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Introduction

Dysregulated macrophage cholesterol homeostasis lies at the heart of early and developing atheroma, principal cause of coronary heart disease. Macrophage 'foam cells', laden with cholesterol and cholesteryl ester, result from unregulated uptake of modified lipoproteins by macrophage scavenger receptors (CD36, CD68, SR-AI/AII), and influence both plaque stability and progression [START_REF] Gerrity | The role of the monocyte in atherogenesis[END_REF]. Removal of excess cholesterol from macrophage 'foam' cells is central to lesion regression and stabilisation, and can be orchestrated, at least in vitro, by ATP binding cassette (ABC) lipid transporters such as ABCA1, ABCG1 and ABCG4, and apolipoprotein acceptors, such as apoAI and apoE [START_REF] Schmitz | The molecular mechanisms of HDL and associated vesicular trafficking mechanisms to mediate cellular lipid homeostasis[END_REF]. Efficient intracellular cholesterol transport is pivotal in marshalling appropriate cholesterol homeostasis mechanisms, regulating sterol-responsive transcription factors, such as Liver X Receptors (LXR / ) and sterol regulatory element binding proteins (SREBPs), and controlling cholesterol content of organelles, lipid rafts and membranes, and storage as cytosolic droplets of cholesteryl ester [START_REF] Schmitz | The molecular mechanisms of HDL and associated vesicular trafficking mechanisms to mediate cellular lipid homeostasis[END_REF][START_REF] Soccio | Intracellular cholesterol transport[END_REF]. Despite this, the proteins involved in non-vesicular cholesterol transport mechanisms remain poorly understood.

The steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain is a 210 amino acid, conserved 'helix-grip' fold, providing an adaptable binding site for lipids such as cholesterol, oxysterols, phospholipids and ceramides. In humans, 'START' domains are found in 15 distinct proteins (STARD1-STARD15), implicated in non-vesicular lipid transport, cell signalling and lipid metabolism [START_REF] Soccio | StAR-related Lipid Transfer (START) proteins: mediators of intracellular lipid metabolism[END_REF][START_REF] Alpy | Give lipids a START: the StAR-related lipid transfer (START) domain in mammals[END_REF]. The prototypic member of this family, steroidogenic acute regulatory protein (StAR, STARD1) delivers cholesterol from the outer to the inner mitochondrial membrane, to the P450 side chain cleavage enzyme involved in steroidogenesis [START_REF] Miller | Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter[END_REF]. Over-expression of StAR can also reduce macrophage lipid content, inflammatory status and arterial cholesterol levels [START_REF] Ning | Overexpression of mitochondrial cholesterol delivery protein, StAR, decreases intracellular lipids and inflammatory factors secretion in macrophages[END_REF][START_REF] Ning | StAR overexpression decreases serum and tissue lipids in apolipoprotein E-deficient mice[END_REF], and increase cholesterol efflux to apoAI via a mechanism dependent upon mitochondrial sterol 27hydroxylase (CYP27A1), LXR activation and increases in ABCA1 mRNA and protein [START_REF] Taylor | Over-expression of steroidogenic acute regulatory protein (StAR) increases macrophage cholesterol efflux to apolipoprotein AI[END_REF]. However, one 'down-side' of StAR over-expression in macrophages is induction of lipogenesis [START_REF] Taylor | Over-expression of steroidogenic acute regulatory protein (StAR) increases macrophage cholesterol efflux to apolipoprotein AI[END_REF], possibly mediated by LXR-dependent increases in SREBP-1c expression, a problem also associated with nonsterol LXR agonists.

The other member of the STARD1 subfamily, STARD3 (Metastatic Lymph Node 64; MLN64) is a 54kDa protein, co-amplified within chromosome band 17q12, a region containing potent oncogene ERBB2, in human breast carcinoma [START_REF] Alpy | The steroidogenic acute regulatory protein homolog MLN64, a late endosomal cholesterol binding protein[END_REF][START_REF] Dressman | Gene expression profiling detects gene amplification and differentiates tumour types in breast cancer[END_REF][START_REF] Benusiglio | HapMap-based study of the 17Q21 ERBB2 amplicon in susceptibility to breast cancer[END_REF]. STARD3 is a late endosomal protein with two distinct, conserved, cholesterol-binding domains: a region of four transmembrane helices with three short intervening loops, called the 'MENTAL' domain (MLN64 N-terminal domain), and the C-terminal 'START' domain [START_REF] Alpy | Functional characterisation of the MENTAL domain[END_REF]; the MENTAL domain may maintain cholesterol at the late endosomal membrane, prior to its shuttle to cytoplasmic acceptor(s) via the START domain.

Our work shows that cholesterol loading represses STARD3 expression, implicating this protein in dysfunctional cholesterol pathologies [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF]. Here, we sought to establish a functional role for this endosomal cholesterol trafficking protein in macrophage lipid homeostasis, testing the hypothesis that enhanced expression of STARD3 may be useful in prevention of 'foam cell' formation.

Materials and Methods

Materials

Tissue culture reagents were purchased from Lonza (Wokingham, UK); other sources include pCMV.Script, STARD4 and STARD5 clones (Origene, Cambridge Biosciences, UK), STARD3 clone (Stratagene, UK), Amaxa monocyte-macrophage transfection reagent, NuPAGE gels and buffers (InVitrogen), antibodies (AbCAM, Cambridge, UK), primers and fluorescent probes (Eurogentec, Belgium); low-density lipoprotein (Athens Research, PA, USA), acetylated as previously [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF].

Peripheral human monocyte-macrophages were purchased from Lonza (Wokingham) and human heart aorta RNA, derived from four to seven human heart aortae, was purchased from Clontech (USA). STARD4, STARD5 and empty vector control (pCMV; 0.5 g DNA) were delivered to THP-1 monocytes (10 7 ) using Amaxa Human Monocyte Nucleofector® kit (VPA-1007). Transfection efficiency using protocol Y001 (78.5%) was determined using the proprietory pmaxGFP® vector provided by Amaxa, and flow cytometric analysis of 50,000 cells. Transfected human THP-1 monocytes (1.5x10 6 /well) were differentiated into macrophages by addition of phorbol 12-myristate 13-acetate (100nM). Cellular lipids, RNA and cell protein lysates were collected 72h posttransfection. Macrophage 'foam cell' prevention experiments were initiated 48h after transfection: macrophages were radiolabelled with [ 3 H]oleic acid (1µCi ml -1 ; 10 M) in the presence or absence of acetylated LDL (50µg ml -1 ) and with or without ACAT inhibitor (447C88, 10µM), for 24h. Wild type macrophages were incubated with progesterone (10 M; 24h) or U18666A (25 M; 24h) to inhibit endosomal trafficking, using ethanol vehicle (<0.1%, v/v).

Cellular viability was assessed by conversion of dimethylthiazolyl diphenyltetrazolium bromide (MTT) to formazan; the caspase-Glo® 3/7 assay system (Promega) was used to detect apoptosis.

Lipid analyses

Flux of [ 3 H]oleic acid (1 Ci ml -1 ; 10 M) into the cholesteryl ester pool, and of [ 14 C]acetate (1 Ci ml -1 ) into cholesterol, cholesteryl ester, fatty acid, triacylglycerol and phospholipid pools were assessed by t.l.c., as previously [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF][START_REF] Palmer | Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) AI from human macrophage foam cells[END_REF]. Efflux of [ 3 H]cholesterol (0.5 Ci ml -1 ) to apoA1 (10µg ml -1 ) and HDL (10µg ml -1 ) were measured as previously [START_REF] Alpy | Functional characterisation of the MENTAL domain[END_REF][START_REF] Palmer | Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) AI from human macrophage foam cells[END_REF]. Mass of macrophage total cholesterol, triacylglycerol and choline-containing phospholipids were measured using Infinity™ and Phospholipids-B colorimetric assays (Alpha Labs, UK) [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF][START_REF] Palmer | Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) AI from human macrophage foam cells[END_REF].

Gene and protein expression

Total RNA (Tri-Reagent, Sigma-Aldrich) was isolated from macrophages (above) and reverse transcribed to cDNA utilising MMLV reverse transcriptase (RT) enzyme (Bioline). Expression of STARD3, STARD4, STARD5, APOE, ABCA1, ABCG1, ABCG4, LXR and SREBP-1 and -2 mRNA, relative to the housekeeping gene, GAPDH, was performed by quantitative (real-time) PCR, using DNA engine Opticon 2 (MJ Research). The PCR reactions contained cDNA template, Q-PCR mix, molecular biology grade water and 100nM of each forward and reverse primers and fluorescent probe (FAM/TAMRA). Thermal cycling conditions were 15min at 95°C, followed by 40 cycles of 15s at 95°C and 20s at 60°C, with status at 50°C. Primers and probes details are given in Table 1. The comparative 2 -Ct method was utilized for quantitation of each gene relative to GAPDH mRNA.

Macrophage lysates were collected in RIPA buffer plus Complete TM protease cocktail inhibitor (Roche, UK). Protein lysates (15-30µg well -1 ) were separated by SDS-PAGE (NuPAGE, 10% w/v gels), transferred to PDVF membrane and probed using anti-STARD3 (1:1000), anti-GAPDH (1:1000) rabbit polyclonal antibodies, and an anti-ABCA1 murine monoclonal antibody (1:1000). Detection was achieved using appropriate secondary antibodies (1:1000) and ECL detection system [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF]; densitometry was performed using Scion Image software.

Statistical analyses

Numbers of independent experiments are indicated in legends to Figures; values are mean±SEM, with significance (p<0.05) determined by Student's t-test, or repeated measures ANOVA, followed by Dunnett's or Tukey-Kramer post t-tests, as appropriate; *p<0.05; **p<0.01 and ***p<0.001 for comparisons indicated.

Results

Comparison of the endogenous expression of STARD3 mRNA, relative to housekeeping gene GAPDH, in human THP-1 monocytes, THP-1 macrophages, human peripheral blood monocytemacrophages and human heart aortae, is shown in Table 2. Transient over-expression of STARD3 in human THP-1 monocyte-macrophages increased mRNA levels by 87-fold (24h; p<0.001), 20-fold (48h; p<0.001) and 18-fold (72h; p<0.05) (Figure 1a), which translated into 2.2-fold (p<0.05) increases in levels of STARD3 protein after 72h (Figure 2b), by comparison with empty vector control; all values normalised to housekeeping protein, GAPDH. Cell viability was not altered by STARD3 over-expression after 72h (empty vector control 25. No changes in steady state levels of mRNA encoding sterol-responsive transcription factors SREBP1 (not detectable), SREBP2 or LXR were noted, as judged by Q-PCR (Figure 1b). In comparison, over-expression of genes encoding cytosolic cholesterol transporters, STARD4 (Figure 1c) and STARD5 (Figure 1d), exerted distinct influences on gene expression of these transcription factors: STARD4 was associated with reduced (p<0.05) expression of SREBP2, while STARD5 overexpression was associated with marked increases (p<0.05) in both SREBP2 and LXR mRNA levels.

Over-expression of STARD3 was associated with significant (p<0.05) increases (20.7-fold) in ABCA1 mRNA (Figure 2a) and protein (2.6-fold) (Figure 2b); by contrast, no changes in ABCG1 and ABCG4 mRNA (Figure 2a) were noted between STARD3 over-expressing macrophages and control cells, following normalisation to GAPDH. These changes in gene expression strongly predicted functional increases in cholesterol efflux to apoAI, rather than to HDL, following STARD3 over-expression, and this proved correct, despite a small reduction in gene expression of the endogenous acceptor APOE: [ 3 H]cholesterol efflux to apoAI (10 g ml -1 ; 24h) was enhanced by 80% (p<0.05) (Figure 2c), whereas efflux to HDL (10 g ml -1 ; 24h) did not change significantly (% HDL-specific efflux: control 5.27±0.58% versus STARD3 6.9±2.5%; n=3; NS) By contrast, inhibition of endosomal trafficking using progesterone (10 M), inhibited apoAI-specific cholesterol efflux by 54% (n=3; p<0.01). Decreases in biosynthesis of cholesterol (25.5%; p<0.05) and cholesteryl ester (34.1%; p<0.01), fatty acid (27.3%; p<0.05), triacylglycerol (41.9%; p<0.01) and phospholipids (27.7%; p<0.05) from [ 14 C]acetate, were observed in STARD3 over-expressing macrophages (Figure 2d), compared with empty vector controls; no change in total cholesterol (control 26.1±3.91 g mg -1 protein versus STARD3, 27.2±3.15 g mg -1 ), triacylglycerol (83.7±10.9 g mg -1 protein versus STARD3 86.3±21.3 g mg -1 protein) or phospholipid mass (42.3± 3.96 g mg -1 protein versus STARD3 47.1 ±8.31 g mg -1 protein) occurred over the time scale investigated. Again, inhibition of endosomal trafficking using U18666A (25 M) or progesterone (10 M) induced the opposite effect, increasing incorporation of [ 14 C]acetate into each lipid pool (p<0.05) (Figure 2d).

Importantly, when STARD3 over-expressing cells were challenged with AcLDL (50 g ml -1 ; 24h), no significant increases in cholesterol esterification occurred, as judged by incorporation of [ 3 H]oleate into the cholesteryl ester pool; in fact, a small but significant (p<0.05) decrease was observed. By contrast, in untreated and empty vector control cells, cholesterol [ 3 H]esterification increased by around 2.2-fold (p<0.01) when treated with AcLDL under the same conditions (Figure 3); a change blocked by ACAT inhibitor, 447C88 (10 M). Equally, an apparent reduction in intensity of Oil-Red-O staining was observed in macrophages over-expressing STARD3, compared with empty vector control, after treatment with AcLDL (50 g ml -1 ; 24h) (Figure 3).

Discussion

The 'START' family of lipid trafficking may be involved in non-vesicular cholesterol transport, regulating sterol-responsive transcription factors, controlling the cholesterol content of organelles, lipid rafts and membranes, and storage of cholesterol as cytosolic droplets of cholesteryl ester, although the mechanisms remain poorly understood at present. Notably, our work demonstrates that over-expression of distinct cholesterol and oxysterol-binding proteins within the 'START' family of lipid trafficking proteins, STARD1 (StAR) [START_REF] Taylor | Over-expression of steroidogenic acute regulatory protein (StAR) increases macrophage cholesterol efflux to apolipoprotein AI[END_REF], STARD3, STARD4 and STARD5, exert different effects on gene expression of sterol-responsive transcription factors, SREBP2 and LXR . Over-expression of mitochondrial cholesterol transporter, StAR is associated with induction of lipogenesis [START_REF] Taylor | Over-expression of steroidogenic acute regulatory protein (StAR) increases macrophage cholesterol efflux to apolipoprotein AI[END_REF], possibly via LXR-dependent induction of SREBP-1c.

Transient over-expression of cytosolic STARD4 decreased SREBP2 mRNA levels by approximately half (Figure 1c), while over-expression of the gene encoding cytosolic STARD5 [START_REF] Rodriguez-Agudo | Localisation of the StarD5 cholesterol binding protein[END_REF] protein resulted in marked increases in SREBP2 and LXR message levels, compared with controls (Figure 1d). Over-expression of STARD4 [START_REF] Soccio | Differential gene regulation of StarD4 and StarD5 cholesterol transfer proteins[END_REF]. By contrast, STARD3 over-expression did not impact on either SREBP2 or LXR mRNA levels (Figure 1b) and repressed lipogenesis (Figure 2d). While some of the observed effects may be due to differences in gene expression and translation levels, despite the delivery of equivalent amounts of DNA to the same number of cells, but may also reflect the efficiency and/or directionality of cellular cholesterol transport achieved [START_REF] Soccio | Intracellular cholesterol transport[END_REF][START_REF] Soccio | StAR-related Lipid Transfer (START) proteins: mediators of intracellular lipid metabolism[END_REF].

Previously, we speculated that STARD3 may traffick endosomally derived cholesterol to the endoplasmic reticulum and/or the plasma membrane [START_REF] Borthwick | Differential regulation of the STARD1 subfamily of START lipid trafficking proteins in human macrophages[END_REF]; even in the absence of lipoprotein-derived cholesterol, cholesterol cycles between the plasma membrane and endosomes [START_REF] Holtta-Vuori | Endosomal cholesterol traffic: vesicular and nonvesicular mechanisms meet[END_REF]. Thus, STARD3 could help to increase the cholesterol content of the ER membrane, and retention of SREBPs by the SCAP/Insig-1(-2) complex, in agreement with the generalised repression of cholesterol, fatty acid and triacylglycerol biosynthesis observed here. Cholesterol delivery to the ER might also be expected to expand the pool available for esterification by Acyl CoA: Cholesterol AcylTransferase-1 (ACAT-1; SOAT1). Instead, expansion of the cholesteryl [ 3 H]oleate pool following exposure to acetylated LDL, was effectively blocked in cells over-expressing STARD3. One explanation for this data is that delivery of sterol to the endoplasmic reticulum was just sufficient to sequester SREBPs, but does not reach the threshold required to activate ACAT. In turn, this must imply that the bulk of the endosomal cholesterol trafficked by STARD3 be efficiently directed elsewhere, perhaps to the plasma membrane to facilitate cholesterol efflux (below), possibly via vesicular transport facilitated by the Rab family of small GTPases. Dissociation between cholesterol transport to membrane-bound SREBP transcription factors and the substrate pool available for cholesterol esterification is documented [START_REF] Du | Effects of 25-hydroxycholesterol on cholesterol esterification and SREBP processing are dissociable: implications for cholesterol movement to the regulatory pool in the endoplasmic reticulum[END_REF][START_REF] Kristiana | Different kinetics of cholesterol delivery to components of the cholesterol homeostatic machinery: Implications for cholesterol trafficking to the endoplasmic reticulum[END_REF]: Kristiana et al (2008) noted clear differences in kinetics between endosomal delivery of LDL-derived cholesterol to SREBPs and ACAT in mutant Chinese Hamster Ovary cells with cholesterol trafficking defects (including Niemann Pick Type C), contending that different cholesterol pools and/or transport pathways supply SREBPs and ACAT within the ER [START_REF] Kristiana | Different kinetics of cholesterol delivery to components of the cholesterol homeostatic machinery: Implications for cholesterol trafficking to the endoplasmic reticulum[END_REF].

Our data also agrees well with deletion studies of the START domain of STARD3 in mice in vivo [START_REF] Kishida | Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism[END_REF]. Although relatively modest changes in lipid phenotype were observed, probably due to functional redundancies within the START family of cholesterol transfer proteins [START_REF] Kishida | Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism[END_REF][START_REF] Riegelhaupt | Targeted disruption of StARD4 leads to modest weight reduction and minor alterations in lipid metabolism[END_REF], significant increases in hepatic sterol ester were noted after feeding a high fat diet, together with reduced conversion of cholesterol to steroid hormones [START_REF] Kishida | Targeted mutation of the MLN64 START domain causes only modest alterations in cellular sterol metabolism[END_REF]. Use of a dominant negative mutant of STARD3 ( START-STARD3) caused extensive cholesterol accumulation in CHO cells and COS-7 cells, accompanied by inhibition of late endosomal trafficking, similar to the phenotype caused by functional loss of Niemann Pick Type C1/2 proteins [START_REF] Zhang | MLN64 mediates mobilisation of lysosomal cholesterol to steroidogenic mitochondria[END_REF]. Moreover, in cholesterol-laden cells, STARD3 becomes trapped at the periphery of cholesterol-laden lysosomes, reflecting loss of dynamic cholesterol movement [START_REF] Zhang | MLN64 mediates mobilisation of lysosomal cholesterol to steroidogenic mitochondria[END_REF], and deletion of STARD3 is linked with disrupted actin-mediated dynamics of late endocytic organelles, suggesting that cholesterol binding or sensing by STARD3 in late endosomal membranes may govern actin-dependent fusion and degradative activity of that compartment [START_REF] Holtta-Vuori | MLN64 is involved in actin-mediated dynamics of late endocytic organelles[END_REF]. Hepatic over-expression of STARD3 in vivo is associated with increased conversion to bile acids [START_REF] Ren | Effect of increasing the expression of cholesterol transporters (StAR, MLN64 and SCP-2) on bile acid synthesis[END_REF], although in a separate study, apoptosis and hepatic toxicity were also reported, probably resulting from the grossly elevated and highly unphysiological levels of STARD3 utilised [START_REF] Tichauer | Overexpression of the cholesterol-binding protein MLN64 induces liver damage in the mouse[END_REF]; such changes were not observed in this study.

Over-expression of STARD3 in this study was also associated with increased expression of ABCA1 mRNA and protein. The latter suggests that STARD3, like NPC1, may facilitate trafficking of endosomal cholesterol and possibly ABCA1 protein, through this compartment to the plasma membrane, increasing pools of membrane cholesterol and/or transporter available for efflux to apoAI [START_REF] Rigamonti | Liver X receptor activation controls intracellular cholesterol trafficking and esterification in human macrophages[END_REF]. The mechanism(s) by which STARD3 increases mRNA levels of ABCA1 are less obvious, as no induction of LXR was observed in our experiments, and Npc1 inactivation reduces Abca1 protein, but does not alter Abca1 mRNA levels in murine macrophages [START_REF] Wang | Differentiation regulation of ATP binding cassette protein A1 expression and ApoA-I lipidation by Niemann-Pick Type C1 in murine hepatocytes and macrophages[END_REF]. However, SREBPs (1 and 2) can exert repressive effects on ABCA1 expression, decreasing cholesterol efflux [START_REF] Zhou | Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism[END_REF][START_REF] Zeng | Sterol responsive element binding protein (SREBP) 2 down-regulates ATP binding cassette transporter A1 in vascular endothelial cells: a novel role of SREBP in regulating cholesterol metabolism[END_REF]. Thus, it is possible that sequestration of SREBPs at the endoplasmic reticulum, suggested by the coordinated loss of lipid biosynthesis observed here, may relieve inhibition of ABCA1 gene expression and increase cholesterol efflux to apoAI.

Alternatively, STARD3 expression could alter levels of ABCA1 mRNA by changing ratios of saturated to unsaturated fatty acids [START_REF] Schmitz | Transcriptional regulatory networks in lipid metabolism control ABCA1 expression[END_REF], or perhaps via its involvement in actin-mediated dynamics of late endosomes [32] trigger changes in actin-dependent gene expression [33].

In conclusion, STARD3 over-expression may be useful in limiting atherogenesis, by upregulating cholesterol efflux mechanisms, reducing cholesterol synthesis and blockade of cholesterol esterification: in vivo studies are now needed to establish this contention, using murine models of atheroma. 33. Castano, E., Philimonenko, V.V., Kahle, M., Fukalova, J., Kalendova, A., Yildirim, S., Dzijak, R., Dingova-Krasna, H. and Hozak, P. (2010) Actin complexes in the cell nucleus: new stones in an old field. Histochem. Cell Biol. 133: 607-626. Licenced copy. Copying is not permitted, except with prior permission and as allowed by law.
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Figure 1 a

 1 Figure 1 a) Transient over-expression of STARD3 compared with empty vector control (24-72h), in human THP-1 monocyte-macrophages and b) effect of STARD3 over-expression (72h) on levels of SREBP2 and LXR mRNA compared with over-expression of STARD4 (c) and STARD5 (d) on gene expression of the same transcription factors. Values are mean±SEM of three independent experiments; *p<0.05, **p<0.01 and ***p<0.001 compared with empty vector control.

Figure 2 a

 2 Figure 2a) Levels of ABCA1, ABCG1, ABCG4 and APOE mRNA in monocyte-macrophages over-expressing STARD3 (72h), compared with empty vector control, in three independent experiments. b) Levels of STARD3 and ABCA1 protein, compared with housekeeping protein, GAPDH, in THP-1 monocyte-macrophages (72h): values representative of three independent experiments. The effect of STARD3 over-expression on c) cholesterol efflux to apoAI (10 g ml -1 ), in five independent experiments, and d) biosynthesis of lipids from [ 14 C]acetate (1 Ci ml -1 ), compared with empty vector controls, in four independent experiments; endosomal inhibitors U18666A (25 M) and/or progesterone (10 M) are included as positive controls. All values are mean±SEM; significant differences (p<0.05) from the control incubation for each lipid are indicated as a: free cholesterol, b: cholesteryl esters, c: fatty acids, d: triacylglycerol and e: phospholipids.

Figure 3 10 Figure

 310 Figure 3Incorporation of [ 3 H]oleate (10 M; 1 Ci ml -1 ) into the cholesteryl ester pool, following incubation with acetylated LDL (50 g ml -1 ; 24h) in the presence or absence of ACAT inhibitor 447C88 (10 M) in wild type cells, and in cells transfected with either empty vector or STARD3. Values are mean±SEM of four independent experiments; *p<0.05, **p<0.01 compared with controls; †p<0.05 compared with acetylated LDL alone, and ‡ ‡p<0.01 compared with empty vector control treated with acetylated LDL. The bottom panel (A-D) illustrates Oil-Red-O staining in empty vector (A, C) and STARD3 over-expressing (B, D), incubated in the absence (A, B) or presence (C, D) of AcLDL (50 g ml -1 ; 24h).
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