CMP114 (DQ683511); K (X58439); for G9 analysis: G9-SP5.6-9 (EU15197); AHP66 (AB364375); GUP30 (AB364374); G9-SP5.0-9 (EU159192); ITA-BIA2 (EF150330); SP3-9 (EF159955); GUP180 (AB364373); Kd257 (AB247943); ISO31 (DQ117937); R136 (AF438228); CIT-254 (AF281044); R44 (AF438227); SE121 (AJ491192); 95H115 (AB045373); BD524 (AJ250543); CMH109 (EF199725); M69-06 (AY307085); B3482-01 (AY487858); Mc345 (D38055); 684VN (AB091778); HRV80 (EU483087); R488 (EU033984); 116E (L14072); OM67 (AJ491179); OM46 (AJ491181); 97'CZ37 (AF260959); WI61 (EF672623); F45 (AB180970); AU32 (AB045372); t203 (AY003871); K-1 (AB045374); SP1542 (AY196109); R342 (EU033981).