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Abstract
We study the travelling wave problem
Jxu—u—cu 4+ flu)=0 in R, wu(—o0)=0, wu(+oo)=1

with an asymmetric kernel J and a monostable nonlinearity. We prove the existence of a minimal
speed, and under certain hypothesis the uniqueness of the profile for ¢ # 0. For ¢ = 0 we show
examples of non-uniqueness.

Key words: integral equation, nonlocal anisotropic dispersal, travelling waves, KPP nonlinearity

1. Introduction and main results

During the past ten years, much attention has been drawn to the study of the following
nonlocal equation

(1.1) %—Z:j*UfUan(U) in R"x R*,

(1.2) U(z,0) = Uy(x)
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where 7 is a probability density on RY and f a given nonlinearity. Such kind of equations
appear in various applications ranging from population dynamics to Ising models as seen
in [1,6,12,13,15,16,19,23,24] among many references. Here we will only be concerned with
probability densities J which satisfy the following assumption:

J e C@R"), J(z) >0, J(2)dz =1, / |2|T(2) dz < o0,
R™ R™

and nonlinearities f of monostable type, e.g.

(f1) f € C*(R), which satisfies f(0) = f(1) =0, f(1) <0, f|,1) >0
and f|g\[0,1] < 0.

Such nonlinearities are commonly used in population dynamics to describe the interaction
(birth, death , ...) of a species in its environment as described in [14,17].

Our analysis in this paper will mainly focus on the travelling wave solutions of equation
(1.1) These particular type of solutions are of the form U, (x,t) := u(x.e + ct) where e €
S*~! is a given unit vector, the velocity ¢ € R and the scalar function u satisfy

(1.3) Jxu—u—cu' + flu)=0 in R,
(1.4) u(—o0) =0,
(1.5) u(+o00) =1,

where u(400) denotes the limit of u(z) as © — £oo and J is the real function defined as

9= [ 70
where I, = {y € RY : (y,e) = s}. Thus we shall assume that the kernel J satisfies

(1) J e C(R), J(z) >0, /]RJ(z)dz =1, /]R|Z|J(z) dz < 0.

We will call a solution u € L*(R) to (1.3)—(1.5) a travelling wave or travelling front if it
is non-decreasing.

The first works to study travelling fronts in this setting are due to Schumacher [24] and
in related nonlocal problems by Weinberger [26,25] who constructed travelling fronts sat-
isfying some exponential decay for J symmetric and particular monostable nonlinearities,
the so called KPP nonlinearity, e.g.

(f2) f is monostable and satisfies f(s) < f'(0)s.

Then, Harris, Hudson and Zinner [18] and more recently Carr and Chmaj [4] , Chen and
Guo [5] and Coville and Dupaigne [11] extended and completed the work of Schumacher
to more general monostable nonlinearities and dispersal kernels .J satisfying what is called
in the literature the Mollison condition [21-23]:

oo

(32) JA >0 such that / J(—=2)e* dz < +oo.

— 00

More precisely, they show that

Theorem 1.1 [/,5,11,18,24] Let | be a monostable nonlinearity, J be a symmetric func-
tion satisfying (j1)-(j2). Then there exists a constant ¢* > 0 such that for all ¢ > c*,
there exists an increasing function u, such that (u,c) is a solution of (1.3)- (1.5) and for
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any ¢ < ¢, there exists no increasing solution of (1.3)- (1.5). Moreover, if in addition
1/(0) > 0, then any bounded solution (u,c) of (1.3)- (1.5) is unique up to translation.

Furthermore, as in the classical case, when the nonlinearity is KPP the critical speed
c* can be precisely evaluated by means of a formula.

Theorem 1.2 [/,5,18,24,25] Let f be a KPP nonlinearity and J be a symmetric function
satisfying (j1)-(j2). Then the critical speed c* is given by

¢* = min = (/R J(2)er dx + f/(0) — 1) .

A>0

In Theorems 1.1 and 1.2 the dispersal kernel J is assumed to be symmetric. This
corresponds to the situation where the dispersion of the species is isotropic. Since the
dispersal of an individual can be influenced in many ways (wind, landscape,...), it is
natural to ask what happens when the kernel J is non-symmetric. In this direction, we
have the following result:

Theorem 1.3 Let f be a monostable nonlinearity satisfying (f1) and J be a dispersal
kernel satisfying (j1). Assume further that there exists (w, k) with w € C(R) a super-
solution of (1.3)-(1.5) in the sense:

Jxw—w—rw + f(w) <0 in R,
(16) w(=50) > 0,
w(+o0) > 1

and such that w(xg) < 1 for some xy € R. Then there exists a critical speed c¢* < k,
such that for all ¢ > ¢* there exists a non decreasing solution (u,c) to (1.3)-(1.5) and for
¢ < c*there exists no non-decreasing travelling wave with speed c.

We emphasize that in the above theorem we do not require monotonicity of the super-
solution w. The first consequence of Theorem 1.3 is to relate the existence of a minimal
speed ¢* and the existence of a travelling front for any speed ¢ > ¢* to the existence of a
supersolution. In other words, we have the following necessary and sufficient condition:

Corollary 1.4 Let f and J be such that (f1) and (j1) holds. Then there exists a non
decreasing solution with minimal speed (u,c*) of (1.3)-(1.5) if and only if there exists a
supersolution (w, k) of (1.3)-(1.5).

The existence of a supersolution in Theorem 1.3 is automatic under extra assumptions
on J. For instance, we have

Theorem 1.5 Let f be a monostable nonlinearity and J satisfy (j1) and Mollison’s
condition (j2). Then there exists a critical speed ¢* < k, such that for all ¢ > c¢* there
exists a non decreasing function u such that (u,c) is a solution of (1.3)-(1.5). While there
is mo non decreasing travelling wave with speed ¢ < c*.

Next we examine the validity of Theorem 1.2 for nonsymmetric .J. Let ¢! denote the
following quantity

¢ = inf % (/R J(—z)er dx + £/(0) — 1) .
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For ¢ > ¢! we denote A(c) the unique minimal A > 0 such that
—cA +/ J(—z)e*dx + f'(0) —1=0.
R
We generalize a result of Carr and Chmayj [4] to the case when J is nonsymmetric.

Theorem 1.6 Let f be a monostable nonlinearity satisfying (f1), f'(0) > 0, f € C*7
near 0 and there ism > 1,9 >0, A > 0 such that

(1.7) |u— f(u)] > Au™  for all0 <u <§.

Let J be a dispersal kernel satisfying (j1), J € C* and is compactly supported. Then
ct < ¢*. Moreover, if u is a solution of (1.3), (1.4), 0 <u <1, u# 0 then, when ¢ = ¢t

, u(z)
(18) 0< zglzloo W < 00,

and when ¢ > ¢!

(1.9) 0< lim ulz) < 0.

T——00 e)\(c):n

In Theorem 1.6 we do not need to assume that the solution u to (1.3), (1.4) is monotone.

Corollary 1.7 If f and J satisfy the hypotheses of Theorem 1.6 and [ satisfies also (f2)
then
¢ =ch

Observe that when J is symmetric, by Jensen’s inequality ¢! > 0. On the other hand,
it is not difficult to construct examples of nonsymmetric J such that ¢! < 0. This fact
should not be surprising. Indeed, let us recall a connection between the nonlocal problem
(1.1) and a local version which arises by considering a family of kernels that approaches
a Dirac mass, that is, J.(z) = 1J(Z) with ¢ > 0. Assuming that v is smooth and J

e
decays fast enough, expanding J. x u — u in powers of £ we see that

Toxu(@) = () = 2 [ IE) ) = @) dy = [ Tl +22) — u(w) d:
(1.10) = eBu/ (x) + 2au (x) + o(e?)

as € — 0, where

_ 1 2 .
a = 2/RJ(z)z dz and f /]RJ( z)zdz.

Thus there is a formal analogy between J x u — u and fu/(z) + eau’(x). When J is
symmetric then § = 0 and the results for travelling waves of (1.3)—(1.5) are similar to
those for travelling wave solutions of

(1.11) au" —cu'+ flu)=0 InR, wu(—o00)=0, u(+o0)=1,

where & > 0. For (1.11) there exists a minimal speed ¢* > 0 such that travelling front
solutions exist if and only if ¢ > ¢* (see [20]). For general asymmetric J we see from
(1.10) that a better analogue than (1.11) for (1.3)—(1.5) is the problem

o'’ —(c—B)u' + f(u) =0 R, u(-00)=0, u(+oc)=1

for some & > 0 and 3 € R. This equation is the same as (1.11) with a shift in the speed,
that is, the minimal speed is ¢* 4+ 8 where ¢* is the old minimal speed in (1.11). This
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new minimal speed can be either positive or negative depending on the size and sign of
(B, which is related to the asymmetry of J.

Regarding the uniqueness of the profile of the travelling waves we prove:
Theorem 1.8 Assume f and J satisfy the hypotheses of Theorem 1.6 and J satisfies:
(1.12) Ja<0<b suchthat J(a)>0, J(b)>0.
Then for ¢ # 0 the solution of the problem (1.3)-(1.5) is unique up to translation.

We notice if ¢ # 0 then any solution to (1.3) is continuous. In the case ¢ = 0, the
same argument used to prove Theorem 1.8 gives uniqueness for continuous solutions of
(1.3)-(1.5) provided that this problem admits a continuous solution (see Remark 6.4). In
the case ¢ = 0 one sufficient condition for a solution 0 < u <1 to (1.3) to be continuous
is that

u — f(uw) is strictly increasing in [0, 1].
In Proposition 6.7 we give examples of f and non-symmetric J such that no solution of
(1.3)-(1.5) is continuous, and this problem admits infinitely many solutions.
Our results also have implications in the study of solutions to

(1.13) Jxu—u+ f(u)=0

which corresponds to (1.3) with velocity ¢ = 0. In [10] it was shown that if f(u)/u
is decreasing and J is symmetric then any non-trivial bounded solution of (1.13) is
identically 1. The symmetry of J was important in the argument and it was conjectured
that if the kernel J is not even (1.13) may have more than one solution. For this discussion
we shall assume that f and J satisfy the hypotheses of Theorem 1.6 and f also satisfies
(f2). We observe that when the dispersal kernel is not even, the critical velocity ¢* can
be non-positive. If ¢* < 0 we obtain that the equation (1.13) has a non-constant positive
solution satisfying (1.4)-(1.5). Similarly, equation (1.13) has positive solutions satisfying

lim w(z) =1, lim wu(z) =0, wu isnon-increasing
T—r—00 T—r+00

if and only if ¢, < 0 where

Cy = r/\n;r&% (/R J(x)e M dx + f(0) — 1> .
Observe that by Jensen’s inequality we have ¢* > 0 or ¢, > 0. In summary, besides u = 0
and u = 1 equation (1.13) has travelling wave solutions if ¢* < 0 or ¢, < 0. One may
wonder whether other types of solutions may exist, maybe not monotone or with other
behavior at +co. Under some additional conditions on f we have a complete classification
result for (1.13), in the sense that we do not require the boundary conditions at +oo,
continuity nor the monotonicity of the solutions. This result can be shown by slightly
modifying the arguments for Theorem 2.1 in [4].

Theorem 1.9 Suppose f and J satisfy the hypotheses of Theorem 1.6, J satisfies (1.12)
and f'(r) < f(0) for r € (0,1). Then any solution 0 < u < 1 of problem (1.13) is
one of the following: 1) w = 0 or w = 1, 2) a non-decreasing travelling wave or 3) a
non-increasing travelling wave. Moreover in cases 2) and 3) the profile is unique up to
translation.



Regarding Mollison’s condition (j2) let us mention that recently Kot and Medlock in
[21] have shown that for a one dimensional problem when the dispersal kernel .J is even
with a fat tails and f(s) := s(1 — s), the solutions of the initial value problem (1.1) do
not behave like travelling waves with constant speed but rather like what they called
accelerating waves. Moreover, they predict the apparition of accelerating waves for (1.1).
More precisely, supported by numerical evidence and analytical proof, they conjecture
that (1.1) admits travelling wave solutions if and only if for some A > 0

+oo
/ J(2)e* dz < 4o0.

It appears from our analysis on non symmetric dispersal kernels, that the existence of
travelling waves with constant speed is more related to

+oo
/ J(2)eM dz < o0 for some A >0
0

if we look at fronts propagating from the left to the right and
—+o0
/ J(—2)eM dz < o0 for some A >0
0

if we look at fronts propagating from the right to the left. As a consequence, for asym-
metric kernels, it may happen that in one direction, the solution behave like a front with
finite speed and in the other like an accelerating wave.

The outline of this paper is the following. In Section 2, we recall some results on front
solutions for ignition nonlinearities, then in Section 3 we construct increasing solution
of for J compactily supported. Section 4 is devoted to the proofs of Theorem 1.3 and
Theorem 1.5. Section 5 contains the proof of Theorem 1.6 and Corollary 1.7. In Section 6
we prove the uniqueness of the profile Theorem 1.8 and Theorem 1.9.

2. Approximation by ignition type nonlinearities

The proof of Theorem 1.3 essentially relies on some estimates and properties of the
speed of fronts for problem (1.1) with ignition type nonlinearities f. We say that f is of
ignition type if f € C*(]0,1]) and

(3) there exists p € (0, 1) such that fjj , = 0,f|(,1) >0 and f(1) = 0.

Consider the following problem

Jxu—u—cu' + flu) =0 inR
u(+o0) = 1,

where ¢ € R and f is either an ignition nonlinearity or a monostable nonlinearity.

The main result in this section is the following:
Proposition 2.1 Let f be a monostable nonlinearity and assume that J is a non neg-
ative continuous function of unit mass. Assume further that there exists (w,k) a super-
solution of (1.3)-(1.5). Let (fx)ken be any sequence of ignition functions which converges
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pointwise to f and satisfies Vk € N, fr, < fre1 < f and let ¢, be the unique speed of fronts
associated to (2.1). Then
2.2 li =c"
(2.2) G e =c
exists and is independent of the sequence fr. Furthermore, ¢* < k, there exists a non
decreasing solution (u,c*) of (1.3)-(1.5) and for ¢ < ¢* there are no non-decreasing
solutions to (1.3)-(1.5).

The fact that for (2.1) with ignition type nonlinearity there exists a unique speed of
fronts has been recently established by one of the authors in [7-9] and holds also for the
following perturbation of (2.1)

e +Jxu—u—cu' + flu)=0 inR
u(4o00) = 1,

where € > 0, c € R.
Theorem 2.2 ([9, Theorem 1.2] and [7, Theorem 3.2]) Let f be an ignition nonlinearity
and assume that J satisfies (j1). Then there exists a non decreasing solution (u,c) of
(2.3). Furthermore the speed ¢ is unique. Moreover, if (v,c') is a super solution of (2.3),
then ¢ < ¢'. The inequality becomes strict when v is not a solution of (2.3).
We remark that in this results the supersolution v is not required to be monotone.
Corollary 2.3 Let f1 > fa, f1 Z fo be two ignition nonlinearities and assume that J is
a non negative continuous function of unit mass with finite first moment. Then c¢1 > co
where ¢1 and co are the corresponding unique speeds given by Theorem 2.2.

We also recall some useful results on solutions of (2.3), which can be found in [9,11].
Lemma 2.4 [9, Lemma 2.1]
Suppose | satisfies (f1) and J satisfies (j1). Assume e >0, c€ R and let 0 < u <1 be
an increasing solution of (2.3). Then

fF) =o,

where 1% are the limits of u at +o0c.
Lemma 2.5 [9, Lemma 2.2] Let f and J be as in Theorem 2.2. Then following holds

pc® — vl <0

where the constants u,v are defined by

= inf{p,1 — p} V::/J(z)|z|dz
R

Proof of Proposition 2.1. Let (f,)nen be a sequence of ignition functions which
converges pointwise to f and satisfies Vn € N, f,, < f,41 < f. Let (un,¢,) denote the
corresponding solution given by Theorem 2.2. By Corollary 2.3 (¢, )nen is an increasing
sequence. Next, we see that ¢, < k. Since w satisfies

Jxw—w—rw + fr(w) <0 inR

by Theorem 2.2 we get
cn < K.
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Let us observe that we can normalize the sequence of solutions u, by u,(0) = 1.
Indeed, when ¢* = 0 since ¢, < ¢* the solution u,, is smooth. Since any translation of
Uy is a solution of the problem and wu,(—o00) = 0, uy(+00) = 1 we can normalize it by
un (0) = % When c¢* # 0, since ¢, — ¢* the sequence u,, is smooth for all n sufficiently
large. Thus the same normalization can be also taken in this situation.

Since (up)nen is an uniformly bounded sequence of increasing functions, using Helly’s
lemma there exists a subsequence which converges pointwise to a non decreasing function

u. Moreover, u satisfies in the distribution sense
Jxu—u—cu'+ flu) =0 inR,

and by the monotonicity and the normalization of u,,
1 1
(2.4) u(z) < 5 forall x <0, wu(x) > 5 for all z > 0.

Observe that when ¢* # 0, using C} . regularity, we get that u € C}, and satisfies the
above equation in a strong sense. Otherwise, when ¢* = 0, a standard argument shows

that u satisfies almost everywhere the equation
Jxu—u+ f(u)=0.
Observe that by (2.4) w is non trivial. It remains to show that u satisfies the right

boundary conditions. Now, since u is non decreasing and bounded, the following limits
are well defined:

== le}rjloou(x)
+ .
"= mgr}raoou(x)

We get [T =1 and [~ = 0 using Lemma 2.4, the definition of f and the monotonicity of
u.

To finish we need to prove that ¢* is independent of the sequence f,. So consider
another sequence f;, of ignition functions such that f, < fn,+1 < f and f,, — f pointwise.
Let (@, ¢,) denote the front solution and speed of (2.1) with nonlinearity f,, and let

¢= lim ¢,.
n—o0

Since u = lim,,_, o U, satisfies
Jxu—u—cu' + fr(u) <0

by Theorem 2.2 we have ¢, < ¢*. Hence ¢ < ¢* and reversing the roles of f,, and fn we
get ¢* < ¢C.

Finally observe that for ¢ < ¢* there is no monotone solution to (1.4)-(1.5). Otherwise
this solution would be a supersolution of (2.1) with f,, instead of f. By Theorem 2.2 we
would have ¢, < ¢ for all n, which is a contradiction.

O

3. Construction of solutions of (1.3)-(1.5) when J is compactly supported

In this section we construct monotone solutions of (1.3)-(1.5) when J is compactly
supported. More precisely we prove the following



Proposition 3.1 Let f be a monostable nonlinearity and J be continuous compactly
supported which satisfies (j1). Assume further that there exists a € R such that {a, —a} C
supp(J). Then there exists a critical speed ¢, such that for all ¢ > ¢* there exists a non
decreasing function u such that (u,c) is a solution of (1.3)-(1.5). Moreover, there is no
non decreasing travelling wave with speed c¢ < c*.

To prove the above result we proceed following the strategy developed in [11]. It is based
on the vanishing viscosity technique, apriori estimates, the construction of adequate super
and sub-solutions and the characterization of the critical speed obtained in Section 2.
Let us first briefly explain how we proceed.

Step 1:
For convenience, let us first rewrite problem (2.3) the following way:

Mul+ f(u) =0 inR
(3.1) u(—o00) = 0
u(+o0) = 1,

where the operator M is defined for a given ¢ > 0, c € R by
(3.2) Mu] = M(e,c)u=eu” +Jxu—u—cu'.

For problem (3.1), for small €, we construct a super solution which is independent of .
More precisely we show the following

Lemma 3.2 Let J and f be as in Theorem 3.1. Then there exists 9 and (w, k) such
that Ve < eq, (w, k) is a super-solution of (3.1).

Step 2: Using the above super solution and a standard approximation scheme, for fixed
0 < e < gg, we prove the following

Proposition 3.3 Fiz0 < e < ¢ and let J and f be as in Theorem 3.1. Then there exists
c*(g) such that Ve > c*(g), there exists an increasing function u. such that (ue,c) is a
solution of (3.1). Moreover c¢*(g) < k where (w, k) is the super-solution of Lemma 3.2.

Step 3: We study the singular limit € — 0 and prove Proposition 3.1.

Some of the arguments developed in [11], on which this procedure is based, do not
use the symmetry of J. Hence in some cases we will skip details in our proofs, making
appropriate references to [11].

We divide this section in 3 subsections, each one devoted to one Step.

3.1. Step 1. Existence of a super-solution

We start with the construction of a super-solution of (3.1) for speeds ¢ > & for some
K > 0 which is independent of € for 0 < e < 1.
Lemma 3.4
Assume J has compact support and let ¢ > 0. There exists a real number & > 0 and an
increasing function w € C%(R) such that, given any ¢ >k and 0 <& < 1

9



where M = M(e, c) is defined by (3.2). Furthermore, w(0) = 1.

The construction of the super-solution is an adaptation of the one proposed in [11].
The essential difference lies in the computation of the super-solution in a neighborhood
of —c0.

Proof. As in [11], fix positive constants N, \, ¢ such that A > d.
Let w € C%(R) be a positive increasing function satisfying

— w(z) = e for z € (—o0, —N],

— w(r) < e on R,

— w(r) =1—e7% for z € [N, +o0),
- w(0) =3

We now construct a positive function g defined on (0,1) which satisfies g(w) > f(w).
Since f is smooth near 0 and 1, we have for ¢ large enough, say ¢ > ko,

(3.3) AMc—=XN)s> f(s) for se€]0,z]

and

(3.4) 5(c—0)(1—s)> f(s) for se€[x1,1].

Therefore we can achieve g(s) > f(s) for s in [0,1], with g defined by:
AMko — A)s for 0<s<umxg

(3.5) g(s) =4 1(s) for xg<s<umx

(ko —0)(L —s) for v1 <s<1
where [ is any smooth positive function greater than f on [z, z1] such that g is of class
Ct.
According to (3.5), for z < —N i.e. for w < eV, we have
Mw] + g(w) =ew” + Jxw — w — cw’ + g(w)
=AM 4 T xw — e — Aee™ 4+ (kg — N)er®

<eXZeM 4 Jw e — e Nee? Mro — A)e”

< e)‘m[/ J(=2)eMdz — 1 — \c — ko) — N2(1 —€)]
R

<0,

for ¢ large enough, say

S Jp J(—2)eMdz — 1/\—|— Mg — A2(1 — 5).

In the open set (21, +00), the computation of the super-solution is identical to the one
n [11]. So, we end up with

Mw] + g(w) <0 in (z1,+00)

10



for ¢ large enough, say ¢ > ko.
Therefore, by taking ¢ > sup{ko, k1, k2 }, we achieve

g(w) = f(w)  and  Mw]+g(w) <0

for 0<w<e ™ and w>1-—e V.

For the remaining values of w, i.e. for x € [-N,N], @' > 0 and we may increase ¢
further if necessary, to achieve

M[w] + g(w) <0 in R.
The result follows for
k(e) = sup{ko, K1, K2, K3},

where
elw’| 4+ |J xw — w| 4 g(w)

/ }

k3= sup {
z€[—N,N]

g

O

Now, note that %(g) is a non-decreasing function of e, therefore for all non-negative
e <1, (w,k) with & = &(1), will be a super solution of (3.1), which ends the Step 1.
Remark 3.5 The above construction of a super-solution also works if we only assume
that for some positive A, the following holds

+oo
/ J(—2)e* dz < 4o0.
0

3.2. Step 2. Construction of a solution when ¢ > 0

To prove Proposition 3.3 we follow the strategy used in [11] relying on the following
approximation scheme.
We first prove existence and uniqueness of a monotone solution for

Slul + f(u) = =hy(2) inw,
(3.6) u(—r) = 0,
u(+o0) = 1,
here e >0, r € R, c€ R and 6 € (0,1) are given, and

(3.7) w = (—r,+00),

+o0
(3.8) Su] = S(e,r,0)[u] = eu” + / J(z — y)u(y)dy — u — cu/,

(3.9) hr(z) = 9/776 J(x — y)dy.

— 00
More precisely, we show
Proposition 3.6 Assume f and J are as in Proposition 3.1. For any e >0, 6 € [0,1)
r > 0 so that suppJ C (—r,+00) and ¢ € R there exists a unique positive increasing
solution u. of (3.6)

11



To prove this proposition we use a construction introduced by one of the authors [8,9]
which consists first to obtain a solution of the following problem:

Llu]l + f(u) +hr +hr =0 for z € Q
(3.10) u(—r) =0,

u(+R) =1,
where Q = (—r,4+R) and £ = L(e, J,r, R, ¢), h, and hp are defined by

+R
Clu] = £(e, J, 7, R,c)[u] = eu” + / J(@ — yyuly)dy —u| — e,

-

(3.11) hy(z) =6 N J(z —y)dy.
L

hr() /+ Iy

Namely, we have,
Proposition 3.7
Assume f and J are as in Proposition 3.1. For any e > 0, § € [0,1) r < R so that
supp C (=7, R) and ¢ € R there exists a unique positive increasing solution u. of

(3.10).

Proof. The construction of a solution uses the super- and sub-solution iterative scheme
presented in [9]. To produce a solution, we just have to construct ordered sub and super-
solutions. An easy computation shows that u = 6 and u = 1 are respectively a sub and
a super-solution of (3.10). Indeed,

R

-

Ll + £ + b+ b= [ S ppdy =040 [ I ydy

T — 00

+oo
+/R J(x —y)dy + £(6)

:(1—9)/R+OOJ(x—y)dy+f(9)20

and
R

T

E[ﬁ]+fﬁ)+hr+hR:/ J(xfy)dyflJr@/ J(x —y)dy

T — 00

+oo
+/ (& —y)dy + (1)

R

=<9—1>/_TJ<x—y>dygo

— 00
The uniqueness and the monotonicity of such solutions have been already established in
[8], so we refer to this reference for interested reader. O

We are now in a position to prove Proposition 3.6

Proof of Proposition 3.6. Let us now construct a solution of (3.6). Fix ¢ >0, c € R
and r > 0 such that supp(J) C w. Let (R, )nen be a sequence of real which converges to
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+00. Since J has compact support, without loosing generality we may also assume that
supp(J) C (—r, Ry,) for all n € N. Let us denote (uy, ¢) the corresponding solution given
by Proposition 3.7. Clearly, hgr, — 0 pointwise, as n — oo. Observe now that (u,)nen
is a uniformly bounded sequence of increasing functions. Since £ > 0, using local O
estimates, up to a subsequence, u, converges in 012 ~% to a non-decreasing function w.
Therefore u € C*“ and satisfies

+oo
eu”—i—/ Jx—yuly)dy —uv—cu' + flu) +h, =0 in w
. sty )

u(—r) =10

To complete the construction of the solution, we prove that u(+00) = 1. Indeed, since u
is uniformly bounded and non-decreasing, u achieves its limit at +00. Using Lemma 2.4
yields u(+o00) = 1. O

Proof of Proposition 3.3. By Lemma 3.4 there exists & and a function w which is a
supersolution to (3.1) for any ¢ > & and any 0 < ¢ < 1. If ¢ > &, following the approach
in [11], we can take the limit as r — oo in the problem (3.6) to obtain a solution of (3.1).

Finally one can also verify, see [11], that there exists a monotone solution u. with the
following speed

c*(g) == inf{¢|(3.1) admits a monotone solution with speed c}.

The proof of these claims are straightforward adaptations of [11], since in this reference
the author makes no use of the symmetry of J for this part of the proof, and essentially
relies on the Maximum principle and Helly’s Theorem. We point the interested reader to
[11] for the details. O

Remark 3.8 Note that from the previous comments we get the following uniform esti-
mates
Vo<e<eg c"(e) <k.

3.3. Step 3. Proof of Proposition 3.1

We essentially use the ideas introduced in [11].

First, we remark that since J has a compact support, using the super-solution of Step 1,
we get from Proposition 2.1 a monotone solution (u,c*) of (1.3) — (1.5). Furthermore,
there exists no monotone solution of (1.3) — (1.5) with speed ¢ < ¢* and we have the
following characterization:

lim ¢ = ¢,
k—o00

where ¢ is the unique speed of fronts associated with an arbitrary sequence of ignition

functions (fx)reny which converges pointwise to f and satisfies Vk € N, fi, < fr41 < f.
Also observe that from Remark 3.8 we have a uniform bound from above on ¢*(¢).

Lemma 3.9 For all € < &y we have ¢*(g) < R.

For any speed ¢ > £ > 0, there exists a monotone solution (uc, ¢) of (3.1) for any ¢ < eq.

Normalizing the functions by u.(0) = % and letting ¢ — 0, using Helly’s Theorem, a priori

bounds and some regularity we end up with a solution (u,c) of (1.3) - (1.5). Repeating
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this limiting process for any speed ¢ > &, we end up with a monotone solution of (1.3) -
(1.5) for any speed ¢ > &.
Define now the following critical speed

™ =inf{c|Vc >¢ (1.3) — (1.5) has a positive monotone solution of speed ¢'}.
Remark 3.10 Observe that from the uniform bounds we easily see that

(3.13) ¢ <liminf ¢*(g).

e—0

Obviously, we have ¢* < ¢** < k. To complete the proof of Proposition 3.1, we are then
led to prove that ¢** = ¢*. To prove this equality, we use some properties of the speed of
the following approximated problem
e+ Jxu—u—cu' + fn,(u) =0 in R,
u(+o0) =1,
where 0 > 0, n,(u) = n(u/0) and n € C(R) is such that
0<n<1, 7>0, n(s)=0fors<1, n(s)=1fors>2.

Then 7, has the following properties

-1, € O (R)’

- 0 S 779 S 1a

n,(s) =0 for s <6 and n,(s) =1 for s > 20,
— if 0 < 07 < 65 then Moy < Ty, -

For (3.14), we have the following results:
Lemma 3.11 Let ¢ be the unique speed of front solutions to (2.1) and nonlinearity
fn,. Let ¢ c*(g) be respectively the unique (minimal) speed solution of (3.1) with the
nonlinearity fn, and f. Then the following holds:
a) For fized 0 >0, lim._oc? = cf.
b) For fized € so that g > ¢ >0, limg_oc? = c*(¢).

Proof. The first limit, as ¢ — 0 when 6 > 0 is fixed, has been already obtained in
[9], so we refer to this reference for a detailed proof. The second limit, for fixed £ > 0,
is obtained using a similar argument as in the proof of Proposition 2.1 to obtain the
characterization of ¢*. O

Proof of Proposition 3.1. Assume by contradiction that ¢* < ¢**. Then choose ¢ such
that ¢* < ¢ < ¢™*. By (3.13) we may fix €y > 0 small such that

(3.15) c<c'(e) Vee(0,ep).

Now consider any sequence 6,, — 0. Since /=

0<ey <eq, en — 0 such that

< ¢, using Lemma 3.11 a) there exists

(3.16) < e

14



Then, using the continuity of the map 6 — ? , (3.16), (3.15) and Lemma 3.11 b) we
conclude that there exists 0 < 6,, < 6,, such that

On

Cc = CEn'

Note that 6,, — 0. Let u,, be the associated solution to (3.1) with £ = &, speed ¢ and
nonlinearity fn, . We normalize u,, by u,(0) = 1/2. Using Helly’s theorem we get a
solution @ of (1.3)-(1.5) with speed ¢. This contradicts the definition of ¢**. O

4. Construction of solution in the general case: proof of Theorems 1.3 and
1.5

Theorem 1.5 is a direct consequence of Theorem 1.3. Indeed, since J satisfies the
Mollison condition, the construction in Section 3 (Step 1, subsection 3.1) of a smooth
super-solution (w, &) with w(0) = 1 holds. Therefore, Theorem 1.5 is a direct application
of Theorem 1.3.

In the rest of the section we prove Theorem 1.3, that is, we construct solutions of
(1.3)-(1.5) only assuming that there exists a super-solution (w,x) of (1.3)-(1.5). The
construction uses a standard procedure of approximation of J by kernels .J,, with compact
support and the characterization of the minimal speed ¢* obtained in Section 2.

Let us describe briefly our proof. From Proposition 2.1, there exists a monotone solution
(u, c*) of (1.3)-(1.5) with critical speed. Then we construct monotone solution of (1.3)-
(1.5) for any ¢ > c¢*, ¢ # 0, using a sequence (J,)nen of approximated kernels and
the same type of arguments developed in the Step 3 of the above section. Let us first
construct the approximated kernel and get some uniform lower bounds for ¢;.

4.1. The approximated kernel and related problems

First, let jo be a positive symmetric function defined by

1
) e=*~1 for x € (—=1,1)
(4.1) Jo(z) =
0 elsewhere

Now, let (xn)nen be the following sequence of “cut-off” function:

~ Xn € CSO(R)v
- 0 S Xn S 17
— xn(s) =1 for |s| <n and y,(s) =0 for |s| > 2n.
Define
L (Jo
Jpi=—=+J n ,
o (24 sl)

where my, := L [0 jo(2)dz+ [; Jxn(z) dz. Observe that since [; jo > 0, J,, is well defined
and J,(z) — J(z) pointwise.

Since J,, satisfies the assumption of Proposition 3.1, there exists for each n € N a
critical speed ¢, for the problem (4.2) below:
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Jpxu—u—cu + flu)=0 in R
(4.2) u(—o0) =0
u(+o0) = 1.
Before going to the proof of Theorem 1.3, we prove some a-priori estimates on ¢, .
Namely we have the following,
Proposition 4.1

Let ¢, be the critical speed defined above, then there exists a positive constant k1 such
that

—rk1 < cj.

Proof. Let fy be a fixed function of ignition type such that fy < f. Using Theorem 2.2,
we have ¢ < ¢. To obtain our desired bound, we just have to bound from below cf.
The later is obtained using Lemma 2.5. Indeed, for each n € N, we have

() = vnle] <0,

n

with vy, := [ Jn(2)|z] dz and p is independent of n. Since v, < 7 := sup,en{rn} < oo,
we end up with

p(eh)? = pld| <.
Hence,

|CZ| < K.

Let us also recall some properties of the following approximated problem:

Jpxu—u—cu + fn,(u) =0in R,

(4.3) u(—o0) =0,
u(+o00) =1,

where 6 > 0 and 7, is such that

— Ny € CSO(R)a

-0 < Mo < 17

- n,(s) =0 for s <0 and n,(s) =1 for s > 20.

For such kind of problem we have,

Lemma 4.2 Let ¢ and ¢ be the unique speed solution of (2.1) with the nonlinearity
fn, and respectively the kernel J and J,, and let ¢, be the critical speed solution of (4.3)
with the nonlinearity f and the kernel J,. Then the following holds:

a) For fived 0, 1lim, oo cd =%,

b) For a fized n, then limg_oc? = .

Part b) of this Lemma is contained in Proposition 2.1. Part a) can be proved using similar
arguments as in Proposition 2.1.
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4.2. Construction of the solutions: Proof of Theorem 1.3

We are now in position to prove Theorem 1.3. From Proposition 2.1, we already know
that there exists a travelling front to (1.3)-(1.5) with a critical speed ¢*. To complete the
proof, we have to construct non decreasing solution for any speed ¢ > ¢*. We emphasize
that since (w, k) is not a super-solution of (1.3)-(1.5) with the approximated kernel .J,,,
there is no uniform upper bound directly available for the speed ¢}, and the argumentation
in the above section cannot directly be applied.

From Proposition 4.1, we have the following dichotomy: either liminf(c})pen < +00
or liminf(¢})nen = +00. We prove that in both situations there exists a front solution
for any speed ¢ > c*.

Case 1: liminf(¢})peny < +00

In this case, the same argument as in Proposition 3.1 in Section 3.3 works. Indeed, up
to a subsequence ¢} — ¢ and we must have ¢* < ¢. To prove that ¢* = ¢ we proceed as
in Section 3.3, using Lemma 4.2 instead of Lemma 3.11.

O

Let now turn our attention to the other situation.

Case 2: liminf(c})peny = +00

In this case lim,_,o ¢}, = 400 we argue as follows. Fix ¢ > ¢*, ¢ # 0 where ¢* is
defined by Proposition 2.1. We will show that for such ¢ there is a monotone solution to
(1.3)-(1.5). When ¢* < 0 and ¢ = 0 then a standard limiting procedure will show that a
monotone solution exists with this speed.

Again, by Theorem 2.2 and Proposition 2.1, we have ¢
Therefore,

9 < ¢* for every positive 6.

Vo >0, ¢ < <e.

Fix # > 0. Since ¢? — ¢, one has on one hand ¢/, < ¢ for n > ng for some integer ng.

On the other hand, ¢, — +00, thus there exists an integer n; such that ¢ < ¢, for all
n > ny. Therefore, we may achieve for n > sup{ng,n1},

0 *
c, <c<c,.

From this last inequality, and according to Theorem 2.2 and Lemma 4.2, for each
n > sup{ng, n1} there exists a positive 6(n) < 6 such that ¢ = o™,

Let u, be the non decreasing solution of (4.2) associated with 6(n). Since 6(n) is
bounded, we can extract a subsequence still denoted (6(n))nen which converges to some

0. We claim that
Claim. 6 =0

Assume for the moment that the claim is proved. Using the translation invariance,
we may assume that for all n, u,(0) = % Using now that w,, is uniformly bounded
and Helly’s theorem, up to a subsequence u,, — u pointwise, where u is a solution of
(1.3)-(1.5) with speed c.

In this way we get a non trivial solution of (1.3)-(1.5) for any speed ¢ > c¢*. O
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Let us now turn our attention to the proof of the above claim.

Proof of the Claim. We argue by contradiction. If not, then # > 0 and the speed ¢ of
the corresponding non decreasing front solution of (2.1) satisfies

A<t <e.

Let now consider, u, the solution associated with 6(n), normalized by u,(0) = 0(n).
Using uniform a priori estimates, Helly’s theorem we can extract a converging sequence
of function and get a solution u with speed c of the following

Jxu—u—cu'+ fz(u) =0 in R.

Using the arguments developed in [9, Section 5.1] to prove Theorem 1.2 of that reference,
one can show that u satisfies the boundary conditions

u(+o00) =1, u(—o0) =0.
According Proposition 2.1, we get the contradiction
c=d < <e

Hence 6 = 0. O

5. Characterization of the minimal speed and asymptotic behavior

Throughout this section we will assume the hypotheses of Theorem 1.6, namely f
satisfies (f1), f/(0) > 0, f € C*7 near 0 and (1.7), and J satisfies (j1), J € C* and is
compactly supported.

Let us consider the following equation

Jxu—u—cu' + flu)=0 inR,
lim wu(z) =0.

Tr—r—00

(5.1)

We need to establish some estimates on bounded solutions of (5.1) that we constantly
use along this section.
Lemma 5.1 Let u be a no-negative bounded solution of (5.1), then the following holds:

(i) f fR s —t)[u(t) — u(s)] dtds = fol fR J(=2)z[u(x 4+ zn) — u(y + zn)] dzdn

(ii) f(u) € L'(R),
(i3) w, J*uELl(R )
(iv) v(x):= [T u(s)ds satisfies v(z) < K(14|z]) for some positive K and v(x) € L*(R™).

Proof. We start with the proof of (i). Let (u,), be a sequence of smooth (C1) function
which converge pointwise to u. Using the Fundamental Theorem of Calculus and Fubini’s
Theorem, we have

/y””/RJ(st)[un ) = u, dtdsf/ // [ (s + 2) dzdnds

/ / Sfun(z + 21) — un(y + 2n)] d=dn
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Since |J(—z)zun(y +n2)| < K|J(—2)z| € L*(R x [0, 1]) and w,, converges pointwise to u,
passing to the limit in the above equation yields

// (s — t)|u(t) — u( dtds—// [u(z 4+ zn) — u(y + zn)] dzdn.

To obtain (i), we argue as follow. Integrating (5.1) from y to z, it follows that

52)  clulx // (s — B)[ult) — u( dtds—/f

Using (i), we end up with

(5.3)  clu(z / / u(z + 2n) — u(y + 2n)] dzdn = /ymf(u(s))ds.

Again, since |J(—2)zu(y+nz)| < K|J(—2)z| € LY (R x]0, 1]), we can pass to the limit y —
—oo in the above equation using Lebesgue dominated convergence Theorem. Therefore,

we end up with
/ / Yzu(z 4+ zn) dzdn = / fu(s)) ds.

/ " flu(s)) ds < K (| + / J(2)|] dz)

which proves (7). From equation (5.2), we have

c(u(z /f ds+/ (s)ds/ymj*u(s)ds.

Thus J xu € LY(R™) will immediately follows from u € L*(R™) and (4). Observe now
that since f'(0) > 0, and u(—o0) = 0, for z << —1, we have f(u) > au for some positive

constant «. Therefore,
a/ u(s)ds < / flu(s))ds
and (%) is proved.
To obtain (iv) we argue as follow. From (i-iii), v is a well defined non decreasing

function such that v(—o0) = 0. Moreover, v is smooth provide w is continuous. By
definition of v, we easily see that v(z) < C(|z| + 1) for all € R. Indeed, we have

0 |z|
v(z) §/ u(s) ds—l—/O u(s)ds < K(1+ |z]),

o0

Thus,

where K = sup{f s) ds; |ull Loom) }-
Now, integrating (5 1) on (—oo,x), we easily see that

(5.4) v (x) = J xv(x / flu

Since f’(0) > 0 we can choose R << —1 so that for s < R, f(u(s)) > au(s) for some
a > 0. Fixing now z < R and integrating (5.4) between y and x, we obtain

(5.5) c(v(x) —v(y)) > /E(J*U(s) —v(s))ds + a/w v(s)ds.
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Proceeding as above, we get that v € L!(—o0, R).
O

Following the idea of Carr and Chmaj [4], we now derive some asymptotic behavior of
the non negative bounded solution u of (5.1) More precisely, we show the following
Lemma 5.2 Let u be a non negative bounded continuous solution of (5.1). Then there
exists two positive constants M, B, such that v(z) = [*__ u(s)ds satisfies:

(5.6) v(z) < MeP?,

Proof. The proof uses ideas from [11]. Let first show that some positive constants C, R,
we have

(5.7) /Rv(x)eﬁzd:c <C,

— 00

for some 8 > 0 small.

Consider R > 0 and S > 0 constants to be chosen later. Let ( € C°°(R) be a non-
negative non-decreasing function such that { =0 in (—oo, —2] and ( =1 in [—1, o). For
N €N, let (xy = ¢(z/N). Multiplying (5.4) by e #?(y and integrating over R, we get

(5.8) /R(J*H)( 20 ) d— / e=Bex) dx+// Flu e=B¢x) da = 0

Note that by the monotonicity of (; we have

[rv@en@ean= [ [t peton@uiady
/ / e PETICN (2 + y)u(y)dzdy
Therefore, we have

> [ome ([ e ety - )iz
(5.9)

/R (T %0 —v)(ePCx) da > / o(w)e P ( / T J(2)e* dz Culo — R) - gN(x)) da

-R

Let us now choose our adequate R > 0. First pick 0 < a < f/(0) and R > 0 so large
that

(5.10) fu)(x) > au(x) for © < —R.

Next, one can increase R further if necessary so that ffoR J(y) dy > (1 — «/2). By
continuity we obtain for some Sy > 0 and all 0 < 5 < Sy,

(5.11) /_: J(y)e P dy > (1 — a/2)ell

Collecting (5.9) and (5.11), we then obtain
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[ ev=oe ) = [ o (1= a/2e e = B) = (o) da
(1- a/2)/Rv(x + R)e P*(n(z) do — / v(z)e P (x) d

R
(5.12) > 70&/2/R’U(ZL')€7ﬁICN(:L'> dx

where we used the monotone behavior of v in the last inequality.
We now estimate the second term in (5.8):

/RU'QNe_'BI dx:ﬁ/RUCNe_BZ —/RUQ/L@_BI dx
(5.13) gﬂ/RUCNe*ﬁI.

Finally using (5.10), the last term in (5.8) satisfies

/(/ e dS)CNeﬁzdfC—/ (/ fu ds)cNeﬂwdx c

(5.14) Za/ vinye~ B dy — C.

Y

By (5.8), (5.12), (5.13) and (5.14), we then obtain

-R
|c|ﬁ/ uCne BT dx > a/ ulne P de — C — a/Q/UCNe_'ﬁ”” dx
R R

— 00

-R

(a/2—|c|ﬂ)/ uCne P dx < C.

— 00
Choosing 8 < a/(2|c|) and letting N — oo proves (5.7).
Using the monotonicity of v we can conclude that

(5.15) v(z) < CeP?,

for some constant C. Indeed, if (5.15) does not hold, then for a sequence z, — —oo
we have v(z,) > ne’®r. Extracting a subsequence if necessary, we can assume that
Tp41 < T, — 1, thus since v is increasing we have

/ e Prdy > Z/ nem"efﬁxd:c

- n>1

>Zn

n>1

>Zn1_e =0

n>1

1_6_16(171 Tnp— 1)

which is a contradiction. O
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In the next result we establish that the bounded solution u of (5.1) also decays expo-
nentially as z — —o0.
Lemma 5.3 Suppose that u is bounded solution of (5.1). If for some M, > 0 we have
that v(z) < MebP for all x then there exists My, > 0 such that

(5.16) u(z) < Mpe*® for all x € R.
Proof. When ¢ # 0 then by (5.4) we have the following estimates
lelu(z) = ‘J*v —v+ / flu(s))ds

SJ*erva/z%u(s)ds

<Jxv+ (K+1)w

where K is the Lipschitz constant of f. Now since

Jxv(z) < C/ J(x —y)ePy < C'eP?,
R
we easily see that (5.6) holds.
When ¢ = 0 the estimate does not directly comes from (5.4) and we have to distinguish
several cases.
Let first observe that for < 0 since u is bounded by some constant C, J % u satisfies
the following

+oo

eHMw:/WﬂwwMM@+L J(x — y)uly) dy

%m 00
<l [ atay e [ s
- (31
< llov(Z2) + ce<ﬂ—a>z/ J(—2)e% dz
p #(5-1)
B

Choosing o = 5 in the above equation, we end up with

(5.17) Jxu(z) < Ce?®,

for some constant C'. Observe also that since f is smooth and f(0) = 0, we have for small
€ >0 and s > 0 small,
f(s)
S

=== f(O)]<e

Therefore from (5.1), for € > small there exists K(g) > 0 such that for z < —K(e) we
have

(5.18) w(l—f(0)+¢e)>Jxu=u(l— ) > u(l — f(0) —e).

Observe now that if f/(0) > 1, we get a contradiction. Indeed, choose ¢ so that (1 —
f'(0) +€) < 0, then we have the following contradiction when z < —K (¢)

0>u(l—f'(0)+¢e)>J*u>0.

fw)
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Thus, when f’(0) > 1, there is no positive solution of (5.1) with zero speed.

Let us now look at the other cases. Assume now that f/(0) < 1 and choose € small so
that (1 — f/(0) — ) > 0 then from (5.18) for z < —K (e) there exists a positive constant
C so that

u<CJxu< Cegx.
Finally, when f/(0) = 1 recall that f satisfies (1.7). Thus, for << —1
Jxu(z) =u— f(u) > Au™,
where A > 0, m > 1. Using (5.17), yields

8
u< —e2n®,

= Q

O

Remark 5.4 From the above proof, we easily conclude that for any 0 < a < &, where &
depends only on B and =y, there exists My > 0 such that (5.16) holds.

As in [4], for u a solution of (5.1) we define the function U(X) = [, e~ **u(x)dz which
by Lemma 5.3 is defined and analytic in the strip 0 < Re A < «a. Note that

/RJ*u(z)e*M :/Ru(y)e*Aydy/RJ(fz)eMdz

and using integration by parts

c/u/ef)‘zd:c: Ac/u(y)eiAydy.
R R

Using the above identities, if we multiply (5.1) by e~** and integrate in R we obtain

(5.19) UN)(=cA+m(X)) = / e M (f'(0)u(z) — f(ulx)))dz,
R
where the function m(X) = [ J(—z)e *dz + f/(0) — 1 is analytic in C.
Let ¢! be the following quantity

¢! = min~ </R J(—z)e’ dz + f(0) — 1) .

A>S0 A
Proposition 5.5 Ifc < ¢! then (5.1) does not have any solution.

Proof. Since u > 0 we deduce, from a property of Laplace transform (Theorem 5b, p. 58
[27]) and Lemma 5.3, that the function U(X) is analytic in 0 < Re A < B, where B > a,
and U()) has a singularity at A = B. Observe that if ¢ < ¢! then for some § > 0

(5.20) —cA+m(\) >6A, forall A > 0.

Observe that since f € C17 near 0 and using Lemma 5.3 we have that for some
constant C' > 0
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/ | (O)u(x) — f(ule))|dz = / e P (O0)ulz) — flu()|dz
R ()
+oo
+ / e O)ula) — flu(w))lds

- K “+o0
< / e M| Aur Y + o(ul ) |dx + C’/ e Mu(z)d

-K
< C/ —A\x 1+’y

/ (=A+v0)zy (1) da.
R

From the above computation, it follows that [, e=*|f/(0)u(z) — f(u(x))|dz is analytic
in the region 0 < Re A < B + ~va. Since v > 0, using the equation (5.19), we get U())
defined and analytic for 0 < ReX < B + ya. Bootstrapping this argumentation we can
extend analytically U(X) to Re A > 0. Then for all A > 0

[ Oute) = ru@)lds < (1O +8) [ e ua) = o)
Therefore for all A > 0, using (5.19), it follows that —cA+m(A) < C contradicting (5.20).
(I

Remark 5.6 We should point out that the above proposition holds as well if the kernel
J instead of being compactly supported, is only assumed to satisfy:

+oo
M, o >0 such that / J(—z)er” < M.
0

Let us now establish the exact asymptotic behavior, as x — —oo, of a solution u of
(5.1). We proceed as follows. First, we obtain the exact behavior of v = [ u(s)ds,
proceeding as in [4] and then we conclude the behavior of w.

For ¢ > ¢! we denote A(c) the unique minimal A > 0 such that —cA+m(\) = 0. It can
be easily verified that A(c) is a simple root of —cA +m(\) if ¢ > ¢!, and it is a double

root when ¢ = ¢!.

Proof of Theorem 1.6. Since there is a monotone solution (u,c*) of (1.3)-(1.5) with
critical speed, it is a bounded solution of (5.1). Thus by Proposition 5.5 ¢* > ¢!.
It remains to prove (1.8) and (1.9). The proof follows from a modified version of

Tkehara’s Theorem (see [27]). We define F(\) = f?oo v(y)e~*Y. Since v is monotone, we
can obtain the appropriate asymptotic behavior of v if F' has the representation
H)
(A — a)k+1’
with H analytic in the strip 0 < ReX < «, and k = 0 when ¢ > ¢*, k = 1 when ¢ = ¢*.
Using (5.4), we have that

0 — (0)u(s) dse=** dx oo
/ v(z)eiAId f_ f_ c)\ 7{1(()\; (s) —/0 v(z)eﬂ\m,

(5.21) F()) =

— 00
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thus, using that either ¢ # 0 or f/(0) < 1 holds, we have that by Lemma 5.3, (5.21) holds
replacing u by v with a@ = A(¢) described above, since it can be checked that —cA+m(\)
has only two real roots which are simple when ¢ > ¢' and double when ¢ = ¢!

It remains to conclude that (5.21) holds for u. First suppose that ¢ = ¢! and denote
A= A(ct). If ¢ # 0 then using (5.4) we have that

cu=Jxu() - (1- f / F(u(s)) — £/ (O)u(s)ds,

By Remark 5.4 and since f is C%7 near 0 we have that

JZ o fu(s)) = £'(0)u(s)ds

|1.|ef)\(c1)z ’

(5.22)

as |x| — —oo. Therefore, we just have to prove that

Jxo(z) = (1= f(0)v(x)

(5.23) Iggloo EEGE =L#0.
Observe that since v satisfies (1.8) we have that for n = lim,_, _ ng% and supp J C
[—k, k] we have
J*xv A(cl)z
W |:L'| / 77+O(1/$ (|x|+z)dz

therefore
Jxv(x) = (1 — f(0))v(x)

|:L-|ek(cl)m

— m(A(c)) = ne' (') # 0,

which gives the desired result.
When ¢! = 0, we proceed in a slightly different way. Observe that in this case f/(0) < 1

(5.24) (1= (0)u=Jxu+ f(u)— f(0)u,

and by Remark 5.4 and since f € C7 near 0 we have that (5.22) holds. Also, by (j2)
we have that Jxu = J *v and

- / A(cl)z
Lt = L[ o 00/ ol +

— / J(=2)NDdz + 0(1/x),
R

with n > 0 as above. Hence, we obtain the desired result.
Finally, the case ¢ > ¢! is analogous. (|

Proof of Corollary 1.7. Observe now that in the case of a KPP nonlinearity f, the
function w := e*® is a super-solution of (1.3)-(1.5), provided that A > 0 is chosen such
that —cA + m(A) = 0. The existence of such A > 0 is guaranteed since ¢ > ¢!'. The
existence of a monotone travelling wave for any ¢ > ¢! is then provided by T heorem 1.3.
Therefore ¢* < ¢! and we conclude ¢* = ¢!. O
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6. Uniqueness of the profile

In this section we deal with the uniqueness up to translation of solution of (1.3)— (1.5).
Our proof follows ideas of [7] and is mainly based on the sliding methods introduced by
Berestycki and Nirenberg [2,3] (see also [7]).

In the sequel, given a function v : R — R and 7 € R we define its translation by 7 as

(6.1) ur(z) = u(x + 1)
and sometimes we shall write u”(z) = u(r + z).

Let L denote the operator

Lu=J*u—u—cu.

Proposition 6.1 (Nonlinear Comparison Principle)
Let J satisfy (j1), (1.12) and let f be a monostable nonlinearity so that f'(1) < 0. Let u
and v be two continuous functions in R such that
(6.2) Lu+ f(u) <0 on R
(6.3) Lv+ f(v) >0 on R

. i > i <
(6.4) griloou(z) >0, zgriloov(x) <0
6.5)

(6.

Assume further that either u or v is monotone and that u > v in some interval (—oo, K).
Then there exists T € R such that ur > v in R. Moreover, either u, > v in R or u, = wv.
Remark 6.2 Observe that by the Mazimum Principle and since f(s) >0 Vs <0, the
supersolution w is necessarily positive. Similarly, since f(s) <0 Vs > 1, the Maximum
Principle implies that v < 1.

x

lim w(z) >1, lim o(z)<1.

Tr——+00 r——+00

Proof of Proposition 6.1. Note that if infg « > supg v, the theorem trivially holds. In
the sequel, we assume that infr v < supg v.
Let € > 0 be such that

(6.6) flp) <0 for 1—e<p<l.
Now fix 0 < 0 < § and choose M > 0 sufficiently large so that

(6.7) 1—ux) < g Vo > M
(6.8) v(x) < g Vo < —M
(6.9) and v(x) <wu(r) Vo< -M.

Step 1. There exists a constant D such that for every b > D

(6.10) u(x+b) >v(x) Vee[-M—-1-bM+1].
Indeed, since w > 0 in R and lim, o u(x) > 1 we have
co = inf >0
[-M—1,00)

Since lim,_, o v(2) < 0 there is L > 0 large such that
v(z) <cy Vo< -—L.

26



Then for all b > 0
u(z+b) >v(x) Yee[M—-1-b,—1L].

Now, since sup;_y, ps41)v < 1 and limg, o0 u(z) > 1 we deduce (6.10).

Step 2. There exists b > D such that

(6.11) u(x +b) + g >v(z) Ve eR.

If not then we have,

(6.12) Vb > D there exists x(b) such that w(x(b) +b) + g < v(z(b)).

Since u is nonnegative and v satisfies (6.4) there exists a positive constant A such that

(6.13) u(z +b) + g >v(z) forallb>0and z<-—A.

Take now a sequence (by,)nen which tends to +oo. Let x(b,) be the point defined by
(6.12). Thus we have for that sequence

(6.14) w(z(bn) + byn) + g < v(z(bn)).

According to (6.13) we have x(b,) > —A. Therefore the sequence x(b,) + by, converges
to 4+o00. Pass to the limit in (6.14) to get

5 ) o ..
1+5< ngrfoou(x(bn) +bn) + 2 < ljlfilig v(z(by)) <1,
(

which is a contradiction. This proves our claim (6.11).

Step. 3 We observe that as a consequence of (6.10) and (6.11), and using that either u
or v is monotone we in fact have

(6.15) u(z+0b) >v(x) Ye<M+1

)
u(x+b)+§ >wv(x) Vo> M+ 1
Indeed, it only remains to verify that w(x +b) > v(x) for « < M — 1 —b. If w is
monotone from (6.9) we have u(z +b) > u(z) > v(z) for + < —M. If v is monotone
u(z) >v(x) >v(x —b) for z < —M.

Step 4. Now we claim that

(6.16) u(z +b) >v(z) VreR.
To prove this, consider
(6.17) a* =inf{a > 0| u(z+0b) +a > v(x) Yz € R}

which is well defined by (6.11).
If a* = 0 then (6.16) follows. Suppose a* > 0. Then, since

lim w(z+0b)+a" —v(z)>a" >0,
r—Fo0
there exists xyp € R such that u(xzg + b) + a* = v(xo).
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Let w(z) := u(z + b) + a* — v(z) and note that

(6.18) 0=w(zrg) = mﬂ%n w(x).

Observe that w also satisfies the following equations:

(6.19) Lw < f(v(z)) = f(u(z +0))

(6.20) w(4o00) > a*

(6.21) w(—o0) > a*.

Since w > 0, w # 0 using the strong maximum principle at xo we have
(6.22) Lw(zo) > 0.

By (6.15) we necessarily have xg > M + 1.
At z¢ we have

(6.23) fu(zo +b) +a”) = f(u(zo + b)) <0,
[

since f is non-increasing for s > 1 —-¢,a* > 0and 1 —¢ < 1—-§ < u for z > M.
Combining (6.19),(6.22) and (6.23) yields the contradiction

0 < Lw(zo) < f(u(xo+b) +a*) — f(u(xo+ b)) <0.

Step 5. Finally it remains to prove that either u, > v or u;, = v. Let w = u, — v,
then either w > 0 or w(xg) = 0 at some point g € R. In the latter case we have
w(x) > w(xg) =0 and

(6.24) 0 < Lw(zo) < f(v(0)) — f(u(wo + 7)) = f(v(x0)) — f(v(20)) = 0.

Then using the maximum principle, we obtain w = 0, which means u, = v. ]

Proposition 6.3 Let J satisfy (j1), (1.12) and let f be a monostable nonlinearity so
that f'(1) < 0. Let uy and uz be respectively super and sub-solutions of (1.3)-(1.5) which
are continuous. If u; > ug in some interval (—oo, K) and either uy or us is monotone
then uy > us everywhere. Moreover either uy > us or u; = us.

Proof. Assume first that infg u1 < supg us. Otherwise there is nothing to prove. Without
losing generality we can assume that u; is monotonic. Using Theorem 6.1, u] > us for
some 7T € R, so the following quantity is well defined

7" = inf{T € Rlu] > us}
We claim that
(6.25) <0

Observe that by showing that 7* < 0, we end the proof. To prove (6.25) we argue by
contradiction. Assume that 7* > 0, then since u; are a continuous functions, we will have
u{* > ug in R. Let w := u{* —ug > 0. Since 7* > 0 and u; is monotone then w > 0
in (—o0, K). Now observe that w > 0 in R or w(zg) = 0 for some point zy in R. In the
latter case i

0 < (Jxw—=w)(zo) < fluz(zo)) — f(u] (20)) =0.
Thus, using the maximum principle, w = 0, which contradicts that w > 0 in (—o0, K).
Now since u; is monotonic and 7* > 0 for small & > 0, we have u] ~° > ug in (—oo, M).
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Arguing as in Step 4 of the proof of Proposition 6.1 we deduce u™ ~¢ > uy in R which
contradicts the definition of 7*. 0

Remark 6.4 With minor modifications the proofs of the Propositions 6.1 and 6.3 hold
if only one of the functions uy or us is continuous. For the proof of this statement we
need the strong mazimum principle for solutions in L°°, which can be found in [10]:
Theorem 6.5 Assume J satisfies (j1), (1.12) and let ¢ € L= (R). If u € L (R) satisfies
u <0 ae and Jxu—u+c(x)u > 0 ae. in R, then ess supgu < 0 for all compact
KCRoru=0 ae inR.

Proof of Theorem 1.8. The case of ¢ # ¢! and ¢ = ¢! being similar, we present only
the case ¢ # c!. Let u; and us be two solution of (1.3)-(1.5) with the same speed ¢ # 0.
Since ¢ # 0 the functions u; are uniformly continuous. From Theorem 1.3, we can assume
that u; is a monotonic function. Since, u; solve the same equation and u; is monotone,
using the translation invariance of the equation and (1.9) we see that up to a translation
(6.26) uy = 9% 4 oMY as z — —oc0

(6.27) Uy = M 4 o(eMIT) as z — —o0.

Let us first recall the following notation, v”(.) := u(. + 7). Then, by monotonicity of u;
and (6.26)- (6.27) for some positive 7 we have u] > ug in some interval (—oo, —K). Using
Proposition 6.3, it follows that u] > wug for possibly a new 7. Define now the following
quantity:

7 = 1inf{7 > 0|u] > us}

Observe that form the above argument 7 is well defined. We claim

Claim: 7" = 0.

Observe that proving the claim ends the proof of the uniqueness up to translation of
the solution. Indeed, assume for a moment that the claim is proved then we end up with
u1 > ug. Observe now that in the above argumentation the role of u; and us can be
interchanged, so we easily see that we have u; < us < w; which ends the proof of the
uniqueness. 0

Let us now prove the Claim.

Proof of the Claim. If not, then 7* > 0. Let w := uf — w9 > 0. Then either there
exists a point xg where w(zp) =0 or w > 0. In the first case, at xg, w satisfies:

0 < J*xw(xg) —w(xg) = f(ua(zo)) — f(Uir*(xO)) =0

Using the strong maximum principle, it follows that w = 0. Thus uf = wus, which
contradicts (6.26)—(6.27). Therefore, u] > ugy. Using (6.26), since 7* > 0 we have for
u?" the following behavior near —oo.

s

ul” =" eNOT 4 o(erO),
Therefore, for some ¢ > 0 small, we still have UIKE > w9 in some neighborhood
(=00, —K) of —oo. Using Theorem 6.3, we end up with uffs > ug everywhere, con-
tradicting the definition of 7*. Hence, 7" = 0. O

Regarding Theorem 1.9 we need the following result:
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Lemma 6.6 Assume that J and f satisfy (j1), (j2), (1.12) and (f1), (£2) respectively.
Let 0 <u <1 be a solution to (1.3).
a) Then

Zgrfloou(x) =0 or mEIPoou(w) =1,

and

Il;r&u(m) =0 or lim u(z) = 1.

b) If u(—o0) = 1 and u(+00) =1 then u=1.
Note that in this lemma we do not assume that w is continuous.

Proof.
a) Let 0 < u < 1 be a solution to (1.13). We first note that by (5.3) any bounded
solution u of (1.3) satisfies

(6.28) /00 fu)du < .
Let g(u) = w — f(u) and note that
(6.29) Jxu=g(u) inR,

and that the hypotheses on f imply ¢'(u) > ¢’(0) and g(u) < u for u € [0, 1].

If f/(0) <1 then ¢’(0) > 0 and then g is strictly increasing. This together with (6.29)
implies that u is uniformly continuous and using (6.28) we see that u(—oc) = 0 or
u(—o0) = 1 and the same at +oo which is the desired conclusion. Therefore in the sequel
we assume f'(0) > 1, that is, ¢’(0) < 0.

Since both limits at —oo and +o0o are analogous we concentrate on the case x — —oc.
We will establish the conclusion of part a) by proving

(6.30) 1ZIE_II£J*U($) =0 = Zgrjloou(x) =0,
and
(6.31) %ﬁlg}rgJ*u(x) >0 = Igrzloo u(x) = 1.

We start with (6.30). Suppose that f/(0) > 1. Then there is § > 0 such that g(u) < 0
for u € (0,6) and from (6.29) we deduce that u(x) > § for all z, so regarding (6.30) there
is nothing to prove.

Suppose f'(0) = 1. Then g is non-decreasing and by (1.7) we have, for some A > 0,
m>1, 61 >0

(6.32) g(u) > Au™ V0 <u <.

Assume that liminf,, . J*u(z) = 0 and let us show first that

(6.33) ll)IEl J xu(x) = 0.

Otherwise, set [ = limsup,_, . J xu(z) > 0. Choose I € (0,1) such that ¢’(/) > 0 and
then pick a sequence z, — —oo such that J xu(z,) = g(I) for all n. Then there is some
o > 0 such that for z € (z, — 0,2, + o) we have f(u(x)) > ¢ > 0 for some uniform

c. This contradicts (6.28) and we deduce (6.33). This combined with (6.32) implies that
lim,, ~ u(z) = 0, and this establishes (6.30).

30



We prove now (6.31). Let us assume

L :=liminf J * u(x) > 0.

Tr—r—00
Since J xu = g(u) < u it is enough to show that

(6.34) lim Jxu(z) =1.

Tr—r — 00
Assume the contrary, that is
(6.35) 0<l<1.

Observe that
lim inf u(x) > 0.

r—r—00

This is direct if f/(0) > 1 and follows from (6.29), (6.32) and [ > 0 if f/(0) = 1. Therefore
limsup,_, . u(x) = 1, otherwise (6.28) can not hold. Hence
(6.36) limsup J x u(x) = 1.

Tr—r—00
Chose now « € (I, 1) a regular value of the function g. By (6.35), (6.36) and the continuity
of J x u there exists a sequence z,, — —oo such that J x u(z,) = a. Note that the set
{v €[0,1] / g(u) = a} is discrete and hence finite and does not contain 0 nor 1. Hence,
for sufficiently small € > 0 we have {v € [0,1] /o —e < g(u) < a+¢e} C [g,1 — €]. Since
J x w is uniformly continuous there is ¢ > 0 such that for z € (z, — 0,2, + o) we have
e <wu(xy) < 1—-e. This contradicts the integrability condition (6.28), and we deduce the
validity of (6.34).

b) Assume that lim, o u(z) = lim, oo u(z) =1 and set v* =sup{0 <y <1/ u>
~}. For the sake of contradiction assume that u is nonconstant. Then 0 < 4* < 1. Since
f(+*) > 0 we have that v = u — v* > 0 satisfies

fw) = f(v)

(6.37) Jxv—v—cv + »
u—=7

(u—~") <O.
If ¢ # 0 then v reaches its global minimum at some zy € R which satisfies v(zg) = 0.
Thus, evaluating (6.37) at xy we obtain a contradiction. If ¢ = 0 we reach again a

contradiction applying Theorem 6.5.
O

Proof of Theorem 1.9. Assume 0 < u < 1 is a solution of (1.13) such that u # 0
and u # 1. By Lemma 6.6 u(—00) = 0 or u(+0c0) = 0. Then we may apply Theorem 1.6
and deduce the exact asymptotic behavior of u at either —oo or 400 and that ¢* <0 or
cx < 0. Let ug denote a non-decreasing travelling wave with speed ¢ =0 if ¢* < 0 or a
non-increasing one if ¢, < 0. Then, by slightly modifying the proof of Theorem 2.1 in [4]
we deduce that for a suitable translation we have u™ = wug. In particular the profile of
the travelling wave ug is unique.

O

31



Next we address the issues of non-uniqueness and discontinuities of solutions when
¢ = 0. We consider f such that

(6.38) f is smooth, 0 < f/(0) < 1, /(1) < 0 and f is KPP.

We are interested in the case where u — f(u) is not monotone, and for simplicity we shall
assume that setting

g(u) =u— f(u)
there exists 0 < o < § < 1 such that
g'(u) >0 Yuel0,a)U(B,1]
g'(u) <0 Vue (a,p).
Proposition 6.7 Assume f satisfies (6.38), (6.39). Then there exists J such that no
solution of (1.3)-(1.5) is continuous, and this problem admits infinitely many solutions.

(6.39)

Proof. Let us choose J € C!, with compact support and satisfying (j1) and (1.12),
and such that ¢! < 0. Then by Corollary 1.7 we have ¢* = ¢! < 0. Thus there exists a
monotone travelling wave solution uy of (1.3)-(1.5) with speed ¢ = 0. If (1.3)-(1.5) has a
continuous solution us , then by Theorem 1.8 and Remark 6.4 we have u; = uo. Hence
u1 is monotone and continuous. Then J x w1 is monotone which implies that uq — f(uq)
is monotone in R. This is impossible if u; is continuous and u — f(u) is not monotone.

For the construction of infinitely many solutions we follow closely the work of [1]. Since
¢'(0) > 0 and ¢'(1) > 0 there are a < b such that

g is increasing in [0, a], ¢ is increasing in [b, 1]
g(a) = g(b) and g is not monotone in [a, b].

Define

3 g(u) ifuel0,a] oruelb1]

u) =

g g(a) ifu € la,b]
Let g, : [0,1] — R be smooth such that g, — ¢ uniformly in [0,1], g, = g in a
neighborhood of 0 and 1, g/, > 0 and u— g, (u) is KPP. Then by Corollary 1.7 the problem

(1.3)- (1.5) with nonlinearity f, = v — g, (u) has critical speed ¢* < 0 independent of n,
and hence there exists a monotone solution u,,

J Uy, = gn(tn), Up(—00) =0, up(+o0)=1.
Notice that any solution to this problem is continuous and hence we may choose
un(0) = a.

By Helly’s theorem there is a subsequence which converges pointwise to a solution u of
the following problem

Jxu=g(u) inR.
Remark that u(0) = a, and u(—o0) = 0, u(+00) = 1 by Lemma 2.4. Note that u is
continuous in (—oo, 0] since u < @ in (—o0, 0] and g is strictly increasing in [0, a].

We will show that u has a discontinuity at 0 and u(0%) = b. As in [1], choose §,, > 0
such that u,(d,) = b. Let § = liminf §,, and note that u > b in (4, 00). Let us show that
d = 0. If not, then g(u(x)) = g(a) for x € (0,0) and this implies J x u = const in (0, 0).
Then for 0 < 7 < §/2 we have Jx (u—u(-—7)) > 0 and vanishes in a nonempty interval.
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By the maximum principle © = u(- — 7) and this implies that « is constant, which is a
contradiction. Thus § = 0 and u has a jump discontinuity at 0. Hence u is a solution to
(1.3)- (1.5). We conclude that u(0") = b because J * u is continuous. O
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