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Introduction

Next-generation sequencing and the availability of high-density single-nucleotide polymorphism (SNP) genotyping arrays have facilitated an assessment of human genetic variation, and of its association with clinical or intermediate phenotypes, at unprecedented level. However, drawing sensible conclusions about the functional relevance of the large number of somatic and meiotic variants that are currently uncovered still remains a formidable challenge. Available technologies simply do not allow functional annotation to proceed at a similar pace as genotyping, thereby rendering the biological interpretation of the observed genotype-phenotype relationships difficult. One of the auxiliary approaches to this problem is the analysis of intermediate RNA phenotypes, such as allelic imbalance [START_REF] Yan | Allelic variation in human gene expression[END_REF], which is defined as a substantial departure of autosomal transcription activity from parity. A multitude of mechanisms may underlie allelic imbalance, including mutations/polymorphisms in cis-acting regulatory elements that affect transcription [START_REF] Ge | Global patterns of cis variation in human cells revealed by high-density allelic expression analysis[END_REF], splicing [START_REF] Caux-Moncoutier | Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study[END_REF], RNA-stability, nonsense mediated decay and methylation status (Wang, et al., 2008). Random mono-allelic expression, where occasionally only one or the other of the two alleles present in a given cell is transcribed, has also been found to be common for autosomal genes [START_REF] Gimelbrant | Widespread monoallelic expression on human autosomes[END_REF][START_REF] Pastinen | A survey of genetic and epigenetic variation affecting human gene expression[END_REF][START_REF] Pollard | A genome-wide approach to identifying novel-imprinted genes[END_REF][START_REF] Wang | Monoallelic expression of multiple genes in the CNS[END_REF].

Allelic imbalance analysis has been featured successfully in studies of alternative splicing [START_REF] Caux-Moncoutier | Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study[END_REF], micro-RNA directed gene repression [START_REF] Kim | Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression[END_REF] and cancer transcriptome specificity [START_REF] Nakanishi | Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas[END_REF], and it bears the potential to advance greatly the functional interpretation of variants of unknown significance [START_REF] Caux-Moncoutier | Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study[END_REF][START_REF] Domchek | Genetic variants of uncertain significance: flies in the ointment[END_REF]. Technically, most approaches to allelic imbalance analysis in the past were based upon targeted chemistries, such as pyrosequencing [START_REF] Kim | Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression[END_REF] and SNaPshot assays [START_REF] Caux-Moncoutier | Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study[END_REF]. At the same time, genotyping microarrays have been adapted for use in RNA-based protocols as well, moving from low-resolution panels [START_REF] Nakanishi | Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas[END_REF][START_REF] Pant | Analysis of allelic differential expression in human white blood cells[END_REF] to increasingly denser marker sets [START_REF] Ge | Global patterns of cis variation in human cells revealed by high-density allelic expression analysis[END_REF][START_REF] Gimelbrant | Widespread monoallelic expression on human autosomes[END_REF][START_REF] Liu | MixHMM: inferring copy number variation and allelic imbalance using SNP arrays and tumor samples mixed with stromal cells[END_REF]. These developments have now facilitated an assessment of allelic imbalance at the genome-wide level.

Despite the great attention paid to allelic imbalance in scientific practice, a formal framework for its statistical analysis, particularly in genome-wide settings, is only beginning to emerge.

A straightforward approach in this direction has been the pin-pointing of SNPs with clearly disparate genotypes [START_REF] Coenen | Allelic imbalance analysis using a single-nucleotide polymorphism microarray for the detection of bladder cancer recurrence[END_REF][START_REF] Nakanishi | Whole genome comparison of allelic imbalance between noninvasive and invasive small-sized lung adenocarcinomas[END_REF] or copy-numbers [START_REF] Lamy | A Hidden Markov Model to estimate population mixture and allelic copy-numbers in cancers using Affymetrix SNP arrays[END_REF] in different samples, such as cancer vs normal tissue or blood vs urine. A similar allor-nothing approach [START_REF] Gimelbrant | Widespread monoallelic expression on human autosomes[END_REF] was based upon contrasting heterozygous nuclear genotypes with homozygous transcriptome-derived genotypes. Other proposals involved the definition of 'normal' (i.e. balanced) expression and required expression level ratios of mutant vs wild-type allele to fall into a two standard deviation range [START_REF] Caux-Moncoutier | Impact of BRCA1 and BRCA2 variants on splicing: clues from an allelic imbalance study[END_REF] or 99% confidence interval [START_REF] Palacios | Allele-specific gene expression is widespread across the genome and biological processes[END_REF] around the mean taken in a reference population, or into a fixed (±7%) range around parity [START_REF] Loeuillet | Promoter polymorphisms and allelic imbalance in ABCB1 expression[END_REF]. More sophisticated methods involved one-sided Binomial tests [START_REF] Degner | Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data[END_REF][START_REF] Kim | Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression[END_REF], t tests [START_REF] Yamamoto | Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays[END_REF], regression-based tests [START_REF] Chen | Allelic imbalance in BRCA1 and BRCA2 gene expression is associated with an increased breast cancer risk[END_REF], χ 2 tests [START_REF] Heap | Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing[END_REF], or segment analysis to identify closely linked SNPs with similar allele-specific expression levels [START_REF] Staaf | Segmentation-based detection of allelic imbalance and loss-of-heterozygosity in cancer cells using whole genome SNP arrays[END_REF]. In addition, the joint use of genome-wide expression and nuclear genotype data has been proposed as a means to augment haplotype-based eQTL identification [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF][START_REF] Pickrell | Understanding mechanisms underlying human gene expression variation with RNA sequencing[END_REF], but these methods cannot be applied directly to study allelic imbalance at single variants. Here, we present a novel statistical framework for the assessment of allelic imbalance using RNA-seq data. Our method is applicable both with and without knowledge of the underlying nuclear genotype(s), does not require an expression reference, and allows for sequencing errors. We evaluated this framework using extensive simulation as well as RNA-seq data from HapMap individuals in order to explore its power and limits for a wide range of practically relevant scenarios. 

Materials and Methods

Statistical Inference of Allelic Imbalance from Transcriptome Data

Likelihood-ratio test for allelic imbalance when the nuclear genotype is known For every heterozygous single-nucleotide substitution (henceforth simply referred to as 'substitution') in a given individual, there are two correct types of call from aligned transcriptome sequencing reads, namely those of the two constituent alleles A1≠A2. Let f A1 and f A2 =1-f A1 denote the actual frequencies of A1 and A2 among all transcripts, respectively.

Erroneous calls yield one of the two remaining nucleotides M1≠M2. Let c X denote the number of reads for which nucleotide X has been called and let c=c A1 +c A2 +c M1 +c M2 be the overall number of reads.

If there are no erroneous calls, then the number of calls of either nuclear allele of a given substitution should follow a binomial distribution, β(c,½), under the null hypothesis of balanced transcription, f A1 =f A2 =½. In this case, the optimal statistical test for allelic imbalance would be a binomial test. In practice, however, sequencing data will almost always contain calling errors, which we accommodate in our framework by introducing two types of error parameter. First, let π denote the probability that a call from a given read is wrong, and we assume that this probability is independent of the correct call. Second, we introduce conditional probabilities π X,Y of calling nucleotide X, given that a miscall has occurred and that the correct call would be Y. Valid calls for a heterozygous SNP occur either when A1 or A2 are called correctly, or when one allele is erroneously called from the other. Invalid calls are always miscalls. This implies that the log-likelihood of f=f A1 , given numbers of calls {c X }, equals
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For the time being, we assume that proper estimates of the miscalling probabilities are available. If the nuclear genotype underlying the transcriptome data is known, then the identity of A1 and A2 is also known, and a straightforward likelihood-ratio test for allelic imbalance is given by (2) ( )
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Under H 0 , statistic G follows a χ 2 distribution with 1 degree of freedom. Maximization of L(f) in ( 2) can be done numerically using, for example, the optimize function of the stats package of the R statistical software (R Development Core Team, 2010) (http://www.rproject.org/).

Inference of the nuclear genotype from transcriptome data

Transcriptome sequencing can be used to infer allelic imbalance even if the underlying nuclear genotype is unknown. Such an endeavor may seem paradox at first glance because, by definition, extreme allelic imbalance cannot be distinguished from homozygosity using transcriptome data alone. However, with less than extreme allelic imbalance, an underlying heterozygous genotype may still be sufficiently more probable than other genotypes, assuming that there is no allelic imbalance. Therefore, it appeared worthwhile exploring the power of a two-stage approach whereby the most likely nuclear genotype is first inferred from the transcriptome sequence data using Bayes' theorem under the assumption of balanced transcription, followed by a test for allelic imbalance in the case of a sufficiently well supported heterozygous genotype (posterior probability >0.5).

Since the true nuclear genotype is assumed to be unknown here, all possible genotypes are assigned an equal prior probability which implies that their posterior probability gets proportional to the corresponding likelihood for the transcriptome data. For a presumed heterozygous genotype A1A2, this likelihood is calculated from formula (1) using miscalling probabilities that were estimated from empirical data as described below. For a homozygous nuclear genotype A1A1, there is only one correct allele (namely A1) while the other three nucleotides (M1, M2 and M3) represent miscalls. In this case, the log-likelihood equals
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and the posterior probability of A1A1 gets proportional to the antilog of this expression.

Estimation of miscalling probabilities

Cell lines, genotyping and sequencing

Transcriptome sequence data were generated for the publicly available lymphoblastoid cell lines GM10847, GM12760, GM12864, GM12870 and GM12871 (Coriell Institute for Medical Research, Camden, NJ, USA) as follows. Cells were cultivated as suggested by the supplier. DNA was extracted from harvested cells using the Qiagen DNA extraction kit (Cat.No. 13343, Qiagen, Hilden, Germany). Genotyping of single-nucleotide polymorphisms (SNPs) using Affymetrix Chip 6.0 and the Illumina Omni chip (San Diego, CA, USA) was performed according to the manufacturers' protocols. The genomic positions of observed nucleotide substitutions were retrieved from the UCSC database (http://genome.ucsc.edu/; NCBI Build 36.1; genome freeze hg18) [START_REF] Kent | The human genome browser at UCSC[END_REF][START_REF] Pruitt | NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins[END_REF]. RNA was extracted from 1*108 cells using the RNEasy kit (Qiagen, Hilden, Germany). The mRNA-Seq libraries for Illumina/Solexa GAII sequencing were prepared according to the manufacturer's instructions, starting with 5 µg RNA. Libraries were sequenced on two lanes per sample, generating between 27 and 33 million 76-nt reads for each cell line. An overview of the generated sequence data is provided in Supp. Table S1.

Alignment and sequence analysis

FASTQ-formatted Illumina/Solexa sequences were mapped onto the human genome (hg18) [START_REF] Rhead | The UCSC Genome Browser database: update 2010[END_REF] and a collection of splice junctions using the novoalign software package v2.05.13 (http://www.novocraft.com/). The mapping procedure was run in SE mode (parameters -R 30 -r All -e 5) and included adapter trimming (option -a). A comprehensive list of known exons was compiled from UCSC knowngenes. Only splice junctions from adjacent exons located within a gene region were considered. Each of the generated splice junctions was 140 bp in length, containing the last 70 bases of the upstream exon and the first 70 bp of the downstream exon. Use of 70 bp of flanking sequence ensured that all junctionmapped reads matched a minimum of 5 bp on either side of the junction. Only reads that mapped to a unique position in the genome were considered for further analysis (between 66% and 75% of reads per cell line). Positions with low sequencing quality (phred quality <10) were excluded.

Only those SNPs were used for the estimation of miscalling probabilities for which the nuclear genotype (Affymetrix 6.0 or Illumina Omni) and transcriptome sequence data with at least 20-fold coverage were available (see below). SNPs known to be located in the same region as imprinted genes were excluded. The sequencing data from all five cell lines (Supp. Table S1) were pooled, providing a total of 66,943 SNPs for analysis. Although some of these data represented multiple (up to five) counts of one and the same SNP, pooling was deemed reasonable since miscalling probability estimates obtained from individual cell lines were not found to be significantly different (data not shown). 

Maximum-likelihood estimation of miscalling probabilities

The test for allelic imbalance defined in formulae ( 1) and ( 2) requires knowledge of the unconditional and conditional miscalling probabilities π and {π X,Y }, respectively. If nuclear genotypes for a sufficiently large number of SNPs are available to complement RNA-seq data, then these error parameters can be estimated empirically. Thus, any additional alleles called for a homozygous genotype, say YY, must be due to an error so that the relative proportions of the different miscalls X≠Y provide reasonable estimates of π X,Y . Obviously, this approach assumes the absence of errors in the assignment of the nuclear genotype and, in fact, includes these errors into π.

An assessment of allelic imbalance is only meaningful for heterozygotes, and since the miscalling probability π may vary depending upon whether the allele under study is present in homozygous or heterozygous state, only heterozygous nuclear genotypes were used for the maximum-likelihood estimation of π as well. Lege artis estimation of π would have involved maximization of the global log-likelihood function according to (1), taking into account SNPspecific values of f and a single genome-wide value of π. In this case, however, the global log-likelihood would have depended upon f values for thousands of SNPs, thereby rendering maximization with respect to π computationally intractable. We therefore performed SNPwise maximization of (1) with respect to f and π, and used the average of the SNP-specific estimates of π in subsequent analyses. Maximization of (1) was again carried out numerically, using the optim function of the R stats package with the "L-BFGS-B" option set in order to restrict the possible parameter space to [0,1].

Framework Evaluation by Simulation

We carried out simulations to evaluate the power of the statistical framework described above for correctly inferring nuclear genotypes and for detecting allelic imbalance. Simulations and Genotype simulation. An idealised genome comprising 500,000 nucleotide triplets was generated picking triplets randomly from their frequency distribution in the human genome (http://www.kazusa.or.jp/codon/). For 125,000 of these triplet (25%), the central triplet position was deemed to carry a single-nucleotide substitution, and the alternative triplet centre allele was chosen at random in accordance with known nearest-neighbour dependent mutation rates in the human genome [START_REF] Krawczak | Neighboring-nucleotide effects on the rates of germ-line single-base-pair substitution in human genes[END_REF]. All substitution-carrying triplets were henceforth assumed to be heterozygous in the simulated genome whilst the remaining 375,000 triplets were deemed to be homozygous.

Transcript simulation. Various sets of sequencing data were generated assuming coverage levels of 5, 10, 20, 50 and 100 reads, respectively, for each triplet. For heterozygous genotypes, each coverage level was combined with one of six levels of allelic imbalance, defined by a minor transcript frequency of 0.5, 0.4, 0.3, 0.2, 0.1 or 0.05. Errors were added to the reads by randomly changing the call at the central triplet position in accordance with empirical estimates of the miscalling probabilities π and π X,Y . To emulate noisy RNA-seq data, we also performed simulations adopting a miscalling probability of π=0.05.

Genotype inference and assessment of allelic imbalance. We evaluated our statistical framework separately in terms of its genotype inference and allelic imbalance detection capabilities. This means that only simulated data from correctly inferred heterozygotes were tested for allelic imbalance. Joint power estimates for both steps were taken as equal to the product of the two individual power estimates. Real transcriptome sequencing data usually comprise variants with different read coverage and different allelic imbalance. Simulations assuming a single coverage level may therefore lead to unrealistic power estimates. To avoid such a mistake, we first pooled all simulated data sets with the same minor transcript frequency, but different coverage level, and randomly split the two pools of homozygotes and heterozygotes into 10 equally sized subsets each. Then, following a Latin-Square-like crossvalidation design, five subsets of homozygous and five subsets of heterozygous genotypes were used for parameter estimation in the 'training stage' of each validation round. For the remaining subsets comprising the 'validation stage', the underlying genotype was inferred as described above, using the miscalling probability estimates obtained in the training stage. The power of correct genotype inference was then estimated by the proportion of correctly inferred genotypes, separately for homo-and heterozygotes. Next, allelic imbalance was tested statistically only for those heterozygous genotypes that were inferred correctly in the validation stage. The power of allelic imbalance detection was estimated as the proportion of p values below either 0.05 or a threshold that was Bonferroni-adjusted to the number of tested genotypes. The validation procedure comprised 10 rounds so that each subset was used five times for training and five times for validation. Substitution-specific p values from the allelic imbalance tests were averaged over those substitutions for which the heterozygous nuclear genotype was inferred correctly in all five validation pools.

Test for allelic imbalance ignoring allele miscalls. To assess the relative benefit of taking allele miscalls explicitly into account in our statistical framework, we also subjected both the simulated and the HapMap RNA-seq data to a simple χ 2 test for equal frequencies of the genotype-constituting alleles, as proposed by [START_REF] Heap | Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing[END_REF].

Descriptive statistical analysis. The R software v2.10.1 (R Development Core Team, 2010) was used for statistical analysis and for creating graphs. Receiver operator characteristic (ROC) curves were created using 100 equidistant p values per combination of coverage level and allelic imbalance ratio. The corresponding area-under-curve (AUC) was calculated by means of linear interpolation. 

Application to Real Data

We evaluated our approach using the publicly available RNA-seq data from 60 HapMap individuals of European descent (CEPH Utah residents with ancestry from northern and western Europe; CEU) [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF]. Alignment files (all_sam_data.tar) and derived genotypes (RNASEQ60_snps.full.txt.gz) were downloaded from a dedicated web site (http://jungle.unige.ch/rnaseq_CEU60/). We only considered reads mapping to chromosomes 1 to 22, according to the UCSC database (http://genome.ucsc.edu/; NCBI Build 36.1; genome freeze hg18) [START_REF] Kent | The human genome browser at UCSC[END_REF][START_REF] Pruitt | NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins[END_REF]. For each genotype, the sequence read information was extracted from the alignment file using SAMtools [START_REF] Li | The Sequence Alignment/Map format and SAMtools[END_REF].

Information on the site-specific reads in all individuals was then merged into a single data set.

Where information on one and the same SNP was available for more than one individual, the respective genotypes were considered independent observations. For comparison, we again applied a χ 2 test for equal allele frequencies in addition to our proposed likelihood-ratio test. 

Results

Estimates of miscalling probabilities

From the analysis of the cell line transcriptome data for SNPs with known nuclear heterozygous genotype, we estimated π to be 2.17×10 -3 . The conditional miscalling probabilities π X,Y as estimated from homozygous SNPs were found to be substantially skewed (Table 1). Thus, while G was found to be preferentially (>50%) miscalled as A, and C as T, both A and T were miscalled as either G or C with nearly equal probability (∼45%). The remaining base (i.e., T or A) was approximately four times less likely to represent the respective miscall.

Genotype inference

In many RNA-seq studies, the nuclear genotypes of the investigated substitutions will be unknown, and the available transcript data will have to be used to infer them. Our simulations revealed that a heterozygous genotype can often be inferred reliably at low to moderate levels of allelic imbalance (up to 80:20), even at a coverage as low as 20 reads (Table 2). At a coverage of 5 reads, heterozygous genotypes were still identified correctly in >80% of cases if the allelic imbalance was less than 70:30. At 50-fold or higher coverage, the proportion of correctly identified heterozygous genotypes was found to exceed 97%. On the other hand, extreme allelic imbalance (95:5) could scarcely be distinguished from homozygosity, particularly at high coverage. Strong allelic imbalance (90:10) appeared to represent a change point at which a heterozygous genotype was inferred correctly in 50% to 60% of the replications, except for extremely low coverage (i.e. 5 reads). Homozygous genotypes were inferred correctly in almost all cases (from 98.9% at 10-fold or lower coverage to 100% at 50fold or higher coverage). For virtually all simulated genotypes (>99.999%), the maximum posterior probability exceeded 50%, thereby leading to the inference of a (correct or incorrect) genotype with sufficient confidence. 

Assessment of allelic imbalance

For correctly inferred (or known) heterozygous genotypes, the proposed likelihood-ratio test was capable of discriminating well between the presence and absence of allelic imbalance (Figure 1 and Table 3). Thus, the area-under-curve (AUC) at balanced transcription (50:50) was approximately 0.50 as expected, with some random variation observed at low coverage (5-to 50-fold). Slight allelic imbalance (60:40) required at least 100-fold coverage to yield satisfactory AUC values (>0.85). The AUC exceeded 0.95 for moderate imbalance (70:30) at 50-fold coverage, and for strong imbalance (80:20) already at 20-fold coverage. For stronger imbalance or higher coverage, the AUC approached 1.0. The AUC values of the χ 2 test were usually smaller than those of the likelihood-ratio test, partially because the limited number of reads per SNP allowed only a small number of different p values to be obtained by the former.

At a nominal significance level of 0.05, the statistical test for allelic imbalance defined in formulae ( 1) and (2) showed high power (>97%) to detect strong imbalance (90:10) at 20-fold coverage, and still had >85% power at 10-fold coverage (Table 4). Higher coverage was required to detect more moderate imbalance with reasonable power. Coverage of only 5 reads resulted in a nearly complete lack of power to detect any allelic imbalance. With extremely high coverage (500-fold; data not shown), the test would achieve >99% power to detect even weak imbalance (60:40). The likelihood-ratio test showed only minor inflation of the type I error in the simulations, with a maximum of 0.099 observed at 10-fold coverage (see '50:50' line in Table 4).

The χ 2 test showed similar power as the likelihood-ratio test and also the same inflation of the type I error at 20-fold or higher coverage (Table 4). For 10-fold coverage, however, the power of the χ 2 test was substantially lower than that of the likelihood-ratio test. Moreover, with a notably increased miscalling probability of 5%, where both tests were found to perform S2), the likelihood-ratio test still retained at least modest power at low coverage (10 reads) whereas the χ 2 test failed to provide any power.

Simultaneously investigating hundreds of thousands of SNPs for allelic imbalance may represent a serious multiple-testing problem. Therefore, we also quantified the power of the two tests using Bonferroni correction for the number of correctly inferred genotypes (Table 3). As was to be expected, the power dropped dramatically upon Bonferroni correction, in particular at 20-fold or lower coverage for which the power to detect allelic imbalance approached zero (Table 4). At least 50-fold coverage was required to detect strong imbalance (90:10) with >85% power whereas 100-fold coverage was required for moderate imbalance (80:20). Again, the power of the χ 2 test was found to be substantially lower than that of the likelihood-ratio test for many combinations of coverage and allelic imbalance (Table 4). Moreover, an increased allele miscalling probability of 5% required at least 20-fold coverage for the χ 2 test to provide any power to detect imbalance whereas the likelihood-ratio test yielded satisfactory power already at 10-fold coverage (Supp. Table S2).

Assessment of allelic imbalance in real transcriptome sequence data

We applied both the likelihood-ratio test and the χ 2 test to real autosome-wide RNA-seq data [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF] for which auxiliary nuclear genotype information was available in HapMap. Given the lack of power of both tests at low coverage, we restricted our analysis to SNPs with at least 5 reads. We also limited the maximum coverage to 100 reads per SNP because of the rarity of SNPs with even higher coverage. When counting each SNP multiple times according to the number of individuals analysed, a total of 434,509 SNPs met the above criteria. Of these, a total of 139,535 (32.1%) were found to be heterozygous. Our genotype inference framework correctly inferred 82.2% of the heterozygous SNPs whilst the remainder were deemed homozygous. Both the correctly and the incorrectly inferred heterozygous SNPs were subsequently tested for allelic imbalance. We found the coverage per SNP in the analysed RNA-seq data to be highly skewed, following an almost exponential-like distribution (Figure 2). Nearly half (49.3%) of the heterozygous SNPs had at most 10 reads and 75.5% had at most 20 reads. Thus, the vast majority of SNPs were characterised by comparatively low coverage.

Since the true level of allelic imbalance was unknown for the HapMap RNA-seq data, their analysis cannot serve as a gold standard for assessing the power of an allelic imbalance test.

This notwithstanding, the likelihood-ratio test classified a substantially higher proportion of SNPs with auxiliary genotype information as showing allelic imbalance than the χ 2 test, in particular for small coverage of up to 20 reads (Figure 3, continuous line). Upon closer inspection, this excess was also found to be due partially to the limited number of different p values that are technically possible with a χ 2 test. If auxiliary genotype information is not available and the nuclear genotype has to be inferred from the allelic transcripts instead, both tests have decreased power to detect imbalance (Figure 3, dashed line), also reinforcing the notion that extreme allelic imbalance is indistinguishable from homozygosity. However, for up to 20-fold coverage, the likelihood-ratio test would again confer a substantial power gain compared to the χ 2 test. 

Discussion

Transcriptome sequencing (RNA-seq) allows the detection of splice variants and the assessment of allelic imbalance in a single experiment. We proposed a coherent statistical framework for the analysis of RNA-seq data that does not only address extreme (near all-ornothing) allelic imbalance, but that also provides sufficient power to detect moderate and even weak allelic imbalance if sufficient sequencing coverage is provided. Most importantly, our method allows for calling errors, thereby being more realistic than other approaches about the idiosyncrasies of real sequencing data, including technology-and species-specific error signatures. Moreover, by explicitly taking the different probabilities of different allele miscalls into account, the proposed likelihood ratio test for allelic imbalance may provide substantially more power than a simplistic χ 2 test that ignores such information. Our framework can easily be adapted to different sequencing platforms, genome compositions and other factors that might impact upon the output of RNA-seq experiments. Furthermore, in the course of defining and evaluating our proposed likelihood-ratio test, we derived empirical estimates of the conditional miscalling probabilities of such experiments that corresponded well to earlier observations, and that likely reflect the signature of DNA polymerase infidelities [START_REF] Dohm | Substantial biases in ultra-short read data sets from high-throughput DNA sequencing[END_REF].

The statistical framework presented herein can also be applied to infer the unknown nuclear genotype underlying error-prone RNA-seq data as long as allelic imbalance is at most moderate (up to a ratio of 80:20). This means that it would still be possible to analyse allelic imbalance even if prior information about nuclear genotypes is lacking or difficult to obtain.

The resolution of allelic imbalance achievable in such instances roughly coincides with that resulting from a restriction of the analysis to variants with a minor allelic transcript frequency >15% [START_REF] Heap | Genome-wide analysis of allelic expression imbalance in human primary cells by high-throughput transcriptome resequencing[END_REF]. Potential applications of RNA-based nuclear genotype inference include the profiling of somatic cells, particularly in cancer, which often show an accumulation of somatic mutations [START_REF] Pleasance | A comprehensive catalogue of somatic mutations from a human cancer genome[END_REF]. It should be noted, however, that extreme allelic imbalance is inherently indistinguishable from homozygosity if nuclear genotype information is missing. Moreover, RNA editing may hamper the inference of nuclear genotypes from RNA-seq data even further. Another point of concern may be the fact that, because the prior probability of a given genotype depends upon many factors including the species and population under study, the genomic region of interest etc, we chose to assign equal prior probabilities to all possible genotypes in our simulations and subsequent analyses.

If the true underlying distribution is substantially skewed in a given research context, this could of course be accounted for in more specific evaluations outside the scope of our manuscript. Furthermore, at least as regards power considerations, the effects of a certain genotype being rare and therefore inferred incorrectly more often than others owing to equal priors are likely to average out. Finally, we are of course aware that alternative algorithms have been proposed to infer genotypes from sequence reads using, for example, probabilistic graphical models and a binomial distribution [START_REF] Goya | SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors[END_REF]. However, since our main focus was the assessment of allelic imbalance, not genotype inference, we refrained from comparing our framework with these other methods.

Our simulations clearly demonstrated that, once the underlying nuclear genotype is known, the proposed likelihood-ratio test has high power to detect strong allelic imbalance even at moderate coverage, and is still well powered to detect moderate imbalance if higher coverage is provided. The expected level of allelic imbalance should therefore determine the envisaged sequencing coverage of RNA-seq experiments. If Bonferroni correction for multiple testing is deemed necessary, for example, in genome-wide experiments, then at least 100-fold coverage seems mandatory for detecting allelic imbalance weaker than 90:10. Particularly at low coverage or when Bonferroni correction is applied, the proposed likelihood-ratio test provides substantially more power to detect allelic imbalance than a χ 2 test that ignores miscalling altogether. This power gain became even more evident with 'noisy' RNA-seq data that would result from an increased allele miscalling probability. The observed drop in power of both tests to detect allelic imbalance when the nuclear genotype has to be inferred first is not surprising because only variants that were balanced enough to be called heterozygous were tested in the validation stage. Finally, although our simulations revealed a minor inflation of the type I error for both tests, especially at high coverage, we wish to emphasize that this lack of conservativeness should be of minor practical relevance. Testing for allelic imbalance will most often serve the purpose of (biological) hypothesis generation so that a higher type II error rate, as has been noted for the χ 2 test at low coverage, would be of much greater concern.

If both genotype inference and allelic imbalance assessment are to be performed on the same data set, our method will work best for moderate to strong imbalance (70:30 to 80:20) with at least moderate coverage (50-fold or more). However, many research and clinical applications of transcriptome sequencing will be limited in coverage and will rarely exceed 20-fold. In view of the coverage distribution seen in the whole-transcriptome data from HapMap individuals analyzed here [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF], and given the high costs still arising from high-throughput sequencing, low coverage is therefore likely to be the rule rather than the exception for the majority of variants investigated in RNA-seq studies in the foreseeable future. Although such studies will generally have only little power to detect moderate imbalance (up to 70:30), it is exactly this type of data for which our statistical approach provides reasonable power to detect higher levels of allelic imbalance.

In summary, we presented a likelihood-based statistical framework that takes allele miscalls into account and that allows the joint detection of somatic variants and imbalanced allelic expression. In providing a means, for example, to rank somatic mutations according to their 

Receiver operator characteristic (ROC) curves for the detection of allelic imbalance using either a likelihood-ratio test (thick line) or a χ 2 test (thin line). Columns correspond to different levels of sequencing coverage, lines correspond to different levels of allelic imbalance (125,000 simulated substitutions; only substitutions with a correctly inferred heterozygous genotype were considered). For details: see text.

Figure 2

Distribution of the coverage level per SNP in the RNA-seq data from HapMap [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF]. The range of coverage levels was restricted to 5 to 100 reads. Hatched bars:

heterozygous SNPs according to HapMap [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF]; cross-hatched bars: heterozygous SNPs that were inferred correctly by the proposed genotype inference approach.

For details: see text.

Figure 3

Proportion of heterozygous SNPs in the RNA-seq data from HapMap [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF] that were found to show significant allelic imbalance by the likelihood-ratio test (thick line) or the χ 2 test (thin line). The analysis was confined to SNPs with 5-fold to 10-fold coverage. Dashed lines refer to the subset of SNPs for which the genotype was inferred correctly by the proposed genotype inference approach. SNPs were grouped according to coverage into bins of size 10. Distribution of the coverage level per SNP in the RNA-seq data from HapMap [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF]. The range of coverage levels was restricted to 5 to 100 reads. Hatched bars: heterozygous SNPs according to HapMap [START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF]; cross-hatched bars: heterozygous SNPs that were inferred correctly by the proposed genotype inference approach. For details: see text. Area-under-curve (AUC) for the inference of allelic imbalance using either a likelihood-ratio test or, in parentheses, a χ 2 test. The analysis was based upon variable subsets of the original 125,000 simulated substitutions; each subset comprised only those substitutions for which the heterozygous genotype was inferred correctly. 
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  implemented in R v2.10.1 (R Development Core Team, 2010) and Perl.

  , we therefore expect our approach to be especially useful in RNAseq studies of human cancer.
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  Proportion of heterozygous SNPs in the RNA-seq data from HapMap[START_REF] Montgomery | Transcriptome genetics using second generation sequencing in a Caucasian population[END_REF] that were found to show significant allelic imbalance by the likelihood-ratio test (thick line) or the χ2 test (thin line). The analysis was confined to SNPs with 5-fold to 10-fold coverage. Dashed lines refer to the subset of SNPs for which the genotype was inferred correctly by the proposed genotype inference approach. SNPs were grouped according to coverage into bins of size 10

  

Table 1

 1 Estimates of the conditional miscalling probabilities π X,Y obtained from the pooled homozygous SNPs of five human cell lines (see Supplementary Table1).
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				Allele Call (X)	
			A	C	G	T
		A	-	0.40210	0.48006	0.11784
	Nuclear	C	0.22214	-	0.25456	0.52330
	Allele (Y)					
		G	0.53012	0.26919	-	0.20070
		T	0.13354	0.44217	0.42429	-

Table 2

 2 Percentage of simulated substitutions (n=125,000) with correctly inferred heterozygous genotype.

	Allelic			Sequencing Coverage		
	Imbalance					
		5x	10x	20x	50x	100x
	50:50	93.5	98.9	100.0	100.0	100.0
	60:40	90.9	97.9	99.8	100.0	100.0
	70:30	82.8	93.0	98.3	100.0	100.0
	80:20	67.2	79.7	88.3	97.3	99.6
	90:10	40.9	51.7	51.4	52.6	52.8
	95:5	22.8	29.5	20.1	9.9	3.6
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Table 4 Power of two statistical tests to detect allelic imbalance at the 5% significance level and, in brackets, after Bonferroni correction for the number of substitutions analysed (LRT: likelihood ratio test). Estimates were based upon 125,000 simulated substitutions; only substitutions with a correctly inferred heterozygous genotype were considered. 
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Imbalance

Statistical inference of allelic imbalance from transcriptome data

Supporting Table 1 Number of Illumina GAII reads that were sequenced (Sequenced) and uniquely aligned to the transcriptome (Uniquely aligned).

Number of Reads (in millions) Nuclear Genotype Coriell

Cell Line

Sequenced Uniquely aligned Homozygous Heterozygous

Supporting Table 2

Power of two statistical tests to detect allelic imbalance at the 5% significance level and, in parentheses, after Bonferroni correction for the number of substitutions analysed (LRT: likelihood-ratio test). Estimates were based upon 125,000 simulated substitutions (only substitutions with a correctly inferred heterozygous genotype were considered). Both simulation and estimation were carried out assuming a miscalling probability of 5%. 
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