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SET OF INVARIANT MEASURES OF GENERALIZED TOEPLITZ

SUBSHIFTS.

MARÍA ISABEL CORTEZ, SAMUEL PETITE

Abstract. We show that for every metrizable Choquet simplex K and for every
group G, which is amenable, finitely generated and residually finite, there exists
a Toeplitz G-subshift whose set of shift-invariant probability measures is affine
homeomorphic to K. Furthermore, we get that for every integer d ≥ 1 and every
minimal Cantor system (X, T ) whose dimension group is divisible, there exists a

minimal Toeplitz Z
d-subshift which is topologically orbit equivalent to (X,T ).

1. Introduction

The Toeplitz subshifts are a rich class of symbolic systems introduced by Jacobs and
Keane in [19], in the context of Z-actions. Since then, they have been extensively studied
and used to provide series of examples with interesting dynamical properties (see for
example [6, 7, 16, 23]). Generalizations of Toeplitz subshifts and some of their properties
to more general group actions can be found in [2, 4, 8, 20]. For instance, in [4] Toeplitz
subshifts are characterized as the minimal symbolic almost 1-1 extensions of odometers
(see [12] for this result in the context of Z-actions). In this paper, we give an explicit
construction that generalizes the result of Downarowicz in [6], to Toeplitz subshifts given
by actions of groups which are amenable, residually finite and finitely generated. The
following is our main result.

Theorem A. Let G be an amenable, residually finite and finitely generated group. For
every metrizable Choquet simplex K and any G-odometer O, there exists a Toeplitz G-
subshift whose set of invariant probability measures is affine homeomorphic to K and
such that it is an almost 1-1 extension of O.

Typical examples of the groups G involved in this theorem are the finitely generated
subgroups of upper triangular matrices in GL(n,C).
The proof of Theorem A deals with combinatorics on Følner sequences and is independent
on the known results for G = Z (see [6] or [16]).
Furethermore, we obtain some consequences in the orbit equivalence problem. Two
minimal Cantor systems are (topologically) orbit equivalent, if there exists an orbit-
preserving homeomorphism between their phase spaces. Giordano, Matui, Putnam and
Skau show in [14] that every minimal Zd-action on the Cantor set is orbit equivalent to
a minimal Z-action. Such a result can not be extended to any countable group. For
instance, by using the notion of cost, Gaboriau [13] proves that if two free actions of
free groups Fn and Fp are (even measurably) orbit equivalent then their rank are the
same i.e. n = p. It is still unknown for which groups the result in [14] is true and which
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are the Z-orbit equivalence classes that the Z
d-actions (or more general group actions)

realize. We give a partial answer for the second question. As a consequence of the proof
of Theorem A we obtain the following result.

Theorem B. Let (X,T ) be a minimal Cantor system having an associated Bratteli
diagram B which satisfies the equal path number property. For each n ≥ 1, let Vn and rn
be the set of vertices of the level n of B and the number of edges arriving to a vertex v
in Vn respectively. If there exists a constant C > 0 such that Crn ≥ |Vn| for each n ≥ 1,

then for every d ≥ 1 there exists a Toeplitz Zd-subshift which is orbit equivalent to (X, T ).
In particular, every minimal Cantor system (X,T ) whose dimension group is divisible,
is orbit equivalent to a Toeplitz Z

d-subshift.

It remains open the problem if the previous result can be generalized to more general
group actions and to any Toeplitz subshift given by a Z-action.

This paper is organized as follows. Section 2 is devoted to introduce the basic defini-
tions. In Section 3 we give a characterization of any Choquet simplex as an inverse limit
defined by suitable sequences of matrices that we call ”manageable”. For an amenable
discrete group G and a decreasing sequence of finite index subgroups of G with trivial
intersection, we construct in Section 4 an associated sequence (Fn)n≥0 of fundamental
domains, so that it is Følner and each Fn+1 is tilable by translated copies of Fn. Next
we use the representation established in Section 3 and the previous Følner sequence to
construct a Toeplitz G-subshift with a prescribed set of invariant probability measures.
This construction improves and generalizes that one given in [3] for Zd-actions, and more-
over, allows to characterize the associated dimension group. We use this result to prove
Theorem B in the last section.

2. Basic definitions and background

In this article, by a topological dynamical system we mean a triple (X,T,G), where T
is a continuous left action of a finitely generated group G on the compact metric space
(X, d). For every g ∈ G, we denote T g the homeomorphism that induces the action of
g on X. The unit element of G will be called e. The system (X,T,G) or the action T
is minimal if for every x ∈ X the orbit oT (x) = {T

g(x) : g ∈ G} is dense in X. We say
that (X,T,G) is a minimal Cantor system or a minimal Cantor G-system if (X,T,G) is
a minimal topological dynamical system with X a Cantor set.
An invariant probability measure of the topological dynamical system (X,T,G) is a prob-
ability Borel measure µ such that µ(T g(A)) = µ(A), for every Borel set A. We denote
byM(X,T,G) the space of invariant probability measures of (X,T,G).

2.1. Subshifts. For every g ∈ G, denote Lg : G → G the left multiplication by g ∈ G.
That is, Lg(h) = gh for every h ∈ G. Let Σ be a finite alphabet. ΣG denotes the set of all
the functions x : G→ Σ. The (left) shift action σ of G on ΣG is given by σg(x) = x◦Lg−1 ,

for every g ∈ G. Thus σg(x)(h) = x(g−1h). We consider Σ endowed with the discrete
topology and ΣG with the product topology. Thus every σg is a homeomorphism of the
Cantor set ΣG. The topological dynamical system (ΣG, σ,G) is called the full G-shift on
Σ. For every finite subset D of G and x ∈ ΣG, we denote x|D ∈ ΣD the restriction of x
to D. For F ∈ ΣD (F is a function from D to Σ) we denote by [F ] the set of all x ∈ ΣD

such that x|D = F . The set [F ] is called the cylinder defined by F , and it is a clopen
set (both open and closed). The collection of all the sets [F ] is a base of the topology
of ΣG. A subshift or G-subshift of ΣG is a closed subset X of ΣG which is invariant by
the shift action. The topological dynamical system (X,σ|X , G) is also called subshift or
G-subshift. See [1] for details.
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2.1.1. Toeplitz G-subshifts. An element x ∈ ΣG is a Toeplitz sequence, if for every g ∈ G
there exists a finite index subgroup Γ of G such that σγ(x)(g) = x(γ−1g) = x(g), for
every γ ∈ Γ.
A subshift X ⊆ ΣG is a Toeplitz subshift or Toeplitz G-subshift if there exists a Toeplitz

sequence x ∈ ΣG such that X = oσ(x). Such subshifts are minimal because the Toeplitz
sequences are regularly recurrent. See [4] and [20] for details about Toeplitz sequence
and subshifts for G-actions.

2.2. Inverse and direct limit. Given a sequence of continuous maps fn : Xn+1 →
Xn, n ≥ 0 on topological spaces Xn, we denote the associated inverse limit by

lim
←n

(Xn, fn) = X0
oo

f0
X1

oo
f1

X2
oo

f2
· · ·

:= {(xn)n;xn ∈ Xn, xn = fn(xn+1) ∀n ≥ 0}.

Let us recall that this space is compact when all the spaces Xn are compact and the
inverse limit spaces associated to any increasing subsequences (ni)i of indices are home-
omorphic.
In a similar way, we denote for a sequence of maps gn : Xn → Xn+1, n ≥ 0 the associated
direct limit by

lim
→n

(Xn, gn) = X0
g0

// X1
g1

// X2
g2

// · · ·

:= {(x, n), x ∈ Xn, n ≥ 0}/ ∼,

where two elements are equivalent (x,n) ∼ (y,m) if and only if there exists k ≥ m,n
such that gk ◦ . . . ◦ gn(x) = gk ◦ . . . ◦ gm(x). We denote by [x, n] the equivalence class
of (x,n). When the maps gn are homomorphisms on groups Xn, then the direct limit
inherits a group structure.

2.3. Odometers. A group G is said to be residually finite if there exists a nested se-
quence (Γn)n≥0 of finite index normal subgroups such that

⋂
n≥0 Γn is trivial. For every

n ≥ 0, there exists then a canonical projection πn : G/Γn+1 → G/Γn. The G-odometer
or adding machine O associated to the sequence (Γn)n is the inverse limit

O := lim
←n

(G/Γn, πn) = G/Γ0
oo

π0
G/Γ1

oo
π1

G/Γ2
oo
π2

· · · .

We refer to [4] for the basic properties of such a space. Let us recall that it inherits
a group structure through the quotient groups G/Γn and it contains G as a subgroup
thanks the injection G ∋ g 7→ ([g]n) ∈ O, where [g]n denotes the class of g in G/Γn.
Thus the group G acts by left multiplication on O. When there is no confusion, we call
this action also odometer. It is equicontiuous, minimal and the left Haar measure is the
unique invariant probability measure. Notice that this action is free: the stabilizer of
any point is trivial. The Toeplitz G-subshifts are characterized as the subshifts that are
minimal almost 1-1 extensions of G-odometers [4].

2.4. Ordered groups. An ordered group is a pair (H,H+), such that H is a countable
abelian group and H+ is a subset of H verifying (H+)+(H+) ⊆ H+, (H+)+(−H+) = H
and (H+) ∩ (−H+) = {0} (we use 0 as the unit of H when H is abelian). An ordered
group (H,H+) is a dimension group if for every n ∈ Z

+ there exist kn ≥ 1 and a positive
homomorphism An : Zkn → Z

kn+1 , such that (H,H+) is isomorphic to (J, J+), where J
is the direct limit

lim
−→n

(Zkn , An) = Z
k0

A0
//
Z

k1
A1

//
Z

k2
A2

// · · · ,
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and J+ = {[v, n] : a ∈ (Z+)kn , n ∈ Z
+}. The dimension group is simple if the matrices

An can be chosen strictly positive.
An order unit in the ordered group (H,H+) is an element u ∈ H+ such that for every
g ∈ H there exists n ∈ Z

+ such that g ≤ nu. If (H,H+) is a simple dimension group then
each element in H+ \ {0} is an order unit. A unital ordered group is a triple (H,H+, u)
such that (H,H+) is an ordered group and u is an order unit. An isomorphism between
two unital ordered groups (H,H+, u) and (J, J+, v) is an isomorphism φ : H → J such
that φ(H+) = J+ and φ(u) = v. A state of the unital ordered group (H,H+, u) is
a homomorphism φ : H → R so that φ(u) = 1 and φ(H+) ⊆ R

+. The infinitesimal
subgroup of (H,H+, u) is

inf(H) = {a ∈ H : φ(a) = 0 for all state φ}.

It is not difficult to show that inf(H) does not depend on the order unit.
The quotient group H/inf(H) of a simple dimension group (H,H+) is also a simple
dimension group with positive cone

(H/inf(H))+ = {[a] : a ∈ H+}.

For more details about ordered groups and dimension groups we refer to [10] and [17].

Lemma 1. Let (H,H+) be a simple dimension group equals to the direct limit

lim
→n

(Zkn ,Mn) = Z
k0

M0
//
Z

k1
M1

//
Z

k2
M2

// · · · .

Then for every z = (zn)n≥0 in the inverse limit

lim
←n

((R+)kn ,MT
n ) = (R+)k0 oo

MT
0

(R+)k1 oo

MT
1

(R+)k2 oo

MT
2

· · · ,

the function φz : H → R given by φ([n, v]) =< v, zn >, for every [n, v] ∈ H, is well
defined and is a homomorphism of groups such that φz(H

+) ⊆ R
+. Conversely, for

every group homomorphism φ : H → R such that φ(H+) ⊆ R
+, there exists a unique

z ∈ lim←n((R
+)kn ,MT

n ) such that φ = φz.

Proof. Let z ∈ lim
←−n

((R+)kn ,MT
n ). If (m,w) ∈ [n, v] then there exists k ≥ m,n such that

Mk · · ·Mmw = Mk · · ·Mnv. Then

〈v, zn〉 = vTMT
n · · ·M

T
k zk+1 = wTMT

m · · ·M
T
k zk+1 = wT zm = 〈w, zm〉.

This implies that φz is well defined. If [n, v] is in H+, we can assume that v ≥ 0, then
φz([n, v]) = 〈v, zn〉 ≥ 0. It is straightforward to show that φz is a group homomorphism
so that φz(H

+) ⊆ R
+.

Convesly, let φ : H → R be a group homomorphism such that φ(H+) ⊆ R
+. For every

n ≥ 0, the function φn : Zkn → R such that φn(v) = φ([n, v]), is a group homomorphism
verifying φn((Z

+)kn) ⊆ R
+. Then zn = (φn(e1), · · · , φn(ekn)) ≥ 0, where e1, · · · , ekn are

the unitary vectors in Z
kn . We have φ([n, v]) = φn(v) = 〈v, zn〉, for every v ∈ Z

kn and
n ≥ 0. Thus if we show that z = (zn)n≥0 is in lim

←−n
((R+)kn ,MT

n ), we get φ = φz for z

in the inverse limit. But this is direct because φn(v) = φn+1(Mnv), for every v ∈ Z
kn .

Applying this to the unitary vectors, we get zn = MT
n zn+1, for every n ≥ 0. Different

elements in lim
←−n

((R+)kn ,MT
n ) define different homomorphisms, so z is unique. �
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2.5. Associated ordered group and orbit equivalence. Let (X,T,G) be a topolog-
ical dynamical system such that X is a Cantor set and T is minimal. The ordered group
associated to (X,T,G) is the unital ordered group

G(X,T,G) = (Dm(X,T,G), Dm(X,T,G)+, [1]),

where

Dm(X,T,G) = C(X,Z)/{f ∈ C(X,Z) :

∫
fdµ = 0, ∀µ ∈ M(X,T,G)},

Dm(X,T,G)+ = {[f ] : f ≥ 0},

and [1] ∈ Dm(X,T,G) is the class of the constant function 1.

Two topological dynamical systems (X1, T1, G1) and (X2, T2, G2) are (topologically) or-
bit equivalent if there exists a homeomorphism F : X1 → X2 such that F (oT1(x)) =
oT2(F (x)) for every x ∈ X1.

Theorem 2.5 in [14] implies that for every integer d ≥ 1, the isomorphic class of G(X,T,Zd)
is a total invariant of the topological orbit equivalence class of (X,T,Zd) for minimal Zd

action on a Cantor set.

3. Characterization of Choquet simplices

A compact, convex, and metrizable subset K of a locally convex real vector space is said
to be a (metrizable) Choquet simplex, if for each v ∈ K there is a unique probability
measure µ supported on the set of extreme points of K such that

∫
xdµ(x) = v.

In this section we show that any metrizable Choquet simplex is affine homeomorphic to
an inverse limit defined by sequences of matrices that we call manageable.
We say that a sequence of non-negative integer matrices (Mn)n≥0 is manageable with
respect to the increasing sequence of positive integers (pn)n≥0, if for every n ≥ 0 the
integer pn divides pn+1, and if the matrix Mn verifies the following properties:

(1) Mn has kn ≥ 3 rows and kn+1 ≥ 3 columns.

(2)
∑kn

i=1 Mn(i, k) =
pn+1

pn
, for every 1 ≤ k ≤ kn+1,

(3) kn+1 ≤ min{Mn(i, k) : 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1}.

Let p be a positive integer. For every n ≥ 1 we denote by △(n, p) the closed convex hull

generated by the vectors 1
p
e
(n)
1 , · · · , 1

p
e
(n)
n , where e

(n)
1 , · · · , e

(n)
n is the canonical base in

R
n. Thus △(n, 1) is the unitary simplex in R

n.
Observe that if (Mn)n≥0 is a manageable sequence of matrices with respect to (pn)n≥0,
then for each n ≥ 0, the map Mn : △(kn+1, pn+1)→△(kn, pn) is well defined, where kn
is the number of rows of Mn.

3.1. Finite dimensional Choquet simplices. For technical reasons, we have to sep-
arate the finite and the infinite dimensional cases.

Lemma 2. Let K be a finite dimensional metrizable Choquet simplex with exactly d ≥ 1
extreme points. Let (pn)n≥0 be an increasing sequence of positive integers such that for
every n ≥ 0 the integer pn divides pn+1, and let k ≥ max{3, d}. Then there exist an in-
creasing subsequence (ni)i≥0 of indices and a sequence (Mi)i≥0 of square k-dimensional
matrices which is manageable with respect to (pni

)i≥0 and such that K is affine homeo-
morphic to lim

←−n
(△(k, pni

),Mi).
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Proof. Let k ≥ max{3, d}, we will define the subsequence (ni)i≥0 by induction on i
through a condition explained later. For every i ≥ 0, we define Mi the k-dimensional
matrix by

Mi(l, j) =

{
pni+1

pni

− k(k − 1) if 1 ≤ l = j ≤ d

k if l 6= j, 1 ≤ l ≤ k and 1 ≤ j ≤ d

and

Mi(·, j) = Mi(·, d) for d < j ≤ k.

By the very definition, Mi is a positive matrix having k ≥ 3 rows and columns ;∑k

l=1 Mi(l, j) =
pni+1

pni
for every 1 ≤ j ≤ k and the range of Mi is at most d. Thus

the convex set lim
←−n

(△(k, pni
),Mi) has at most d extreme points.

If it has exactly d extreme points, it is affine homeomorphic toK. Thus by the Hadamard’s
Lemma, it is enough to ensure that the submatrices (M0 . . .Mi(l, j))1≤l,j≤d are diagonally
strictly dominant matrices.
Let n0 = 0 and n1 be an integer so that

pn1

p0
− k(k − 1) ≥ k(d− 1) + 1 ≥ k.

This ensures that the matrix (M0(l, j))1≤l,j≤d is diagonally strictly dominant.
Now let us assume that the sequence n0, . . . , ni−1 is defined so that (M0 . . .Mi−1(l, j))1≤l,j≤d

is a diagonally strictly dominant matrix. Then standard calculus show that for any
l, j ∈ {1, . . . , d},

M0 . . .Mi(l, j) = (
pni+1

pni

− k(k − 1))M0 . . .Mi−1(l, j) + bl,j ,

where the coefficient bl,j does not depend on the diagonal coefficient
pni+1

pni

− k(k − 1).

The diagonal is dominant means that for any l ∈ {1, . . . , d}

(
pni+1

pni

− k(k − 1))M0 . . .Mi−1(l, l) + bl,l >

d∑

j=1,j 6=l

(
pni+1

pni

− k(k − 1))M0 . . .Mi−1(l, j) + bl,j .

Now, let ni+1 be an integer so that

pni+1

pni

− k(k − 1) > max



 sup
1≤l≤d

d∑

j=1,j 6=l

bl,j − bl,l, k



 ;

since M0 . . .Mi−1(l, l)−
∑d

j=1,j 6=l M0 . . .Mi−1(l, j) ≥ 1, the former inequality is true, and

the matrix (M0 . . .Mi(l, j))1≤l,j≤d is diagonally strictly dominant.
It is straightforward to check that (Mi)i is manageable with respect to (pni

)i. �

3.2. Infinite dimensional Choquet simplices. Firt, we use the following characteri-
zation of infinite dimensional metrizable Choquet simplex.

Lemma 3 ([21], Corollary p.186). For every infinite dimensional metrizable Choquet
simplex K, there exists a sequence of matrices (An)n≥1 such that for every n ≥ 1

(1) An : △(n+ 1, 1)→△(n, 1) is well defined and surjective,
(2) K is affine homeomorphic to lim

←−n
(△(n, 1), An).

Our strategy is to approximate the sequence of matrices (An)n by a manageable sequence.
Then we show that the associated inverse limits are affine homeomorphic. For this, we
need the following classical density result.
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Lemma 4. Let r = (rn)n≥0 be a sequence of integers such that rn ≥ 2 for every n ≥ 0.
Let Cr be the subgroup of (R,+) generated by {(r0 · · · rn)

−1 : n ≥ 0}. Then

(Cr)
p ∩△(p, 1) ∩ {v ∈ R

p : v > 0}

is dense in △(p, 1), for every p ≥ 2.

Proof. Suppose that p = 2. Let m ≥ 1 and Γm = Z(r0 · · · rm)−1. For α = (α1, α2) ∈
△(2, 1) \ (Γm)2, let k1, k2 ≥ 0 be the integers such that

k1
r0 · · · rm

≤ α1 <
k1

r0 · · · rm
+

1

r0 · · · rm

and
k2

r0 · · · rm
≤ α2 <

k2
r0 · · · rm

+
1

r0 · · · rm
.

Since there is i ∈ {1, 2} such that αi /∈ Γm, we have

1−
1

r0 · · · rm
<

k1
r0 · · · rm

+
k2

r0 · · · rm
+

1

r0 · · · rm
< 1 +

1

r0 · · · rm
,

which implies that
k1

r0 · · · rm
+

k2
r0 · · · rm

+
1

r0 · · · rm
= 1.

Thus v = (r0 · · · rm)−1(k1, k2 + 1) and w = (r0 · · · rm)−1(k1 + 1, k2) are elements in
(Γm)2 ∩ △(2, 1) such that ‖v − α‖1, ‖w − α1‖1 ≤ 2(r0 · · · rm)−1. Furthermore, v or
w is strictly positive. If α is in (Γm)2 and one of its coordinates is not positive, then

α = e
(2)
1 or α = e

(2)
2 . Observe that (1−(r0 · · · rm)−1, (r0 · · · rm)−1) and ((r0 · · · rm)−1, 1−

(r0 · · · rm)−1) are positive elements in (Γm)2 ∩△(2, 1) at distance at most 2(r0 · · · rm)−1

from α. Since m can be arbitrarily large, we conclude that the lemma is true for p = 2

For p > 2 we conclude by induction on p. Indeed, if α = (αi)
p
i=1 ∈ △(p, 1) then

β = (α1, · · · , αp−2, αp−1 + αp) is in △(p − 1, 1). Thus for ε > 0 there exists a strictly
positive element z = (z1, · · · , zp−1) in (Cr)

p−1 ∩ △(p − 1, 1) such that ‖z − β‖1 < ε.
Since Cr is dense in R, there exists a ∈ Cr such that 0 < a < zp−1. If αp < αp + αp−1,
by taking ε small enough, we can assume that αp < zp−1. In this case we can choose
a in order that |a − αp| < ε. If αp = αp + αp−1, then we can choose a in order that
|αp−a| ≤ 2ε. In any case, we get that w = (z1, · · · , zp−2, zp−1−a, a) is a strictly positive
element in (Cr)

p ∩△(p, 1) such that ‖w − α‖1 < 5ε. �

Lemma 5. Let K be an infinite dimensional metrizable Choquet simplex, and let (pn)n≥0

be an increasing sequence of positive integers such that for every n ≥ 0 the integer pn
divides pn+1. Then there exist an increasing subsequence (ni)i≥1 of indices and a man-
ageable sequence (Mi)i≥1 of matrices with respect to (pni

)i≥0 such that K is affine home-
omorphic to the inverse limit lim

←−n
(△(ki, pni

),Mi), where ki is the number of rows of Mi,

for every i ≥ 0.

Proof. For every n ≥ 0, let rn ≥ 2 be the integer such that pn+1 = pnrn.
Let (An)n≥1 be the sequence of matrices given in Lemma 3. We can assume that An+2 :
△(n + 3, 1) −→ △(n + 2, 1), for every n ≥ 1. Now we define the subsequence (ni)i by
induction.

We set n1 = 0.

Let i ≥ 1 and suppose that we have defined ni ≥ 0. We set r(i) = (rn)n≥ni
. For every

1 ≤ j ≤ i + 3, Lemma 4 ensures the existence of v(i,j) ∈ (C
r(i)

)i+2 ∩ △(i + 2, 1) ∩ {v ∈
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R
i+2 : v > 0} such that

(1) ‖v(i,j) −Ai+2(·, j)‖1 <
1

2i
.

Let Bi be the matrix given by

Bi(·, j) = v(i,j), for every 1 ≤ j ≤ i+ 3.

Observe that (1) implies that
∑

n≥1

sup{‖Anv −Bnv‖1 : v ∈ △n+3} <∞.

It follows from [5, Lemma 9] that K is affine homeomorphic lim
←−n

(△(i+ 2, 1), Bi).

Let ni+1 > ni be such that rni
· · · rni+1−1v

(i,j) is an integer vector and such that

rni
· · · rni+1−1v

(i,j) > i+ 3, for every 1 ≤ j ≤ i+ 3.
We define

Mi =
pni+1

pni

Bi.

Thus Mi = P−1
i BiPi+1, where Pi is the diagonal matrix given by Pi(j, j) = pni

for every
1 ≤ j ≤ i+2 and i ≥ 1. This shows that lim

←−n
(△(i+2, 1), Bi) is affine homeomorphic to

lim
←−n

(△(i+ 2, pni
),Mi).

The proof conclude verifying that (Mi)i≥0 is manageable with respect to (pni
)i≥0. �

4. Suitable Følner sequences and connected components.

Let G be a residually finite group, and let (Γn)n≥0 be a nested sequence of finite index
normal subgroup of G such that

⋂
n≥0 Γn = {e}.

For technical reasons it is important to notice that since the groups Γn are normal, we
have gΓn = Γng, for every g ∈ G.
To construct a Toeplitz G-subshift that is an almost 1-1 extension of the odometer defined
by the sequence (Γn)n, we need a “suitable” sequence (Fn)n of fundamental domains of
G/Γn. More precisely, each Fn+1 has to be tileable by translated copies of Fn. To control
the simplex of invariant measure of the subshift, we need in addition the sequence (Fn)n
to be Følner. We did not find in the specialized litterature a result ensuring these
conditions.

4.1. Suitable sequence of fundamental domains.

Lemma 6. Let (Dn)n≥0 be an increasing sequence of finite subsets of G such that for
every n ≥ 0, e ∈ Dn and Dn is a fundamental domain of G/Γn. Let (ni)i≥0 ⊆ Z

+ be an
increasing sequence. Consider (Fi)i≥0 defined by F0 = Dn0 and

Fi =
⋃

v∈Dni
∩Γni−1

vFi−1 for every i ≥ 1.

Then for every i ≥ 0 we have the following:

(1) Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γni
.

(2) Fi+1 =
⋃

v∈Fi+1∩Γni
vFi.

Proof. Since e ∈ Dni
, the sequence (Fi)i≥0 is increasing.

F0 = Dn0 is a fundamental domain of G/Γn0 . We will prove by induction on i that Fi

is a fundamental domain of G/Γni
. Let i > 0 and suppose that Fi−1 is a fundamental

domain of G/Γni−1 .
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Let v ∈ Dni
. There exist then u ∈ Fi−1 and w ∈ Γni−1 such that v = wu. Let z ∈ Dni

and γ ∈ Γni
be such that w = γz. Since z ∈ Γni−1 ∩Dni

and v = γzu, we conclude that
Fi contains one representing element of each class in G/Γni

.
Let w1, w2 ∈ Fi be such that there exists γ ∈ Γni

verifying w1 = γw2. By definition,
w1 = v1u1 and w2 = v2u2, for some u1, u2 ∈ Fi−1 and v1, v2 ∈ Dni

∩Γni−1 . This implies
that u1 and u2 are in the same class of G/Γni−1 . Since Fi−1 is a fundamental domain,
we have u1 = u2. From this we get v1 = γv2, which implies that v1 = v2. Thus we
deduce that Fi contains at most one representing element of each class in G/Γni

. This
shows that Fi is a fundamental domain of G/Γni

.
The neutral element e is contained in D0 = F0 ⊆ Fi−1. Then by definition of Fi we have
ve ∈ Fi for every v ∈ Dni

∩ Γni−1 . This shows that Dni
∩ Γni−1 ⊆ Fi ∩ Γni−1 . For

v ∈ Fi ∩ Γni−1 , let u ∈ Fi−1 and γ ∈ Dni
∩ Γni−1 be such that v = γu. Since v and γ

are in Γni−1 , we have u ∈ Γni−1 , which implies that u = e and v = γ ∈ Dni
∩ Γni−1 . �

In this paper, by Følner sequences we mean right Følner sequences. That is, a sequence
(Fn)n≥0 of nonempty finite sets of G is a Følner sequence if for every g ∈ G

lim
n→∞

|Fng△Fn|

|Fn|
= 0.

Observe that (Fn)n≥0 is a right Følner sequence if and only if (F−1
n )n≥0 is a left Følner

sequence.

Lemma 7. Suppose that G is amenable. There exists an increasing sequence (ni)i≥0 ⊆
Z

+ and a Følner sequence (Fi)i∈Z+ , such that

i) Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γni
, for every i ≥ 0.

ii) G =
⋃

i≥0 Fi.

iii) Fi+1 =
⋃

v∈Fi+1∩Γni
vFi, for every i ≥ 0.

Proof. From [20, Proposition 4.1], there exists an increasing sequence (mi)i≥0 ⊆ Z
+ and

a Følner sequence (Di)i∈Z+ such that for every i ≥ 0, Di ⊆ Di+1, Di is a fundamental
domain of G/Γmi

, and G =
⋃

i≥0 Di. Up to take subsequences, we can assume that Di

is a fundamental domain of G/Γi, for every i ≥ 0, and that e ∈ D0.
We will construct the sequences (ni)i≥0 and (Fn)n≥0 as follows:

Step 0: We set n0 = 0 and F0 = D0.

Step i: Let i > 0. We assume that we have chosen nj and Fj for every 0 ≤ j < i. We
take ni > ni−1 in order that the following two conditions are verified:

(2)
|Dni

g △ Dni
|

|Dni
|

<
1

i|Fi−1|
, for every g ∈ Fi−1.

(3) Dni−1 ⊆
⋃

v∈Dni
∩Γni−1

vFi−1.

Such integer ni exists because (Dn)n≥0 is a Følner sequence and Fi−1 is a fundamental
domain of G/Γni−1 (then G =

⋃
v∈Γni−1

vFi−1).

We define

Fi =
⋃

v∈Dni
∩Γni−1

vFi−1.

Lemma 6 ensures that (Fi)i≥0 verifies i) and iii) of the lemma. The equation (3) implies
that (Fi)i≥0 verifies ii) of the lemma.
It remains to show that (Fi)i≥0 is a Følner sequence.
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By definition of Fi we have

Fi \Dni
⊆

⋃

g∈Fi−1

Dni
g \Dni

.

Then by equation (2) we get

|Fi \Dni
|

|Dni
|

≤
∑

g∈Fi−1

|Dni
g \Dni

|

|Dni
|

≤ |Fi−1|
1

i|Fi−1|
=

1

i
.

Since

|Fi ∩Dni
|+ |Dni

\ Fi| = |Dni
| = |Fi| = |Fi ∩Dni

|+ |Fi \Dni
|,

we obtain
|Dni

\ Fi|

|Dni
|
≤

1

i
.

Let g ∈ G. Since

Fig \ Fi = (Fi ∩Dni
)g \ Fi ∪ (Fi \Dni

)g \ Fi

⊆ (Fi ∩Dni
)g \ Fi ∪ (Fi \Dni

)g

⊆ Dni
g \ (Fi ∩Dni

) ∪ (Fi \Dni
)g,

we have

(4)
|Fig \ Fi|

|Fi|
≤
|Dni

g \ (Fi ∩Dni
)|

|Dni
|

+
|(Fi \Dni

)g|

|Dni
|

≤
|Dni

g \ (Fi ∩Dni
)|

|Dni
|

+
1

i
.

On the other hand, the relation

Dni
g \Dni

= Dni
g \ ((Dni

∩ Fi) ∪Dni
\ Fi) = (Dni

g \ (Dni
∩ Fi)) \ (Dni

\ Fi),

implies that

Dni
g \ (Fi ∩Dni

) = [(Dni
g \ (Fi ∩Dni

)) ∩ (Dni
\ Fi)] ∪ (Dni

g \ (Fi ∩Dni
)) \ (Dni

\ Fi)

= [(Dni
g \ (Fi ∩Dni

)) ∩ (Dni
\ Fi)] ∪Dni

g \Dni

⊆ Dni
\ Fi ∪Dni

g \Dni
,

which ensures that

(5)
|Dni

g \ (Fi ∩Dni
)|

|Dni
|

≤
|Dni

\ Fi|

|Dni
|

+
|Dni

g \Dni
|

|Dni
|

.

From equations (4) and (5), we obtain

|Fig \ Fi|

|Fi|
≤

2

i
+
|Dni

g \Dni
|

|Dni
|

,

which implies

(6) lim
i→∞

|Fig \ Fi|

|Fi|
= 0.

In a similar way we deduce that

Fi \ Fig ⊆ (Dni
\ (Fi ∩Dni

)g) ∪ Fi \Dni
,

Dni
\Dni

g = (Dni
\ (Dni

∩ Fi)g) \ (Dni
\ Fi),

and

Dni
\ (Fi ∩Dni

)g ⊆ Dni
\ Fi ∪Dni

\Dni
g.
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Combining the last three equations we get

|Fi \ Fig|

|Fi|
≤

2

i
+
|Dni

\Dni
g|

|Dni
|

,

which implies

(7) lim
i→∞

|Fi \ Fig|

|Fi|
= 0.

Equations (6) and (7) imply that (Fi)i≥0 is Følner. �

The following result is a direct consequence of Lemma 7.

Lemma 8. Let G be an amenable residually finite group and let (Γn)n≥0 be a decreasing
sequence of finite index normal subgroups of G such that

⋂
n≥0 Γn = {e}. There exists

an increasing sequence (ni)i≥0 ⊆ Z
+ and a Følner sequence (Fi)i≥0 of G such that

(1) {e} ⊆ Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γni
, for every n ≥ 0.

(2) G =
⋃

i≥0 Fi.

(3) Fj =
⋃

v∈Fj∩Γni
vFi, for every j > i ≥ 0.

Proof. The existence of the sequence of subgroups of G and the Følner sequence verifying
(1), (2) and (3) for j = i+1 is direct from Lemma 7. Using induction, it is straightforward
to show (3) for every j > i ≥ 0. �

4.2. Connected components. We recall here the notion of connected component of a
discrete group G. This notion will be usefull to define a Toeplitz sequence. Let Γ be
a finitely generated subgroup of G. Let S be a symmetric generating set of Γ and let
C ⊆ Γ be a non empty set. The connected components of C with respect to S are the
equivalence classes of the following equivalence relation defined on C:

g ∼ h ⇐⇒ there exist s1, · · · , sk ∈ S ∪ {e}, such that for every 1 ≤ i ≤ k,

gs1 · · · si ∈ C and gs1 · · · sk = h.

The set C is said to be connected if C has only one connected component.

Lemma 9. Let C ⊆ Γ be a connected set. For every finite number 1 ≤ r ≤ |C| there
exists a connected subset C′ of C such that |C′| = r.

Proof. Let 1 ≤ r ≤ |C| be a finite number. If r = 1 then C′ = {g}, for g ∈ C, is
connected.
Suppose there exists a connected subset C′′ of C such that |C′′| = r−1. Since |C| ≥ r, we
can choose h ∈ C \C′′. Due to C is connected, for g ∈ C′′ there exist s1, · · · , sk ∈ S such
that for every 1 ≤ i ≤ k, gs1 · · · si ∈ C and gs1 · · · sk = h. Let g ∈ C′′ and h′ = gs1 · · · si
be such that i = min{1 ≤ j ≤ k : gs1 · · · sj /∈ C′′}. The set C′ = C′′ ∪ {h′} is connected
and has exactly r elements. �

Let us recall that for a group G finitely generated and Γn a subgroup of finite index,
then Γn is finitely generated (see for example [1, Proposition 6.6.2]). Thus for (Γn)n≥0

and (Fn)n≥0 be as in Lemma 8.

Definition 1. For every n ≥ 0, let Sn be a finite symmetric generating subset of Γn.

Since the sequence (Fn)n≥0 is increasing and the union of these sets covers G, there exists
a subsequence (Fni

)i≥0 such that e and the elements of Sni
are in the same connected

component of Fni+1 ∩ Γni
with respect to Sni

.
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5. Proof of Theorem A.

Let G be an amenable finitely generated residually finite group. Let (Γn)n≥0 and (Fn)n≥0

be as in Lemma 8.
For every n ≥ 0, we call Rn the set [(Fn ∪ F−1

n )F−1
n ∪ Sn] ∪ [(Fn ∪ F−1

n )F−1
n ∪ Sn]

−1.
This will enable us to define a “border” of each domain Fn+1.
Let Σ be a finite alphabet. For every n ≥ 0, let kn ≥ 3 be an integer and let {Bn,1, · · · , Bn,kn} ⊆
ΣFn be a collection of different functions. We say that ({Bn,1, · · · , Bn,kn})n≥0 verifies
conditions (C1)-(C4) if it verifies the following four conditions for any n ≥ 0:

(C1) σγ−1

(Bn+1,k)|Fn ∈ {Bn,i : 1 ≤ i ≤ kn}, for every γ ∈ Fn+1 ∩ Γn, 1 ≤ k ≤ kn+1.
(C2) Bn+1,k|Fn = Bn,1, for every 1 ≤ k ≤ kn+1.
(C3) For any g ∈ Fn such that for some 1 ≤ k, k′ ≤ kn, Bn,k(gv) = Bn,k′(v) for all

v ∈ Fn ∩ Fng
−1, then g = e.

(C4) σγ−1

(Bn+1,k)|Fn = Bn,kn for every γ ∈ (Fn+1 ∩ Γn)∩ Fn+1 \Fn+1g
−1, for some

g ∈ Rn.

In this case, for every n ≥ 0 we define the matrix Mn ∈ Mkn×kn+1(Z
+) as

Mn(i, k) = |{v ∈ Fn+1 ∩ Γn : Bn+1,k|vFn = Bn,i}|.

In the next lemma, we show that conditions (C1) and (C2) are sufficient to construct a
Toeplitz sequence. The technical conditions (C3) (aperiodicity) and (C4) (also known
as “forcing the border”) will ensure the existence of a good sequence of partitions (Pn)n
spanning the topology. This will allow to give a characterization of the set of invariant
probability measures and the ordered group of the associated Toeplitz subshift.

Lemma 10. Let ({Bn,1, · · · , Bn,kn})n≥0 be a sequence that verifies conditions (C1)-
(C4). Then:

(1) The set
⋂

n≥0[Bn,1] contains only one element x0 which is a Toeplitz sequence.

(2) Let X be the orbit closure of x0 with respect to the shift action. For every n ≥ 0,

Pn = {σu−1

([Bn,k] ∩X) : 1 ≤ k ≤ kn, u ∈ Fn}

is a clopen partition of X. Moreover, Pn+1 is finer than Pn and (Pn)n≥0 spans
the topology of X.

(3) The Toeplitz subshift (X,σ|X , G) is an almost 1-1 extension of the odometer
O = lim

←−n
(G/Γn, πn).

(4) There is an affine homeomorphism between the set of invariant probability mea-
sures of (X,σ|X , G) and the inverse limit lim

←−n
(△(kn, |Fn|),Mn).

(5) The ordered group G(X,σ|X , G) is isomorphic to (H/inf(H), (H/inf(H))+, u+

inf(H)), where H = lim
−→n

(Zkn ,MT
n ), H+ = {[v, n] : v ≥ 0, n ≥ 0} and u =

[|F0|(1, · · · , 1), 0].

Proof. 1. Condition (C2) implies that
⋂

n≥0[Bn,1] is non empty, and since G =
⋃

n≥0 Fn,
there is only one element x0 in this intersection. Let X be the orbit closure of x0. For
every n ≥ 0 and 1 ≤ k ≤ kn, we denote Cn,k = [Bn,k] ∩X.

Let n ≥ 0. Condition (C1) and (3) of Lemma 8 imply that σγ−1

(Bm,k)|Fn ∈ {Bn,i : 1 ≤
i ≤ kn}, for every m > n, 1 ≤ k ≤ km and γ ∈ Γn ∩ Fm. From this we deduce that

σγ−1

(x0)|Fn ∈ {Bn,i : 1 ≤ i ≤ kn}, for every γ ∈ Γn.

The condition (C2) implies then that σγ−1

(x0)|Fn−1 = Bn−1,1 for any γ ∈ Γn. Thus, for
g ∈ G and n such that g ∈ Fn−1, we get x0(γg) = Bn−1,1(g) for any γ ∈ Γn. This shows
that x0 is Toeplitz.
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2. If g is any element in G, then there exist u ∈ Fn and γ ∈ Γn such that g = γu. Thus

σg−1

(x0) = σu−1

(σγ−1

(x0)) ∈ σu−1

(Cn,k), for some 1 ≤ k ≤ kn. It follows that

Pn = {σu−1

(Cn,k) : 1 ≤ k ≤ kn, u ∈ Fn}

is a clopen covering of X. Condition (C3) ensures that the set of return times of x0 to
⋃kn

k=1 Cn,k, i.e. the set {g ∈ G : σg−1

(x0) ∈
⋃kn

k=1 Cn,k}, is Γn. This implies that Pn is a
partition. From (C1) we have that Pn+1 is finer than Pn.
Since every Pn is a partition, for every n ≥ 0 and every x ∈ X there are unique vn(x) ∈ Fn

and 1 ≤ kn(x) ≤ kn such that

x ∈ σvn(x)−1

(Cn,kn(x)).

The collection (Pn)n≥0 spans the topology of X if and only if (vn(x))n≥0 = (vn(y))n≥0

and (kn(x))n≥0 = (kn(y))n≥0 imply x = y.
Let x, y ∈ X be two sequences such that vn(x) = vn(y) = vn and kn(x) = kn(y) for every
n ≥ 0. Let g ∈ G such that x(g) 6= y(g).
We have then for any n ≥ 0

σvn(x)|Fn = σvn(y)|Fn ∈ {Bn,i : 1 ≤ i ≤ kn}.

And then

x|
v
−1
n Fn

= y|
v
−1
n Fn

.

Thus by definition, we get g 6∈ v−1
n Fn for any n. We can take n sufficiently large in order

that g ∈ Fn−1.
Let γ ∈ Γn and u ∈ Fn such that vn(x)g = γu. Observe that ug−1 /∈ Fn. Indeed, if
ug−1 ∈ Fn, then the relation vn(x) = γug−1 implies γ = e, but in that case we get
vn(x)g = u ∈ Fn which is not possible by hypothesis. By the condition (C1), there exists

an index 1 ≤ i ≤ kn such that σγ−1

(σvn(x))|Fn = Bn,i and then

x(g) = σγ−1

σvn(x)(γ−1vng) = Bn,i(u).

Let γ′ ∈ Γn−1 ∩ Fn and u′ ∈ Fn−1 such that u = γ′u′. Since γ′u′g−1 = ug−1 /∈ Fn, we
get γ′ ∈ Fn \ Fngu

′−1. This implies that γ′ ∈ Fn \ Fnw, for w = gu′−1 ∈ Rn−1 and
Bn,i(u) = Bn−1,kn−1(u

′) by the condition (C4). Thus x(g) = Bn−1,kn−1(u
′). The same

argument implies that y(g) = Bn−1,kn−1(u
′) = x(g) and we obtain a contradiction.

This shows that (Pn)n≥0 spans the topology of X.

3. The map π : X → O given by π(x) = ([vn(x)]n)n≥0 is well defined, is a factor map
and verifies π−1(π(x0)) = {x0}. This shows that (X,σ|X , G) is an almost 1-1 extension
of O.

4. Since (Pn)n≥0 spans the topology of X, for every µ ∈ M(X,σ|X , G), the sequence
(µn = (µ(Cn,1), · · · , µ(Cn,kn))n≥0 determines completely µ. Moreover, since

Mn(i, k) = |{v ∈ Fn+1 : σv−1

(Cn+1,k) ⊆ Cn,i}|, for every 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1 and n ≥ 0,

the function µ 7→ (µn)n≥0, fromM(X,σ|X , G) to lim
←−n

(△(kn, |Fn|),Mn), is well defined

and is an affine homeomorphism (with respect to the weak-star topology and the product
topology). Indeed it is standard through the Følner sequence to show that a sequence in
lim
←−n

(△(kn, |Fn|),Mn) define an unique G-invariant probability measure.

5. Let φ : H → Dm(X,σ|X , G) be the function given by φ([v, n]) =
∑kn

k=1 vi[1Cn,k
], for

every v = (v1, · · · , vkn) ∈ Z
kn and n ≥ 0. It is easy to check that φ is a well defined

homomorphism of groups that verifies and φ(H+) ⊆ Dm(X,σ|X , G)+. Since (Pn)n≥0

spans the topology of X, every function f ∈ C(X,Z) is constant on every atom of Pm,
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for some m ≥ 0. This implies that φ is surjective. Lemma 1 and the previous point

4, imply that Ker(φ) = inf(H). Finally, φ induces a isomorphism φ̂ : H/inf(H) →

Dm(X,σ|X , G) such that φ̂((H/inf(H))+) = Dm(X,σ|X , G)+. It remains to show that
φ([|F0|(1, · · · , 1), 0]) =

∑
k |F0|[1C0,k ] = [1X ]. This is true because for any G-invariant

measure µ, since P0 is a partition, we have

1 =
∑

1≤k≤k0
u∈F0

µ(σu−1

(C0,k)) =
∑

1≤k≤k0

|F0|µ(C0,k).

�

The next result shows that, up to telescope a manageable sequence of matrices, it is
possible to obtain a manageable sequence of matrices with sufficiently large coefficient to
satisfy the conditions of Lemma 10.

Lemma 11. Let (Mn)n≥0 be a sequence of matrices manageable with respect to (|Fn|)n≥0.
Let kn be the number of rows of Mn, for every n ≥ 0.
Then there exists an increasing sequence (ni)i≥0 ⊆ Z

+ such that for every i ≥ 0 and
every 1 ≤ k ≤ kni+1 ,

(i) Rni
⊆ Fni+1 ,

(ii) For every 1 ≤ l ≤ kni
,

Mni
Mni+1 · · ·Mni+1−1(l, k) > |Sni

|+ |
⋃

g∈Rni

Fni+1 \ Fni+1g
−1|

(iii) kni+1 < Mni
· · ·Mni+1−1(i, k), for every 1 ≤ i ≤ kni

.

Proof. We define n0 = 0. Let i ≥ 0 and suppose that we have defined nj for every
0 ≤ j ≤ i. Let m0 > ni be such that for every m ≥ m0,

Rni
⊆ Fm.

Let 0 < ε < 1 be such that ε|Rni
| < 1. Since (Fn)n≥0 is a Følner sequence, there exists

m1 > m0 such that for every m ≥ m1,

(8)
|Fn \ Fmg−1|

|Fm|
<

ε

|Fni+1|
, for every g ∈ Rni

.

Since ε|Rni
| < 1, there exists m2 > m1 such that for every m ≥ m2,

1− |Sni
|
|Fni+1|

|Fm|
> ε|Rni

|.

Then
|Fm|

|Fni+1|
− |Sni

| > ε|Rni
|
|Fm|

|Fni+1|
.

Conditions (1) and (3) for manageable sequences imply that

Mni
· · ·Mm−1(l, j) ≥

|Fm|

|Fni+1|
, for every 1 ≤ l ≤ kni

, 1 ≤ j ≤ km.

Combining the last two equations we get

Mni
· · ·Mm−1(l, j)− |Sni

| > ε|Rni
|
|Fm|

|Fni+1|
,

and from equation (8), we obtain

Mni
· · ·Mm−1(l, j) − |Sni

| > |Fm \ Fmg−1||Rni
|, for every g ∈ Rni

,
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which finally implies that

Mni
· · ·Mm−1(l, j) > |

⋃

g∈Rni

Fm \ Fmg−1|+ |Sni
|, for every 1 ≤ l ≤ kni

, 1 ≤ j ≤ km.

Condition (4) for manageable sequences implies the existence of m3 > m2 such that for
every m ≥ m3

km+1 ≤Mni
· · ·Mm(i, j) for every 1 ≤ i ≤ kn and 1 ≤ j ≤ kn+1.

By taking ni+1 ≥ m3 we get the desired subsequence (ni)i≥0 ⊆ Z
+. �

The following proposition shows that given a manageable sequence, there exists a se-
quence of decorations verifying conditions (C1)-(C4). The aperiodicity condition (C3) is
obtained by decorating the center of Fn in a unique way with respect to other places in
Fn. The restriction on the number of columns of the matrices in a manageable sequence,
gives enough choices of coloring to ensure conditions (C3) and (C4).

Proposition 1. Let (Mn)n≥0 be a sequence of matrices which is manageable with respect
to (|Fn|)n≥0. For every n ≥ 0, we denote by kn the number of rows of Mn. Then there
exists a Toeplitz subshift (X,σ|X , G) verifying the following three conditions:

(1) The set of invariant probability measures of (X,σ|X , G) is affine homeomorphic
to lim
←−n

(△(kn, |Fn|),Mn).

(2) The ordered group G(X,σ|X , G) is isomorphic to (H/inf(H), (H/inf(H))+, u+
inf(H)), where H = lim

−→n
(Zkn ,MT

n ), H+ = {[v, n] : v ≥ 0, n ≥ 0} and u =

[|F0|(1, · · · , 1), 0].
(3) (X,σ|X , G) is an almost 1-1 extension of the odometer O = lim

←−n
(G/Γn, πn).

Proof. Let (ni)i≥0 ⊆ Z
+ be a sequence as in Lemma 11. Since (Mn)n≥0 and the sequence

(Mni
· · ·Mni+1−1)i≥0 define the same inverse and direct limits, without loss of generality

we can assume that for every n ≥ 0 we have:

(9) Rn ⊆ Fn+1,

(10) Mn(i, k) > |Sn|+ |
⋃

g∈Rn

Fn+1 \ Fn+1g
−1| for every 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1,

and

(11) kn+1 < min{Mn(i, j) : 1 ≤ i ≤ kn, 1 ≤ j ≤ kn+1}.

Claim 1. Let Cn,1, · · · , Cn,rn be the connected components of (Fn+1 ∩Γn) \ (Sn ∪{e}∪⋃
g∈Rn

Fn+1 \Fn+1g
−1) with respect to Sn. The number Mn(1, k)−1 is smaller than the

number of elements which are in all the components Cn,i having more than one element.

To show the claim, notice that we have

(12) |Cn,1|+ · · ·+ |Cn,rn | ≥Mn(1, k)− 1 +Mn(2, k),

because

Mn(1, k) +Mn(2, k)− 1 ≤ Mn(1, k) + · · ·+Mn(kn − 1, k)− 1

= |Fn+1 ∩ Γn| −Mn(kn, 1)− 1

≤ |Fn+1 ∩ Γn| − |Sn| − |
⋃

g∈Rn

Fn+1 \ Fn+1g
−1| − |{e}|

≤ |Fn+1 ∩ Γn \ (Sn ∪
⋃

g∈Rn

Fn+1 \ Fn+1g
−1 ∪ {e})|

= |Cn,1|+ · · ·+ |Cn,rn |.



16 MARÍA ISABEL CORTEZ, SAMUEL PETITE

The claim is then trivial if for every 1 ≤ i ≤ rn we have |Cn,i| ≥ 2.
Suppose now, there is at least one component having only one element. Up to change
the indexation, we may assume these components are Cn,1, · · · , Cn,ln with 1 ≤ ln ≤ rn.
If g ∈ Cn,i for 1 ≤ i ≤ ln, then for every s ∈ Sn we have gs ∈ Fn+1 (because g /∈⋃

h∈Rn
Fn+1\Fn+1h

−1 and Sn ⊆ Rn), which implies that gs ∈ Sn∪
⋃

h∈Rn
Fn+1\Fn+1h

−1

(gs 6= e because g /∈ Sn). Thus if s ∈ Sn and gi ∈ Cn,i for every 1 ≤ i ≤ ln, then
{g1s, · · · , glns} ⊆ Sn ∪

⋃
g∈Rn

Fn+1 \Fn+1g
−1. Since this set has exactly ln elements, we

deduce

|Sn|+ |
⋃

g∈Rn

Fn+1 \ Fn+1g
−1| ≥ |Cn,1|+ · · ·+ |Cn,ln |.

Thus if Mn(1, k)− 1 > |Cn,ln+1|+ · · ·+ |Cn,rn |, from (12) we get

|Sn|+ |
⋃

g∈Rn

Fn+1 \ Fn+1g
−1| ≥ |Cn,1|+ · · ·+ |Cn,ln |

≥ |Cn,1|+ · · ·+ |Cn,rn | − (Mn(1, k)− 1)

≥ Mn(2, k),

which contradicts (10) and shows the claim.

For every n ≥ 0, we will construct a collection of functions Bn,1, · · · , Bn,kn ∈ ΣFn as in
Lemma 10, where Σ is an alphabet such that |Σ| = m ≥ 3. Namely Σ = {0, · · · , m− 1}.

Let F0 be the set of B ∈ ΣF0 verifying B(e) = 0 and B(g) ∈ Σ\{0} for every g ∈ F0\{e}.

Since |F0| ≤ 2|F0|−1 and since k0 ≤ |F0| ≤ 2|F0|−1, we can take B0,1, · · · , B0,k0 different
functions in F0. By definition, the collection {B0,1, · · · , B0,k0} verifies condition (C3).

Let n ≥ 0. Suppose that we have defined Bn,1, · · · , Bn,kn ∈ ΣFn verifying condition
(C3). For 1 ≤ k ≤ kn+1, we define

σs−1

(Bn+1,k)|Fn = Bn,kn for every s ∈ Sn ∪
⋃

g∈Rn

Fn+1 \ Fn+1g
−1.

Now we will determine which are the rest of v ∈ Fn+1 ∩Γn for which σv−1

(Bn+1,k)|Fn =
Bn,1. We set

Bn+1,k|Fn = Bn,1.

Observe that equation (10) implies that Mn(1, k) > 1.

By Claim 1, we can write

Mn(1, k)−1 =






∑p

i=ln+1 |Cn,i|+ r where ln + 1 ≤ p < rn and 1 ≤ r ≤ |Cn,p+1| case (1)

or

Mn(1, k)− 1 = r where 1 ≤ r ≤ |Cn,ln+1| case (2),

In the case (1) we define σg−1

(Bn+1,k)|Fn = Bn,1 for every g ∈ Cn,ln+1 ∪ · · · ∪ Cn,p.
Then, in both cases, if r > 1 we choose a connected set D ⊆ Cn,p+1 (for the first case)
or D ⊆ Cn,ln+1 (for the second case) such that |D| = r (Lemma 9 ensure the existence
of such set). Next, we define

σv−1

(Bn+1,k)|Fn = Bn,1 for every v ∈ D.

If r = 1, we choose a connected set D ⊆ Cn,p+1 (for the first case) or D ⊆ Cn,ln+1 (for
the second case) such that |D| = 2, namely D = {g, gs}, where s ∈ Sn. Then we define

σg−1

(Bn+1,k)|Fn = Bn,1 and σ(gs)−1

(Bn+1,k)|Fn = Bn,2.
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We fill the rest of the coordinates v ∈ Fn+1 ∩ Γn in order that σv−1

(Bn+1,k)|Fn ∈
{Bn,1, · · · , Bn,kn} and such that

|{v ∈ Fn+1 ∩ Γn : σv−1

(Bn+1,k)|Fn = Bn,i}| = Mn(i, k),

for every 2 ≤ i ≤ kn. Notice that the number of such v is at least Mn(2, k), because
there are at least Mn(2, k)−1 coordinates to be filled with Bn,2 and at least 1 coordinate
to be filled with Bn,kn . Thus we have at least Mn(2, k) > kn+1 different ways to fill the
coordinates such that the functions Bn+1,1, · · · , Bn+1,kn+1 are pairwise different.
By construction, every function Bn+1,k verifies (C1), (C2) and (C4). Let us assume there
are g ∈ Fn+1 and 1 ≤ k, k′ ≤ kn+1 such that Bn+1,k(gv) = Bn+1,k′(v) for any v where it is

defined, then by the induction hypothesis, g ∈ Γn. This implies that σg−1

(Bn+1,k)|Fn =
Bn+1,k′ |Fn = Bn,1. By definition, if g 6= e then there exists s ∈ Sn such that gs ∈ Fn+1

and σ(gs)−1

(Bn+1,k)|Fn = Bn,1 or Bn,2. On the other hand, σs−1

(Bn+1,k′)|Fn = Bn,kn .

Since σ(gs)−1

(Bn+1,k)|Fn and σs−1

(Bn+1,k′)|Fn have to coincide, we deduce that g = e.
This shows that the collection Bn+1,1, · · · , Bn+1,kn+1 verifies (C3). We conclude applying
Lemma 10. �

Proof of Theorem A. Let ext(K) be the set of extreme points of K. If ext(K) is finite,
then the proof is direct from Lemma 2 and Proposition 1. If ext(K) is infinite, the proof
follows from Lemma 5 and Proposition 1. �

6. Proof of Theorem B.

In this section we briefly recall the concept of ordered Bratteli diagram and its relation
with minimal Z-actions on the Cantor set. We refer to [9] and [18] for the details.
A Bratteli diagram is an infinite directed graph B = (V,E), such that the vertex set V
and the edge set E can be partitioned into finite sets

V = V0 ∪ V1 ∪ · · · and E = E1 ∪E2 ∪ · · ·

with the following properties:

• V0 = {v0} is a singleton.
• For every j ≥ 1, each edge in Ej starts from a vertex in Vj−1 and arrives to a

vertex in Vj .
• All vertices in V have at least one edge starting from it, and all vertices except v0

have at least one edge arriving to it.

The sequence of transition matrices or incidences matrices of the Bratteli diagram B is
the sequence (Mn)n≥0 such that for every n ≥ 0, the matrix Mn ∈ MVn×Vn+1(Z

+) is
defined as

Mn(v, v
′) = number of edges from v ∈ Vn to v′ ∈ Vn+1.

For a vertex e ∈ E we denote by s(e) the vertex where e starts and by r(e) the vertex
to which e arrives. For m > n, a path from v ∈ Vn to w ∈ Vm in B, is a sequence of
edges en+1en+2 · · · em such that s(en+1) = v, r(em) = w and for each n+1 ≤ i ≤ m− 1,
r(ei) = s(ei+1). The set of infinite paths of B is

XB = {(ei)i≥1 ∈
∏

i≥1

Ei : r(ei) = s(ei+1), for each i ≥ 1}.

This set becomes a totally disconnected space when we endow every Ei with the discrete
topology,

∏
i≥1 Ei with the product topology and XB with the induced topology.

Let (mn)n≥0 be an increasing sequence of integers such that m0 = 0. The telescoping
of B to (mn)n≥0 is the Bratteli diagram B′ = (V ′, E′) defined by V ′ = {Vmn : n ≥ 0}
and E′ = {E′n : n ≥ 1}, where E′n contains an edge from v ∈ Vmn−1 to w ∈ Vmn in
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B′ for each path from v to w in B. The Bratteli diagram B is simple, if there exists a
telescoping B′ of B so that the incidences matrices of B′ are strictly positive. In this
case, XB is a Cantor set (when XB is infinite).
An ordered Bratteli diagram (V,E,≥) is a Bratteli diagram B = (V,E) together with
a partial order ≥ on E, so that two edges are comparable if and only if they arrive
at the same vertex. This order induces a transformation TB : XB → XB . If B is
simple, the order ≥ can be chosen so that TB is a minimal homeomorphism on XB .
Conversely, if (X,T,Z) is a minimal Cantor system, then there exist a simple Bratteli
diagram B = (V,E) and an order ≥, such that (V,E,≥) is an ordered Bratteli diagram
and (X,T,Z) is conjugate to (XB , TB ,Z) (see [9] and [18] for the details). In this case
we say that B = (V,E) is an associated Bratteli diagram to (X,T,Z). In [15], Giordano,
Putnam and Skau show that the associated Bratteli diagram (without order) of a minimal
Z-action on the Cantor set is a total invariant of its strong orbit class.
We say that the Bratteli diagram B = (V,E) has the equal path number property (e.p.n-
property) if for each n ≥ 1, |r−1(v)| = |r−1(u)| for every u, v ∈ Vn. It is straightforward
to show that the equal path number property is invariant under telescoping.

Lemma 12. Every strong orbit equivalence class having an associated Bratteli diagram
verifying the equal path number property, has an associated Bratteli diagram verifying the
equal path number property and whose incidence matrices have at least three columns.

Proof. Let B = (V,E) be a Bratteli diagram verifying the e.p.n-property. If there exist
infinitely many n’s such that |Vn| ≥ 3, we may telescope the diagram to those levels
in order to get a new diagram B′ whose incidence matrices have at least 3 columns.
This new Bratteli diagram verifies the e.q.n-property and defines the same strong orbit
equivalence class than B.
Otherwise, we can telescope the diagram B in order to get a new diagram B′ whose
incidence matrices have 1 or either 2 columns. In both cases, B′ defines the same strong
orbit equivalence class than a Bratteli diagram verifying the e.p.n-property and whose
incidence matrices have exactly three columns. Indeed, let (An)n≥0 be the sequence of in-
cidence matrices of B′ and suppose first that An = [mn] , for every n ≥ 0. We can assume
that mn > 1 (otherwise XB′ contains only one point). Since [mn] = (1, 1)(mn − 1, 1)T ,
the diagram B′ determines the same strong orbit equivalence class than the Bratteli
diagram B′′ defined by the sequence of incidence matrices (Bn)n≥1, where B0 = (1, 1)

and Bn = (mn−1 − 1, 1)T (1, 1) for every n ≥ 1. The Bratteli diagram B′′ determines
the same orbit equivalence class than B′, verifies the e.p.n-property and its incidences
matrices have exactly two columns. Now we are in the case where every An has exactly
two columns. Then we set M0 = A0A and Mn = BnA for n ≥ 1, where

A =

(
1 1 0
0 0 1

)
and Bn =




An(1, 1)− 1 An(1, 2)− 1

1 1
An(2, 1) An(2, 2)



 .

The Bratteli diagram B′′ defined by the new sequence of matrices (Mn)n≥0 determines the
same strong orbit equivalence class than B′, verifies the e.p.n-property and its incidence
matrices have exactly 3 columns. �

The following proposition is the essential part of Theorem B.

Proposition 2. Let (X,σ|X ,Z) be a minimal Cantor system having an associated Brat-
teli diagram B = (V,E) which satisfies the equal path number property. If in addition,
there exists a constant C > 0 such that for each n ≥ 1, C|r−1(v)| ≥ |Vn| for every v ∈ Vn,

then for every d ≥ 1 there exists a Toeplitz subshift (Y, σ|Y ,Zd) which is orbit equivalent
to (X,σ|X ,Z).
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In [16], Gjerde and Johansen show that every Toeplitz subshift (X,σ|X ,Z) has an asso-
ciated Bratteli diagram verifying the e.p.n-property. In [22], Sugisaki shows that every
minimal Cantor system (Y, T,Z) having an associated Bratteli diagram which satisfies
the e.p.n-property, is strong orbit equivalent to a Toeplitz subshift (X,σ|X ,Z). At the
opposite of residually finite group, let us mention [11], where Dahl shows that any Bratt-
teli diagram verifying the e.p.n-property is orbit equivalent to a free action of a locally
finite group.

Proof of Proposition 2. From Lemma 12, we can assume that |Vn| ≥ 3, for every n ≥ 1.
Let (Mn)n≥0 be the sequence of incidence matrices of B. For each n ≥ 1, let rn−1 =
|r−1(v)| for every v ∈ Vn. The e.p.n-property ensures

∑

v∈Vn

Mn(v, v
′) = rn for every v′ ∈ Vn+1 and n ≥ 0.

Let (ni)i≥0 be a sequence of non-negative integers such that n0 = 0, ni+1 > ni + 3 and
verifies rni+1 · · · rni+1−2 > C, for every i ≥ 0.
Observe that

Mni
· · ·Mni+1−1(l, j) ≥ rni+1 · · · rni+1−1, for every l, j and i ≥ 0.

Defining Ai = Mni
· · ·Mni+1−1, we have

Ai(l, j) > Crni+1−1 ≥ |Vni+1 | for every l, j and i ≥ 0.

The sequence (Ai)i≥0 is the sequence of incidence matrices of the telescoping of B to
the levels (ni)i≥0. This sequence is manageable with respect to (pi)i≥0, where p0 = 1,
p1 = r0 · · · rn1−1 and pi+1 = pirni

· · · rni+1−1 for every i ≥ 1. Let ui+1 = rni
· · · rni+1−1,

for every i ≥ 0.

Let d ≥ 1 be an integer. For every i ≥ 1 we define

qi = p0

id∏

j=1

uj ,

qi,1 = p0

i−1∏

l=0

udl+1 and qi,j =
i−1∏

l=0

uld+j for every 2 ≤ j ≤ d.

We have pid = qi = qi,1 · · · qi,d, for every i ≥ 1.

Let Γi =
∏d

j=1 qi,jZ. The sequence of groups (Γi)i≥1 satisfies Γi ⊆ Γi+1, |Z
d/Γi| = qi

and
⋂

i≥1 Γi = {0}. Thus from Proposition 1, there exists a Toeplitz subshift (Y, σ|Y ,Zd)

such that G(Y, σ|Y ,Zd) is isomorphic to G(X,σ|X ,Z). Theorem 2.5 in [14] implies that
(Y, σ|Y ,Zd) is orbit equivalent to (X,σ|X ,Z). �

Corollary 1. Let (X,T,Z) be a minimal Cantor system whose dimension group is di-
visible. Then for every d ≥ 1 there exists a Toeplitz subshift (Y, σ|Y ,Zd) which is orbit
equivalent to (X,T,Z).

Proof. From the proof of Theorem 12 in [16], there exists a Toeplitz subshift (X ′, σ|X′ ,Z)
which is orbit equivalent to (X,T,Z), and such that (X ′, σ|X′ ,Z) has an associated
Bratteli diagram B = (V,E) having the e.p.n-property and such that for each n ≥ 0,
6|Vn+1| < r−1(v) for every v ∈ Vn+1. We conclude applying Proposition 2. �

We combine Proposition 2 and Corollary 1 to obtain Theorem B.
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[20] F. Krieger Sous-décalages de Toeplitz sur les groupes moyennables résiduellement finis J. Lond.

Math. Soc. (2) 75 (2007), no. 2, 447–462.
[21] A. Lazar, and J. Lindenstrauss, Banach spaces whose duals are spaces and their representing

matrices. Acta Math. 126 (1971), 165-193.
[22] F. Sugisaki, Toeplitz flows, ordered Bratteli diagrams and strong orbit equivalence. Ergodic

Theory Dynam. Systems 21 (2001), no. 6, 1867–1881.
[23] S. Williams. Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrscheinlichkeitsthe-

orie und Verw. Gebiete (1) 67 (1984), 95–107.
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