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We show that for every metrizable Choquet simplex K and for every group G, which is amenable, finitely generated and residually finite, there exists a Toeplitz G-subshift whose set of shift-invariant probability measures is affine homeomorphic to K. Furthermore, we get that for every integer d ≥ 1 and every minimal Cantor system (X, T ) whose dimension group is divisible, there exists a minimal Toeplitz Z d -subshift which is topologically orbit equivalent to (X, T ).

Introduction

The Toeplitz subshifts are a rich class of symbolic systems introduced by Jacobs and Keane in [START_REF] Jacobs | 0 -1-sequences of Toeplitz type[END_REF], in the context of Z-actions. Since then, they have been extensively studied and used to provide series of examples with interesting dynamical properties (see for example [START_REF] Downarowicz | The Choquet simplex of invariant measures for minimal flows[END_REF][START_REF] Downarowicz | Survey of odometers and Toeplitz flows[END_REF][START_REF] Gjerde | Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows[END_REF][START_REF] Williams | Toeplitz minimal flows which are not uniquely ergodic[END_REF]). Generalizations of Toeplitz subshifts and some of their properties to more general group actions can be found in [START_REF] Cortez | Z d -Toeplitz arrays[END_REF][START_REF] Cortez | G-odometers and their almost one-to-one extensions[END_REF][START_REF] Downarowicz | The royal couple conceals their mutual relationship: a noncoalescent Toeplitz flow[END_REF][START_REF] Krieger | Sous-décalages de Toeplitz sur les groupes moyennables résiduellement finis[END_REF]. For instance, in [START_REF] Cortez | G-odometers and their almost one-to-one extensions[END_REF] Toeplitz subshifts are characterized as the minimal symbolic almost 1-1 extensions of odometers (see [START_REF] Downarowicz | Almost 1 -1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows[END_REF] for this result in the context of Z-actions). In this paper, we give an explicit construction that generalizes the result of Downarowicz in [START_REF] Downarowicz | The Choquet simplex of invariant measures for minimal flows[END_REF], to Toeplitz subshifts given by actions of groups which are amenable, residually finite and finitely generated. The following is our main result.

Theorem A. Let G be an amenable, residually finite and finitely generated group. For every metrizable Choquet simplex K and any G-odometer O, there exists a Toeplitz Gsubshift whose set of invariant probability measures is affine homeomorphic to K and such that it is an almost 1-1 extension of O.

Typical examples of the groups G involved in this theorem are the finitely generated subgroups of upper triangular matrices in GL(n, C). The proof of Theorem A deals with combinatorics on Følner sequences and is independent on the known results for G = Z (see [START_REF] Downarowicz | The Choquet simplex of invariant measures for minimal flows[END_REF] or [START_REF] Gjerde | Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows[END_REF]). Furethermore, we obtain some consequences in the orbit equivalence problem. Two minimal Cantor systems are (topologically) orbit equivalent, if there exists an orbitpreserving homeomorphism between their phase spaces. Giordano, Matui, Putnam and Skau show in [START_REF] Giordano | Orbit equivalence for Cantor minimal Z dsystems[END_REF] that every minimal Z d -action on the Cantor set is orbit equivalent to a minimal Z-action. Such a result can not be extended to any countable group. For instance, by using the notion of cost, Gaboriau [START_REF] Gaboriau | Coût des relations d'équivalence et des groupes[END_REF] proves that if two free actions of free groups Fn and Fp are (even measurably) orbit equivalent then their rank are the same i.e. n = p. It is still unknown for which groups the result in [START_REF] Giordano | Orbit equivalence for Cantor minimal Z dsystems[END_REF] is true and which are the Z-orbit equivalence classes that the Z d -actions (or more general group actions) realize. We give a partial answer for the second question. As a consequence of the proof of Theorem A we obtain the following result.

Theorem B. Let (X, T ) be a minimal Cantor system having an associated Bratteli diagram B which satisfies the equal path number property. For each n ≥ 1, let Vn and rn be the set of vertices of the level n of B and the number of edges arriving to a vertex v in Vn respectively. If there exists a constant C > 0 such that Crn ≥ |Vn| for each n ≥ 1, then for every d ≥ 1 there exists a Toeplitz Z d -subshift which is orbit equivalent to (X, T ). In particular, every minimal Cantor system (X, T ) whose dimension group is divisible, is orbit equivalent to a Toeplitz Z d -subshift.

It remains open the problem if the previous result can be generalized to more general group actions and to any Toeplitz subshift given by a Z-action.

This paper is organized as follows. Section 2 is devoted to introduce the basic definitions. In Section 3 we give a characterization of any Choquet simplex as an inverse limit defined by suitable sequences of matrices that we call "manageable". For an amenable discrete group G and a decreasing sequence of finite index subgroups of G with trivial intersection, we construct in Section 4 an associated sequence (Fn) n≥0 of fundamental domains, so that it is Følner and each Fn+1 is tilable by translated copies of Fn. Next we use the representation established in Section 3 and the previous Følner sequence to construct a Toeplitz G-subshift with a prescribed set of invariant probability measures. This construction improves and generalizes that one given in [START_REF] Cortez | Realization of a Choquet simplex as the set of invariant probability measures of a tiling system[END_REF] for Z d -actions, and moreover, allows to characterize the associated dimension group. We use this result to prove Theorem B in the last section.

Basic definitions and background

In this article, by a topological dynamical system we mean a triple (X, T, G), where T is a continuous left action of a finitely generated group G on the compact metric space (X, d). For every g ∈ G, we denote T g the homeomorphism that induces the action of g on X. The unit element of G will be called e. The system (X, T, G) or the action T is minimal if for every x ∈ X the orbit oT (x) = {T g (x) : g ∈ G} is dense in X. We say that (X, T, G) is a minimal Cantor system or a minimal Cantor G-system if (X, T, G) is a minimal topological dynamical system with X a Cantor set. An invariant probability measure of the topological dynamical system (X, T, G) is a probability Borel measure µ such that µ(T g (A)) = µ(A), for every Borel set A. We denote by M(X, T, G) the space of invariant probability measures of (X, T, G).

2.1. Subshifts. For every g ∈ G, denote Lg : G → G the left multiplication by g ∈ G.

That is, Lg(h) = gh for every h ∈ G. Let Σ be a finite alphabet. Σ G denotes the set of all the functions x : G → Σ. The (left) shift action σ of G on Σ G is given by σ g (x) = x•L g -1 , for every g ∈ G. Thus σ g (x)(h) = x(g -1 h). We consider Σ endowed with the discrete topology and Σ G with the product topology. Thus every σ g is a homeomorphism of the Cantor set Σ G . The topological dynamical system (Σ G , σ, G) is called the full G-shift on Σ. For every finite subset D of G and x ∈ Σ G , we denote x|D ∈ Σ D the restriction of x to D. For F ∈ Σ D (F is a function from D to Σ) we denote by [F ] the set of all x ∈ Σ D such that x|D = F . The set [F ] is called the cylinder defined by F , and it is a clopen set (both open and closed). The collection of all the sets [F ] is a base of the topology of Σ G . A subshift or G-subshift of Σ G is a closed subset X of Σ G which is invariant by the shift action. The topological dynamical system (X, σ|X , G) is also called subshift or G-subshift. See [START_REF] Ceccherini-Silberstein | Coornaert Cellular automata and groups[END_REF] for details.

2.1.1. Toeplitz G-subshifts. An element x ∈ Σ G is a Toeplitz sequence, if for every g ∈ G there exists a finite index subgroup Γ of G such that σ γ (x)(g) = x(γ -1 g) = x(g), for every γ ∈ Γ. A subshift X ⊆ Σ G is a Toeplitz subshift or Toeplitz G-subshift if there exists a Toeplitz sequence x ∈ Σ G such that X = oσ(x). Such subshifts are minimal because the Toeplitz sequences are regularly recurrent. See [START_REF] Cortez | G-odometers and their almost one-to-one extensions[END_REF] and [START_REF] Krieger | Sous-décalages de Toeplitz sur les groupes moyennables résiduellement finis[END_REF] for details about Toeplitz sequence and subshifts for G-actions.

2.2. Inverse and direct limit. Given a sequence of continuous maps fn : Xn+1 → Xn, n ≥ 0 on topological spaces Xn, we denote the associated inverse limit by

lim ←n (Xn, fn) = X0 o o f 0 X1 o o f 1 X2 o o f 2 • • • := {(xn)n; xn ∈ Xn, xn = fn(xn+1) ∀n ≥ 0}.
Let us recall that this space is compact when all the spaces Xn are compact and the inverse limit spaces associated to any increasing subsequences (ni)i of indices are homeomorphic. In a similar way, we denote for a sequence of maps gn : Xn → Xn+1, n ≥ 0 the associated direct limit by lim →n (Xn, gn) = X0

g 0 / / X1 g 1 / / X2 g 2 / / • • • := {(x, n), x ∈ Xn, n ≥ 0}/ ∼,
where two elements are equivalent (x, n) ∼ (y, m) if and only if there exists k ≥ m, n such that

g k • . . . • gn(x) = g k • . . . • gm(x)
. We denote by [x, n] the equivalence class of (x, n). When the maps gn are homomorphisms on groups Xn, then the direct limit inherits a group structure.

Odometers.

A group G is said to be residually finite if there exists a nested sequence (Γn) n≥0 of finite index normal subgroups such that n≥0 Γn is trivial. For every n ≥ 0, there exists then a canonical projection πn : G/Γn+1 → G/Γn. The G-odometer or adding machine O associated to the sequence (Γn)n is the inverse limit

O := lim ←n (G/Γn, πn) = G/Γ0 o o π 0 G/Γ1 o o π 1 G/Γ2 o o π 2 • • • .
We refer to [START_REF] Cortez | G-odometers and their almost one-to-one extensions[END_REF] for the basic properties of such a space. Let us recall that it inherits a group structure through the quotient groups G/Γn and it contains G as a subgroup thanks the injection 

G ∋ g → ([g]n) ∈ O,
(Z kn , An) = Z k 0 A 0 / / Z k 1 A 1 / / Z k 2 A 2 / / • • • , and J + = {[v, n] : a ∈ (Z + ) kn , n ∈ Z + }.
) + = {[a] : a ∈ H + }.
For more details about ordered groups and dimension groups we refer to [START_REF] Effros | Dimensions and C * -algebras[END_REF] and [START_REF] Goodearl | Partially ordered abelian groups with interpolation[END_REF].

Lemma 1. Let (H, H + ) be a simple dimension group equals to the direct limit

lim →n (Z kn , Mn) = Z k 0 M 0 / / Z k 1 M 1 / / Z k 2 M 2 / / • • • .
Then for every z = (zn) n≥0 in the inverse limit

lim ←n ((R + ) kn , M T n ) = (R + ) k 0 o o M T 0 (R + ) k 1 o o M T 1 (R + ) k 2 o o M T 2 • • • , the function φz : H → R given by φ([n, v]) =< v, zn >, for every [n, v] ∈ H,
is well defined and is a homomorphism of groups such that φz(H + ) ⊆ R + . Conversely, for every group homomorphism φ : H → R such that φ(H + ) ⊆ R + , there exists a unique z ∈ lim←n((R + ) kn , M T n ) such that φ = φz.

Proof. Let z ∈ lim ← -n ((R + ) kn , M T n ). If (m, w) ∈ [n, v] then there exists k ≥ m, n such that M k • • • Mmw = M k • • • Mnv. Then v, zn = v T M T n • • • M T k z k+1 = w T M T m • • • M T k z k+1 = w T zm = w, zm .
This implies that φz is well defined. If [n, v] is in H + , we can assume that v ≥ 0, then φz([n, v]) = v, zn ≥ 0. It is straightforward to show that φz is a group homomorphism so that φz(H + ) ⊆ R + . Convesly, let φ : H → R be a group homomorphism such that φ(H + ) ⊆ R + . For every n ≥ 0, the function φn :

Z kn → R such that φn(v) = φ([n, v]
), is a group homomorphism verifying φn((Z + ) kn ) ⊆ R + . Then zn = (φn(e1), • • • , φn(e kn )) ≥ 0, where e1, • • • , e kn are the unitary vectors in Z kn . We have φ([n, v]) = φn(v) = v, zn , for every v ∈ Z kn and n ≥ 0. Thus if we show that z = (zn) n≥0 is in lim ← -n ((R + ) kn , M T n ), we get φ = φz for z in the inverse limit. But this is direct because φn(v) = φn+1(Mnv), for every v ∈ Z kn . Applying this to the unitary vectors, we get zn = M T n zn+1, for every n ≥ 0. Different elements in lim ← -n ((R + ) kn , M T n ) define different homomorphisms, so z is unique.

2.5. Associated ordered group and orbit equivalence. Let (X, T, G) be a topological dynamical system such that X is a Cantor set and T is minimal. The ordered group associated to (X, T, G) is the unital ordered group

G(X, T, G) = (Dm(X, T, G), Dm(X, T, G) + , [1]),
where

Dm(X, T, G) = C(X, Z)/{f ∈ C(X, Z) : f dµ = 0, ∀µ ∈ M(X, T, G)}, Dm(X, T, G) + = {[f ] : f ≥ 0},
and [START_REF] Ceccherini-Silberstein | Coornaert Cellular automata and groups[END_REF] ∈ Dm(X, T, G) is the class of the constant function 1.

Two topological dynamical systems (X1, T1, G1) and (X2, T2, G2) are (topologically) orbit equivalent if there exists a homeomorphism F : X1 → X2 such that F (oT 1 (x)) = oT 2 (F (x)) for every x ∈ X1. Theorem 2.5 in [START_REF] Giordano | Orbit equivalence for Cantor minimal Z dsystems[END_REF] implies that for every integer d ≥ 1, the isomorphic class of G(X, T, Z d ) is a total invariant of the topological orbit equivalence class of (X, T, Z d ) for minimal Z d action on a Cantor set.

Characterization of Choquet simplices

A compact, convex, and metrizable subset K of a locally convex real vector space is said to be a (metrizable) Choquet simplex, if for each v ∈ K there is a unique probability measure µ supported on the set of extreme points of K such that xdµ(x) = v.

In this section we show that any metrizable Choquet simplex is affine homeomorphic to an inverse limit defined by sequences of matrices that we call manageable.

We say that a sequence of non-negative integer matrices (Mn) n≥0 is manageable with respect to the increasing sequence of positive integers (pn) n≥0 , if for every n ≥ 0 the integer pn divides pn+1, and if the matrix Mn verifies the following properties:

(1) Mn has kn ≥ 3 rows and kn+1 ≥ 3 columns.

(2)

kn i=1 Mn(i, k) = p n+1 pn , for every 1 ≤ k ≤ kn+1, (3) kn+1 ≤ min{Mn(i, k) : 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1}.
Let p be a positive integer. For every n ≥ 1 we denote by △(n, p) the closed convex hull generated by the vectors 1 p e

(n) 1 , • • • , 1 p e (n)
n , where e

(n) 1 , • • • , e (n) n
is the canonical base in R n . Thus △(n, 1) is the unitary simplex in R n . Observe that if (Mn) n≥0 is a manageable sequence of matrices with respect to (pn) n≥0 , then for each n ≥ 0, the map Mn : △(kn+1, pn+1) → △(kn, pn) is well defined, where kn is the number of rows of Mn.

3.1.

Finite dimensional Choquet simplices. For technical reasons, we have to separate the finite and the infinite dimensional cases. Lemma 2. Let K be a finite dimensional metrizable Choquet simplex with exactly d ≥ 1 extreme points. Let (pn) n≥0 be an increasing sequence of positive integers such that for every n ≥ 0 the integer pn divides pn+1, and let k ≥ max{3, d}. Then there exist an increasing subsequence (ni) i≥0 of indices and a sequence (Mi) i≥0 of square k-dimensional matrices which is manageable with respect to (pn i ) i≥0 and such that K is affine homeomorphic to lim ← -n (△(k, pn i ), Mi).

Proof. Let k ≥ max{3, d}, we will define the subsequence (ni) i≥0 by induction on i through a condition explained later. For every i ≥ 0, we define Mi the k-dimensional matrix by

Mi(l, j) = pn i+1 pn i -k(k -1) if 1 ≤ l = j ≤ d k if l = j, 1 ≤ l ≤ k and 1 ≤ j ≤ d and Mi(•, j) = Mi(•, d) for d < j ≤ k.
By the very definition, Mi is a positive matrix having k ≥ 3 rows and columns ;

k l=1 Mi(l, j) = pn i+1 pn i
for every 1 ≤ j ≤ k and the range of Mi is at most d. Thus the convex set lim ← -n (△(k, pn i ), Mi) has at most d extreme points. If it has exactly d extreme points, it is affine homeomorphic to K. Thus by the Hadamard's Lemma, it is enough to ensure that the submatrices (M0 . . . Mi(l, j)) 1≤l,j≤d are diagonally strictly dominant matrices. Let n0 = 0 and n1 be an integer so that

pn 1 p0 -k(k -1) ≥ k(d -1) + 1 ≥ k.
This ensures that the matrix (M0(l, j)) 1≤l,j≤d is diagonally strictly dominant. Now let us assume that the sequence n0, . . . , ni-1 is defined so that (M0 . . . Mi-1(l, j)) 1≤l,j≤d is a diagonally strictly dominant matrix. Then standard calculus show that for any l, j ∈ {1, . . . , d},

M0 . . . Mi(l, j) = ( pn i+1 pn i -k(k -1))M0 . . . Mi-1(l, j) + b l,j ,
where the coefficient b l,j does not depend on the diagonal coefficient

pn i+1 pn i -k(k -1
). The diagonal is dominant means that for any l ∈ {1, . . . , d}

( pn i+1 pn i -k(k -1))M0 . . . Mi-1(l, l) + b l,l > d j=1,j =l ( pn i+1 pn i -k(k -1))M0 . . . Mi-1(l, j) + b l,j .
Now, let ni+1 be an integer so that

pn i+1 pn i -k(k -1) > max   sup 1≤l≤d d j=1,j =l b l,j -b l,l , k   ; since M0 . . . Mi-1(l, l)-d j=1,j =l M0 . . . Mi-1(l, j) ≥ 1
, the former inequality is true, and the matrix (M0 . . . Mi(l, j)) 1≤l,j≤d is diagonally strictly dominant. It is straightforward to check that (Mi)i is manageable with respect to (pn i )i.

3.2.

Infinite dimensional Choquet simplices. Firt, we use the following characterization of infinite dimensional metrizable Choquet simplex.

Lemma 3 ([21], Corollary p.186).

For every infinite dimensional metrizable Choquet simplex K, there exists a sequence of matrices (An) n≥1 such that for every n ≥ 1

(1) An : △(n + 1, 1) → △(n, 1) is well defined and surjective, (2) K is affine homeomorphic to lim ← -n (△(n, 1), An).

Our strategy is to approximate the sequence of matrices (An)n by a manageable sequence. Then we show that the associated inverse limits are affine homeomorphic. For this, we need the following classical density result.

Lemma 4. Let r = (rn) n≥0 be a sequence of integers such that rn ≥ 2 for every n ≥ 0.

Let Cr be the subgroup of (R, +) generated by {(r0

• • • rn) -1 : n ≥ 0}. Then (Cr) p ∩ △(p, 1) ∩ {v ∈ R p : v > 0}
is dense in △(p, 1), for every p ≥ 2.

Proof. Suppose that p = 2. Let m ≥ 1 and Γm = Z(r0

• • • rm) -1 . For α = (α1, α2) ∈ △(2, 1) \ (Γm) 2 , let k1, k2 ≥ 0 be the integers such that k1 r0 • • • rm ≤ α1 < k1 r0 • • • rm + 1 r0 • • • rm and k2 r0 • • • rm ≤ α2 < k2 r0 • • • rm + 1 r0 • • • rm .
Since there is i ∈ {1, 2} such that αi / ∈ Γm, we have 2 and one of its coordinates is not positive, then α = e

1 - 1 r0 • • • rm < k1 r0 • • • rm + k2 r0 • • • rm + 1 r0 • • • rm < 1 + 1 r0 • • • rm , which implies that k1 r0 • • • rm + k2 r0 • • • rm + 1 r0 • • • rm = 1. Thus v = (r0 • • • rm) -1 (k1, k2 + 1) and w = (r0 • • • rm) -1 (k1 + 1, k2) are elements in (Γm) 2 ∩ △(2, 1) such that v -α 1 , w -α1 1 ≤ 2(r0 • • • rm) -1 . Furthermore, v or w is strictly positive. If α is in (Γm)
(2)

1 or α = e (2) 2 . Observe that (1-(r0 • • • rm) -1 , (r0 • • • rm) -1
) and ((r0

• • • rm) -1 , 1- (r0 • • • rm) -1 ) are positive elements in (Γm) 2 ∩ △(2, 1) at distance at most 2(r0 • • • rm) -1 from α.
Since m can be arbitrarily large, we conclude that the lemma is true for p = 2 For p > 2 we conclude by induction on p.

Indeed, if α = (αi) p i=1 ∈ △(p, 1) then β = (α1, • • • , αp-2, αp-1 + αp) is in △(p -1, 1). Thus for ε > 0 there exists a strictly positive element z = (z1, • • • , zp-1) in (Cr) p-1 ∩ △(p -1, 1) such that z -β 1 < ε.
Since Cr is dense in R, there exists a ∈ Cr such that 0 < a < zp-1. If αp < αp + αp-1, by taking ε small enough, we can assume that αp < zp-1. In this case we can choose a in order that |a -αp| < ε. If αp = αp + αp-1, then we can choose a in order that |αp -a| ≤ 2ε. In any case, we get that w = (z1, • • • , zp-2, zp-1 -a, a) is a strictly positive element in (Cr) p ∩ △(p, 1) such that w -α 1 < 5ε. Lemma 5. Let K be an infinite dimensional metrizable Choquet simplex, and let (pn) n≥0 be an increasing sequence of positive integers such that for every n ≥ 0 the integer pn divides pn+1. Then there exist an increasing subsequence (ni) i≥1 of indices and a manageable sequence (Mi) i≥1 of matrices with respect to (pn i ) i≥0 such that K is affine homeomorphic to the inverse limit lim ← -n (△(ki, pn i ), Mi), where ki is the number of rows of Mi, for every i ≥ 0.

Proof. For every n ≥ 0, let rn ≥ 2 be the integer such that pn+1 = pnrn. Let (An) n≥1 be the sequence of matrices given in Lemma 3. We can assume that An+2 : △(n + 3, 1) -→ △(n + 2, 1), for every n ≥ 1. Now we define the subsequence (ni)i by induction.

We set n1 = 0.

Let i ≥ 1 and suppose that we have defined ni ≥ 0. We set r (i) = (rn) n≥n i . For every

1 ≤ j ≤ i + 3, Lemma 4 ensures the existence of v (i,j) ∈ (C r (i) ) i+2 ∩ △(i + 2, 1) ∩ {v ∈ R i+2 : v > 0} such that (1) v (i,j) -Ai+2(•, j) 1 < 1 2 i .
Let Bi be the matrix given by Bi(•, j) = v (i,j) , for every 1 ≤ j ≤ i + 3.

Observe that (1) implies that

n≥1 sup{ Anv -Bnv 1 : v ∈ △n+3} < ∞. It follows from [5, Lemma 9] that K is affine homeomorphic lim ← -n (△(i + 2, 1), Bi). Let ni+1 > ni be such that rn i • • • rn i+1 -1v (i,j
) is an integer vector and such that

rn i • • • rn i+1 -1v (i,j) > i + 3, for every 1 ≤ j ≤ i + 3. We define Mi = pn i+1 pn i Bi.
Thus Mi = P -1 i BiPi+1, where Pi is the diagonal matrix given by Pi(j, j) = pn i for every 1 ≤ j ≤ i + 2 and i ≥ 1. This shows that lim ← -n (△(i + 2, 1), Bi) is affine homeomorphic to lim ← -n (△(i + 2, pn i ), Mi). The proof conclude verifying that (Mi) i≥0 is manageable with respect to (pn i ) i≥0 .

Suitable Følner sequences and connected components.

Let G be a residually finite group, and let (Γn) n≥0 be a nested sequence of finite index normal subgroup of G such that n≥0 Γn = {e}. For technical reasons it is important to notice that since the groups Γn are normal, we have gΓn = Γng, for every g ∈ G.

To construct a Toeplitz G-subshift that is an almost 1-1 extension of the odometer defined by the sequence (Γn)n, we need a "suitable" sequence (Fn)n of fundamental domains of G/Γn. More precisely, each Fn+1 has to be tileable by translated copies of Fn. To control the simplex of invariant measure of the subshift, we need in addition the sequence (Fn)n to be Følner. We did not find in the specialized litterature a result ensuring these conditions.

4.1. Suitable sequence of fundamental domains. Lemma 6. Let (Dn) n≥0 be an increasing sequence of finite subsets of G such that for every n ≥ 0, e ∈ Dn and Dn is a fundamental domain of G/Γn. Let (ni) i≥0 ⊆ Z + be an increasing sequence. Consider (Fi) i≥0 defined by F0 = Dn 0 and Fi = v∈Dn i ∩Γn i-1 vFi-1 for every i ≥ 1.

Then for every i ≥ 0 we have the following:

(1) Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γn i .

(2) Fi+1 = v∈F i+1 ∩Γn i vFi.

Proof. Since e ∈ Dn i , the sequence (Fi) i≥0 is increasing. F0 = Dn 0 is a fundamental domain of G/Γn 0 . We will prove by induction on i that Fi is a fundamental domain of G/Γn i . Let i > 0 and suppose that Fi-1 is a fundamental domain of G/Γn i-1 .

Let v ∈ Dn i . There exist then u ∈ Fi-1 and w ∈ Γn i-1 such that v = wu. Let z ∈ Dn i and γ ∈ Γn i be such that w = γz. Since z ∈ Γn i-1 ∩ Dn i and v = γzu, we conclude that Fi contains one representing element of each class in G/Γn i . Let w1, w2 ∈ Fi be such that there exists γ ∈ Γn i verifying w1 = γw2. By definition, w1 = v1u1 and w2 = v2u2, for some u1, u2 ∈ Fi-1 and v1, v2 ∈ Dn i ∩ Γn i-1 . This implies that u1 and u2 are in the same class of G/Γn i-1 . Since Fi-1 is a fundamental domain, we have u1 = u2. From this we get v1 = γv2, which implies that v1 = v2. Thus we deduce that Fi contains at most one representing element of each class in G/Γn i . This shows that Fi is a fundamental domain of G/Γn i .

The neutral element e is contained in D0 = F0 ⊆ Fi-1. Then by definition of Fi we have ve ∈ Fi for every v ∈ Dn i ∩ Γn i-1 . This shows that

Dn i ∩ Γn i-1 ⊆ Fi ∩ Γn i-1 . For v ∈ Fi ∩ Γn i-1 , let u ∈ Fi-1 and γ ∈ Dn i ∩ Γn i-1 be such that v = γu. Since v and γ are in Γn i-1 , we have u ∈ Γn i-1 , which implies that u = e and v = γ ∈ Dn i ∩ Γn i-1 .
In this paper, by Følner sequences we mean right Følner sequences. That is, a sequence (Fn) n≥0 of nonempty finite sets of G is a Følner sequence if for every g ∈ G

lim n→∞ |Fng△Fn| |Fn| = 0.
Observe that (Fn) n≥0 is a right Følner sequence if and only if (F -1 n ) n≥0 is a left Følner sequence.

Lemma 7. Suppose that G is amenable. There exists an increasing sequence (ni) i≥0 ⊆ Z + and a Følner sequence (Fi) i∈Z + , such that i) Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γn i , for every i ≥ 0.

ii) G = i≥0 Fi.

iii) Fi+1 = v∈F i+1 ∩Γn i vFi, for every i ≥ 0.

Proof. From [20, Proposition 4.1], there exists an increasing sequence (mi) i≥0 ⊆ Z + and a Følner sequence (Di) i∈Z + such that for every i ≥ 0, Di ⊆ Di+1, Di is a fundamental domain of G/Γm i , and G = i≥0 Di. Up to take subsequences, we can assume that Di is a fundamental domain of G/Γi, for every i ≥ 0, and that e ∈ D0.

We will construct the sequences (ni) i≥0 and (Fn) n≥0 as follows:

Step 0: We set n0 = 0 and F0 = D0.

Step i: Let i > 0. We assume that we have chosen nj and Fj for every 0 ≤ j < i. We take ni > ni-1 in order that the following two conditions are verified:

(2)

|Dn i g △ Dn i | |Dn i | < 1 i|Fi-1|
, for every g ∈ Fi-1.

(

) Dn i-1 ⊆ v∈Dn i ∩Γn i-1 vFi-1. 3 
Such integer ni exists because (Dn) n≥0 is a Følner sequence and Fi-1 is a fundamental domain of G/Γn i-1 (then G = v∈Γn i-1 vFi-1). We define Fi =

v∈Dn i ∩Γn i-1 vFi-1.
Lemma 6 ensures that (Fi) i≥0 verifies i) and iii) of the lemma. The equation (3) implies that (Fi) i≥0 verifies ii) of the lemma. It remains to show that (Fi) i≥0 is a Følner sequence.

By definition of Fi we have

Fi \ Dn i ⊆ g∈F i-1 Dn i g \ Dn i .
Then by equation ( 2) we get

|Fi \ Dn i | |Dn i | ≤ g∈F i-1 |Dn i g \ Dn i | |Dn i | ≤ |Fi-1| 1 i|Fi-1| = 1 i . Since |Fi ∩ Dn i | + |Dn i \ Fi| = |Dn i | = |Fi| = |Fi ∩ Dn i | + |Fi \ Dn i |, we obtain |Dn i \ Fi| |Dn i | ≤ 1 i . Let g ∈ G. Since Fig \ Fi = (Fi ∩ Dn i )g \ Fi ∪ (Fi \ Dn i )g \ Fi ⊆ (Fi ∩ Dn i )g \ Fi ∪ (Fi \ Dn i )g ⊆ Dn i g \ (Fi ∩ Dn i ) ∪ (Fi \ Dn i )g, we have (4) |Fig \ Fi| |Fi| ≤ |Dn i g \ (Fi ∩ Dn i )| |Dn i | + |(Fi \ Dn i )g| |Dn i | ≤ |Dn i g \ (Fi ∩ Dn i )| |Dn i | + 1 i .
On the other hand, the relation

Dn i g \ Dn i = Dn i g \ ((Dn i ∩ Fi) ∪ Dn i \ Fi) = (Dn i g \ (Dn i ∩ Fi)) \ (Dn i \ Fi),
implies that

Dn i g \ (Fi ∩ Dn i ) = [(Dn i g \ (Fi ∩ Dn i )) ∩ (Dn i \ Fi)] ∪ (Dn i g \ (Fi ∩ Dn i )) \ (Dn i \ Fi) = [(Dn i g \ (Fi ∩ Dn i )) ∩ (Dn i \ Fi)] ∪ Dn i g \ Dn i ⊆ Dn i \ Fi ∪ Dn i g \ Dn i , which ensures that (5) |Dn i g \ (Fi ∩ Dn i )| |Dn i | ≤ |Dn i \ Fi| |Dn i | + |Dn i g \ Dn i | |Dn i | .
From equations ( 4) and ( 5), we obtain

|Fig \ Fi| |Fi| ≤ 2 i + |Dn i g \ Dn i | |Dn i | , which implies (6) lim i→∞ |Fig \ Fi| |Fi| = 0.
In a similar way we deduce that

Fi \ Fig ⊆ (Dn i \ (Fi ∩ Dn i )g) ∪ Fi \ Dn i , Dn i \ Dn i g = (Dn i \ (Dn i ∩ Fi)g) \ (Dn i \ Fi), and 
Dn i \ (Fi ∩ Dn i )g ⊆ Dn i \ Fi ∪ Dn i \ Dn i g.
Combining the last three equations we get

|Fi \ Fig| |Fi| ≤ 2 i + |Dn i \ Dn i g| |Dn i | , which implies (7) lim i→∞ |Fi \ Fig| |Fi| = 0.
Equations ( 6) and [START_REF] Downarowicz | Survey of odometers and Toeplitz flows[END_REF] imply that (Fi) i≥0 is Følner.

The following result is a direct consequence of Lemma 7.

Lemma 8. Let G be an amenable residually finite group and let (Γn) n≥0 be a decreasing sequence of finite index normal subgroups of G such that n≥0 Γn = {e}. There exists an increasing sequence (ni) i≥0 ⊆ Z + and a Følner sequence (Fi) i≥0 of G such that

(1) {e} ⊆ Fi ⊆ Fi+1 and Fi is a fundamental domain of G/Γn i , for every n ≥ 0.

(2) G = i≥0 Fi.

(3) Fj = v∈F j ∩Γn i vFi, for every j > i ≥ 0.

Proof. The existence of the sequence of subgroups of G and the Følner sequence verifying (1), ( 2) and (3) for j = i+1 is direct from Lemma 7. Using induction, it is straightforward to show (3) for every j > i ≥ 0.

Connected components.

We recall here the notion of connected component of a discrete group G. This notion will be usefull to define a Toeplitz sequence. Let Γ be a finitely generated subgroup of G. Let S be a symmetric generating set of Γ and let C ⊆ Γ be a non empty set. The connected components of C with respect to S are the equivalence classes of the following equivalence relation defined on C:

g ∼ h ⇐⇒ there exist s1, • • • , s k ∈ S ∪ {e}, such that for every 1 ≤ i ≤ k, gs1 • • • si ∈ C and gs1 • • • s k = h.
The set C is said to be connected if C has only one connected component. Suppose there exists a connected subset

C ′′ of C such that |C ′′ | = r-1. Since |C| ≥ r, we can choose h ∈ C \ C ′′ . Due to C is connected, for g ∈ C ′′ there exist s1, • • • , s k ∈ S such that for every 1 ≤ i ≤ k, gs1 • • • si ∈ C and gs1 • • • s k = h. Let g ∈ C ′′ and h ′ = gs1 • • • si be such that i = min{1 ≤ j ≤ k : gs1 • • • sj / ∈ C ′′ }. The set C ′ = C ′′ ∪ {h ′ }
is connected and has exactly r elements.

Let us recall that for a group G finitely generated and Γn a subgroup of finite index, then Γn is finitely generated (see for example [1, Proposition 6.6.2]). Thus for (Γn) n≥0 and (Fn) n≥0 be as in Lemma 8. Definition 1. For every n ≥ 0, let Sn be a finite symmetric generating subset of Γn.

Since the sequence (Fn) n≥0 is increasing and the union of these sets covers G, there exists a subsequence (Fn i ) i≥0 such that e and the elements of Sn i are in the same connected component of Fn i+1 ∩ Γn i with respect to Sn i .

Proof of Theorem A.

Let G be an amenable finitely generated residually finite group. Let (Γn) n≥0 and (Fn) n≥0 be as in Lemma 8. For every n ≥ 0, we call Rn the set [(Fn ∪ F

-1 n )F -1 n ∪ Sn] ∪ [(Fn ∪ F -1 n )F -1 n
∪ Sn] -1 . This will enable us to define a "border" of each domain Fn+1. Let Σ be a finite alphabet. For every n ≥ 0, let kn ≥ 3 be an integer and let {Bn,1, • • • , B n,kn } ⊆ Σ Fn be a collection of different functions. We say that ({Bn,1, • • • , B n,kn }) n≥0 verifies conditions (C1)-(C4) if it verifies the following four conditions for any n ≥ 0:

(C1) σ γ -1 (B n+1,k )|F n ∈ {Bn,i : 1 ≤ i ≤ kn}, for every γ ∈ Fn+1 ∩ Γn, 1 ≤ k ≤ kn+1. (C2) B n+1,k |F n = Bn,1, for every 1 ≤ k ≤ kn+1. (C3) For any g ∈ Fn such that for some 1 ≤ k, k ′ ≤ kn, B n,k (gv) = B n,k ′ (v) for all v ∈ Fn ∩ Fng -1 , then g = e. (C4) σ γ -1 (B n+1,k )|F n = B n,kn for every γ ∈ (Fn+1 ∩ Γn) ∩ Fn+1 \ Fn+1g -1 , for some g ∈ Rn.
In this case, for every n ≥ 0 we define the matrix Mn ∈ M kn×k n+1 (Z + ) as

Mn(i, k) = |{v ∈ Fn+1 ∩ Γn : B n+1,k |vF n = Bn,i}|.
In the next lemma, we show that conditions (C1) and (C2) are sufficient to construct a Toeplitz sequence. The technical conditions (C3) (aperiodicity) and (C4) (also known as "forcing the border") will ensure the existence of a good sequence of partitions (Pn)n spanning the topology. This will allow to give a characterization of the set of invariant probability measures and the ordered group of the associated Toeplitz subshift.

Lemma 10. Let ({Bn,1, • • • , B n,kn }) n≥0 be a sequence that verifies conditions (C1)-(C4). Then:

(1) The set n≥0 [Bn,1] contains only one element x0 which is a Toeplitz sequence.

(2) Let X be the orbit closure of x0 with respect to the shift action. For every n ≥ 0,

Pn = {σ u -1 ([B n,k ] ∩ X) : 1 ≤ k ≤ kn, u ∈ Fn}
is a clopen partition of X. Moreover, Pn+1 is finer than Pn and (Pn) n≥0 spans the topology of X.

(3) The Toeplitz subshift (X, σ|X , G) is an almost 1-1 extension of the odometer O = lim ← -n (G/Γn, πn). (4) There is an affine homeomorphism between the set of invariant probability measures of (X, σ|X , G) and the inverse limit lim ← -n (△(kn, |Fn|), Mn).

(5) The ordered group G(X, σ|X , G) is isomorphic to (H/inf (H), (H/inf (H)) + , u + inf (H)), where H = lim -→n (Z kn , M T n ), H + = {[v, n] : v ≥ 0, n ≥ 0} and u = [|F0|(1, • • • , 1), 0].
Proof. 1. Condition (C2) implies that n≥0 [Bn,1] is non empty, and since G = n≥0 Fn, there is only one element x0 in this intersection. Let X be the orbit closure of x0. For every n ≥ 0 and 1

≤ k ≤ kn, we denote C n,k = [B n,k ] ∩ X. Let n ≥ 0. Condition (C1) and (3) of Lemma 8 imply that σ γ -1 (B m,k )|F n ∈ {Bn,i : 1 ≤ i ≤ kn}, for every m > n, 1 ≤ k ≤ km and γ ∈ Γn ∩ Fm. From this we deduce that σ γ -1 (x0)|F n ∈ {Bn,i : 1 ≤ i ≤ kn}, for every γ ∈ Γn.
The condition (C2) implies then that σ γ -1 (x0)|F n-1 = Bn-1,1 for any γ ∈ Γn. Thus, for g ∈ G and n such that g ∈ Fn-1, we get x0(γg) = Bn-1,1(g) for any γ ∈ Γn. This shows that x0 is Toeplitz.

2. If g is any element in G, then there exist u ∈ Fn and γ ∈ Γn such that g = γu. Thus

σ g -1 (x0) = σ u -1 (σ γ -1 (x0)) ∈ σ u -1 (C n,k ), for some 1 ≤ k ≤ kn. It follows that Pn = {σ u -1 (C n,k ) : 1 ≤ k ≤ kn, u ∈ Fn}
is a clopen covering of X. Condition (C3) ensures that the set of return times of x0 to kn k=1 C n,k , i.e. the set {g ∈ G : σ g -1 (x0) ∈ kn k=1 C n,k }, is Γn. This implies that Pn is a partition. From (C1) we have that Pn+1 is finer than Pn. Since every Pn is a partition, for every n ≥ 0 and every x ∈ X there are unique vn(x) ∈ Fn and 1 ≤ kn(x) ≤ kn such that

x ∈ σ vn(x) -1 (C n,kn(x) ).
The collection (Pn) n≥0 spans the topology of X if and only if (vn(x)) n≥0 = (vn(y)) n≥0 and (kn(x)) n≥0 = (kn(y)) n≥0 imply x = y. Let x, y ∈ X be two sequences such that vn(x) = vn(y) = vn and kn(x) = kn(y) for every n ≥ 0. Let g ∈ G such that x(g) = y(g).

We have then for any n ≥ 0

σ vn (x)|F n = σ vn (y)|F n ∈ {Bn,i : 1 ≤ i ≤ kn}.
And then

x| v -1 n Fn = y| v -1 n Fn . Thus by definition, we get g ∈ v -1
n Fn for any n. We can take n sufficiently large in order that g ∈ Fn-1. Let γ ∈ Γn and u ∈ Fn such that vn(x)g = γu. Observe that ug -1 / ∈ Fn. Indeed, if ug -1 ∈ Fn, then the relation vn(x) = γug -1 implies γ = e, but in that case we get vn(x)g = u ∈ Fn which is not possible by hypothesis. By the condition (C1), there exists an index 1 ≤ i ≤ kn such that σ γ -1 (σ vn (x))|F n = Bn,i and then

x(g) = σ γ -1 σ vn (x)(γ -1 vng) = Bn,i(u). Let γ ′ ∈ Γn-1 ∩ Fn and u ′ ∈ Fn-1 such that u = γ ′ u ′ . Since γ ′ u ′ g -1 = ug -1 /
∈ Fn, we get γ ′ ∈ Fn \ Fngu ′-1 . This implies that γ ′ ∈ Fn \ Fnw, for w = gu ′-1 ∈ Rn-1 and Bn,i(u) = B n-1,k n-1 (u ′ ) by the condition (C4). Thus x(g) = B n-1,k n-1 (u ′ ). The same argument implies that y(g) = B n-1,k n-1 (u ′ ) = x(g) and we obtain a contradiction. This shows that (Pn) n≥0 spans the topology of X.

3. The map π : X → O given by π(x) = ([vn(x)]n) n≥0 is well defined, is a factor map and verifies π -1 (π(x0)) = {x0}. This shows that (X, σ|X , G) is an almost 1-1 extension of O.

4. Since (Pn) n≥0 spans the topology of X, for every µ ∈ M(X, σ|X , G), the sequence (µn = (µ(Cn,1), • • • , µ(C n,kn )) n≥0 determines completely µ. Moreover, since

Mn(i, k) = |{v ∈ Fn+1 : σ v -1 (C n+1,k ) ⊆ Cn,i}|, for every 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1 and n ≥ 0,
the function µ → (µn) n≥0 , from M(X, σ|X , G) to lim ← -n (△(kn, |Fn|), Mn), is well defined and is an affine homeomorphism (with respect to the weak-star topology and the product topology). Indeed it is standard through the Følner sequence to show that a sequence in lim ← -n (△(kn, |Fn|), Mn) define an unique G-invariant probability measure.

5.

Let φ : H → Dm(X, σ|X , G) be the function given by φ(

[v, n]) = kn k=1 vi[1C n,k ], for every v = (v1, • • • , v kn ) ∈ Z kn and n ≥ 0.
It is easy to check that φ is a well defined homomorphism of groups that verifies and φ(H + ) ⊆ Dm(X, σ|X , G) + . Since (Pn) n≥0 spans the topology of X, every function f ∈ C(X, Z) is constant on every atom of Pm, for some m ≥ 0. This implies that φ is surjective. Lemma 1 and the previous point 4, imply that Ker(φ) = inf (H). Finally, φ induces a isomorphism φ :

H/inf (H) → Dm(X, σ|X, G) such that φ((H/inf (H)) + ) = Dm(X, σ|X , G) + . It remains to show that φ([|F0|(1, • • • , 1), 0]) = k |F0|[1C 0,k ] = [1X ]
. This is true because for any G-invariant measure µ, since P0 is a partition, we have

1 = 1≤k≤k 0 u∈F 0 µ(σ u -1 (C 0,k )) = 1≤k≤k 0 |F0|µ(C 0,k ).
The next result shows that, up to telescope a manageable sequence of matrices, it is possible to obtain a manageable sequence of matrices with sufficiently large coefficient to satisfy the conditions of Lemma 10.

Lemma 11. Let (Mn) n≥0 be a sequence of matrices manageable with respect to (|Fn|) n≥0 .

Let kn be the number of rows of Mn, for every n ≥ 0.

Then there exists an increasing sequence (ni) i≥0 ⊆ Z + such that for every i ≥ 0 and every

1 ≤ k ≤ kn i+1 , (i) Rn i ⊆ Fn i+1 , (ii) For every 1 ≤ l ≤ kn i , Mn i Mn i +1 • • • Mn i+1 -1(l, k) > |Sn i | + | g∈Rn i Fn i+1 \ Fn i+1 g -1 | (iii) kn i+1 < Mn i • • • Mn i+1 -1(i, k), for every 1 ≤ i ≤ kn i .
Proof. We define n0 = 0. Let i ≥ 0 and suppose that we have defined nj for every 0 ≤ j ≤ i. Let m0 > ni be such that for every m ≥ m0, Rn i ⊆ Fm.

Let 0 < ε < 1 be such that ε|Rn i | < 1. Since (Fn) n≥0 is a Følner sequence, there exists m1 > m0 such that for every m ≥ m1,

\ Fmg -1 | |Fm| < ε |Fn i +1| (8) |Fn 
, for every g ∈ Rn i .

Since ε|Rn i | < 1, there exists m2 > m1 such that for every m ≥ m2,

1 -|Sn i | |Fn i +1| |Fm| > ε|Rn i |. Then |Fm| |Fn i +1| -|Sn i | > ε|Rn i | |Fm| |Fn i +1|
.

Conditions (1) and (3) for manageable sequences imply that

Mn i • • • Mm-1(l, j) ≥ |Fm| |Fn i +1|
, for every 1 ≤ l ≤ kn i , 1 ≤ j ≤ km.

Combining the last two equations we get

Mn i • • • Mm-1(l, j) -|Sn i | > ε|Rn i | |Fm| |Fn i +1| ,
and from equation (8), we obtain

Mn i • • • Mm-1(l, j) -|Sn i | > |Fm \ Fmg -1 ||Rn i |, for every g ∈ Rn i ,
which finally implies that

Mn i • • • Mm-1(l, j) > | g∈Rn i Fm \ Fmg -1 | + |Sn i |, for every 1 ≤ l ≤ kn i , 1 ≤ j ≤ km.
Condition (4) for manageable sequences implies the existence of m3 > m2 such that for every m ≥ m3 km+1 ≤ Mn i • • • Mm(i, j) for every 1 ≤ i ≤ kn and 1 ≤ j ≤ kn+1.

By taking ni+1 ≥ m3 we get the desired subsequence (ni) i≥0 ⊆ Z + .

The following proposition shows that given a manageable sequence, there exists a sequence of decorations verifying conditions (C1)-(C4). The aperiodicity condition (C3) is obtained by decorating the center of Fn in a unique way with respect to other places in Fn. The restriction on the number of columns of the matrices in a manageable sequence, gives enough choices of coloring to ensure conditions (C3) and (C4).

Proposition 1. Let (Mn) n≥0 be a sequence of matrices which is manageable with respect to (|Fn|) n≥0 . For every n ≥ 0, we denote by kn the number of rows of Mn. Then there exists a Toeplitz subshift (X, σ|X, G) verifying the following three conditions:

(1) The set of invariant probability measures of (X, σ|X, G) is affine homeomorphic to lim ← -n (△(kn, |Fn|), Mn).

(2) The ordered group G(X, σ|X , G) is isomorphic to (H/inf (H), (H/inf (H)) + , u + inf (H)), where H = lim -→n

(Z kn , M T n ), H + = {[v, n] : v ≥ 0, n ≥ 0} and u = [|F0|(1, • • • , 1), 0]. (3) (X, σ|X , G) is an almost 1-1 extension of the odometer O = lim ← -n (G/Γn, πn).
Proof. Let (ni) i≥0 ⊆ Z + be a sequence as in Lemma 11. Since (Mn) n≥0 and the sequence (Mn i • • • Mn i+1 -1)i≥0 define the same inverse and direct limits, without loss of generality we can assume that for every n ≥ 0 we have:

(9) Rn ⊆ Fn+1, (10) 
Mn(i, k) > |Sn| + | g∈Rn Fn+1 \ Fn+1g -1 | for every 1 ≤ i ≤ kn, 1 ≤ k ≤ kn+1, and (11) 
kn+1 < min{Mn(i, j) : 1 ≤ i ≤ kn, 1 ≤ j ≤ kn+1}.

Claim 1. Let Cn,1, • • • , Cn,r n be the connected components of (Fn+1 ∩ Γn) \ (Sn ∪ {e} ∪ g∈Rn Fn+1 \ Fn+1g -1 ) with respect to Sn. The number Mn(1, k) -1 is smaller than the number of elements which are in all the components Cn,i having more than one element.

To show the claim, notice that we have [START_REF] Downarowicz | Almost 1 -1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows[END_REF] |Cn,1|

+ • • • + |Cn,r n | ≥ Mn(1, k) -1 + Mn(2, k), because Mn(1, k) + Mn(2, k) -1 ≤ Mn(1, k) + • • • + Mn(kn -1, k) -1 = |Fn+1 ∩ Γn| -Mn(kn, 1) -1 ≤ |Fn+1 ∩ Γn| -|Sn| -| g∈Rn Fn+1 \ Fn+1g -1 | -|{e}| ≤ |Fn+1 ∩ Γn \ (Sn ∪ g∈Rn Fn+1 \ Fn+1g -1 ∪ {e})| = |Cn,1| + • • • + |Cn,r n |.
We fill the rest of the coordinates v ∈ Fn+1 ∩ Γn in order that σ v -1 (B In this section we briefly recall the concept of ordered Bratteli diagram and its relation with minimal Z-actions on the Cantor set. We refer to [START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF] and [START_REF] Herman | Ordered Bratteli diagrams, dimension groups and topological dynamics[END_REF] for the details. A Bratteli diagram is an infinite directed graph B = (V, E), such that the vertex set V and the edge set E can be partitioned into finite sets

V = V0 ∪ V1 ∪ • • • and E = E1 ∪ E2 ∪ • • •
with the following properties:

• V0 = {v0} is a singleton.

• For every j ≥ 1, each edge in Ej starts from a vertex in Vj-1 and arrives to a vertex in Vj. • All vertices in V have at least one edge starting from it, and all vertices except v0 have at least one edge arriving to it. The sequence of transition matrices or incidences matrices of the Bratteli diagram B is the sequence (Mn) n≥0 such that for every n ≥ 0, the matrix Mn ∈ MV n ×V n+1 (Z + ) is defined as Mn(v, v ′ ) = number of edges from v ∈ Vn to v ′ ∈ Vn+1. For a vertex e ∈ E we denote by s(e) the vertex where e starts and by r(e) the vertex to which e arrives. For m > n, a path from v ∈ Vn to w ∈ Vm in B, is a sequence of edges en+1en+2 • • • em such that s(en+1) = v, r(em) = w and for each n

+ 1 ≤ i ≤ m -1, r(ei) = s(ei+1). The set of infinite paths of B is XB = {(ei) i≥1 ∈ i≥1 Ei : r(ei) = s(ei+1), for each i ≥ 1}.
This set becomes a totally disconnected space when we endow every Ei with the discrete topology, i ≥ 1 Ei with the product topology and XB with the induced topology. Let (mn) n≥0 be an increasing sequence of integers such that m0 = 0. The telescoping of B to (mn) n≥0 is the Bratteli

diagram B ′ = (V ′ , E ′ ) defined by V ′ = {Vm n : n ≥ 0} and E ′ = {E ′ n : n ≥ 1}, where E ′ n contains an edge from v ∈ Vm n-1 to w ∈ Vm n in B ′ for each path from v to w in B.
The Bratteli diagram B is simple, if there exists a telescoping B ′ of B so that the incidences matrices of B ′ are strictly positive. In this case, XB is a Cantor set (when XB is infinite). An ordered Bratteli diagram (V, E, ≥) is a Bratteli diagram B = (V, E) together with a partial order ≥ on E, so that two edges are comparable if and only if they arrive at the same vertex. This order induces a transformation TB : XB → XB. If B is simple, the order ≥ can be chosen so that TB is a minimal homeomorphism on XB.

Conversely, if (X, T, Z) is a minimal Cantor system, then there exist a simple Bratteli diagram B = (V, E) and an order ≥, such that (V, E, ≥) is an ordered Bratteli diagram and (X, T, Z) is conjugate to (XB, TB, Z) (see [START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF] and [START_REF] Herman | Ordered Bratteli diagrams, dimension groups and topological dynamics[END_REF] for the details). In this case we say that B = (V, E) is an associated Bratteli diagram to (X, T, Z). In The Bratteli diagram B ′′ defined by the new sequence of matrices (Mn) n≥0 determines the same strong orbit equivalence class than B ′ , verifies the e.p.n-property and its incidence matrices have exactly 3 columns.

The following proposition is the essential part of Theorem B.

Proposition 2. Let (X, σ|X , Z) be a minimal Cantor system having an associated Bratteli diagram B = (V, E) which satisfies the equal path number property. If in addition, there exists a constant C > 0 such that for each n ≥ 1, C|r -1 (v)| ≥ |Vn| for every v ∈ Vn, then for every d ≥ 1 there exists a Toeplitz subshift (Y, σ|Y , Z d ) which is orbit equivalent to (X, σ|X , Z).

In [START_REF] Gjerde | Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows[END_REF], Gjerde and Johansen show that every Toeplitz subshift (X, σ|X, Z) has an associated Bratteli diagram verifying the e.p.n-property. In [START_REF] Sugisaki | Toeplitz flows, ordered Bratteli diagrams and strong orbit equivalence[END_REF], Sugisaki shows that every minimal Cantor system (Y, T, Z) having an associated Bratteli diagram which satisfies the e.p.n-property, is strong orbit equivalent to a Toeplitz subshift (X, σ|X , Z). At the opposite of residually finite group, let us mention [START_REF] Dahl | AF equivalence relations associated to locally finite groups[END_REF], where Dahl shows that any Brattteli diagram verifying the e.p.n-property is orbit equivalent to a free action of a locally finite group.

Proof of Proposition 2. From Lemma 12, we can assume that |Vn| ≥ 3, for every n ≥ 1. Let (Mn) n≥0 be the sequence of incidence matrices of B. u ld+j for every 2 ≤ j ≤ d.

We have p id = qi = qi,1 • • • q i,d , for every i ≥ 1.

Let Γi = d j=1 qi,jZ. The sequence of groups (Γi) i≥1 satisfies Γi ⊆ Γi+1, |Z d /Γi| = qi and i≥1 Γi = {0}. Thus from Proposition 1, there exists a Toeplitz subshift (Y, σ|Y , Z d ) such that G(Y, σ|Y , Z d ) is isomorphic to G(X, σ|X , Z). Theorem 2.5 in [START_REF] Giordano | Orbit equivalence for Cantor minimal Z dsystems[END_REF] implies that (Y, σ|Y , Z d ) is orbit equivalent to (X, σ|X , Z). Corollary 1. Let (X, T, Z) be a minimal Cantor system whose dimension group is divisible. Then for every d ≥ 1 there exists a Toeplitz subshift (Y, σ|Y , Z d ) which is orbit equivalent to (X, T, Z).

Proof. From the proof of Theorem 12 in [START_REF] Gjerde | Bratteli-Vershik models for Cantor minimal systems: applications to Toeplitz flows[END_REF], there exists a Toeplitz subshift (X ′ , σ| X ′ , Z) which is orbit equivalent to (X, T, Z), and such that (X ′ , σ| X ′ , Z) has an associated Bratteli diagram B = (V, E) having the e.p.n-property and such that for each n ≥ 0, 6|Vn+1| < r -1 (v) for every v ∈ Vn+1. We conclude applying Proposition 2.

We combine Proposition 2 and Corollary 1 to obtain Theorem B.

Lemma 9 .

 9 Let C ⊆ Γ be a connected set. For every finite number 1 ≤ r ≤ |C| there exists a connected subset C ′ of C such that |C ′ | = r. Proof. Let 1 ≤ r ≤ |C| be a finite number. If r = 1 then C ′ = {g}, for g ∈ C, is connected.

Lemma 12 .

 12 [START_REF] Giordano | Topological orbit equivalence and C*-crossed products[END_REF], Giordano, Putnam and Skau show that the associated Bratteli diagram (without order) of a minimal Z-action on the Cantor set is a total invariant of its strong orbit class. We say that the Bratteli diagram B = (V, E) has the equal path number property (e.p.nproperty) if for each n ≥ 1, |r -1 (v)| = |r -1 (u)| for every u, v ∈ Vn. It is straightforward to show that the equal path number property is invariant under telescoping. Every strong orbit equivalence class having an associated Bratteli diagram verifying the equal path number property, has an associated Bratteli diagram verifying the equal path number property and whose incidence matrices have at least three columns.Proof. Let B = (V, E) be a Bratteli diagram verifying the e.p.n-property. If there exist infinitely many n's such that |Vn| ≥ 3, we may telescope the diagram to those levels in order to get a new diagram B ′ whose incidence matrices have at least 3 columns. This new Bratteli diagram verifies the e.q.n-property and defines the same strong orbit equivalence class than B. Otherwise, we can telescope the diagram B in order to get a new diagram B ′ whose incidence matrices have 1 or either 2 columns. In both cases, B ′ defines the same strong orbit equivalence class than a Bratteli diagram verifying the e.p.n-property and whose incidence matrices have exactly three columns. Indeed, let (An) n≥0 be the sequence of incidence matrices of B ′ and suppose first that An = [mn] , for every n ≥ 0. We can assume that mn > 1 (otherwise X B ′ contains only one point). Since [mn] = (1, 1)(mn -1, 1) T , the diagram B ′ determines the same strong orbit equivalence class than the Bratteli diagram B ′′ defined by the sequence of incidence matrices (Bn) n≥1 , where B0 = (1, 1) and Bn = (mn-1 -1, 1) T (1, 1) for every n ≥ 1. The Bratteli diagram B ′′ determines the same orbit equivalence class than B ′ , verifies the e.p.n-property and its incidences matrices have exactly two columns. Now we are in the case where every An has exactly two columns. Then we set M0 = A0A and Mn = BnA for n ≥ 1, where

  For each n ≥ 1, let rn-1 = |r -1 (v)| for every v ∈ Vn. The e.p.n-property ensures v∈Vn Mn(v, v ′ ) = rn for every v ′ ∈ Vn+1 and n ≥ 0.Let (ni) i≥0 be a sequence of non-negative integers such that n0 = 0, ni+1 > ni + 3 and verifiesrn i +1 • • • rn i+1 -2 > C, for every i ≥ 0. Observe that Mn i • • • Mn i+1 -1(l, j) ≥ rn i +1 • • • rn i+1 -1,for every l, j and i ≥ 0.Defining Ai = Mn i • • • Mn i+1 -1, we have Ai(l, j) > Crn i+1 -1 ≥ |Vn i+1 | for every l, j and i ≥ 0.The sequence (Ai) i≥0 is the sequence of incidence matrices of the telescoping of B to the levels (ni) i≥0 . This sequence is manageable with respect to (pi) i≥0 , where p0 = 1,p1 = r0 • • • rn 1 -1 and pi+1 = pirn i • • • rn i+1 -1 for every i ≥ 1. Let ui+1 = rn i • • • rn i+1 -1,for every i ≥ 0.Let d ≥ 1 be an integer. For every i ≥ 1 we define

  Ordered groups. An ordered group is a pair (H, H + ), such that H is a countable abelian group and H + is a subset of H verifying (H + )+(H + ) ⊆ H + , (H + )+(-H + ) = H and (H + ) ∩ (-H + ) = {0} (we use 0 as the unit of H when H is abelian). An ordered group (H, H + ) is a dimension group if for every n ∈ Z + there exist kn ≥ 1 and a positive homomorphism An : Z kn → Z k n+1 , such that (H, H + ) is isomorphic to (J, J + ), where J

	unique invariant probability measure. Notice that this action is free: the stabilizer of
	any point is trivial. The Toeplitz G-subshifts are characterized as the subshifts that are
	minimal almost 1-1 extensions of G-odometers [4].
	2.4. is the direct limit
	lim -→n

where [g]n denotes the class of g in G/Γn. Thus the group G acts by left multiplication on O. When there is no confusion, we call this action also odometer. It is equicontiuous, minimal and the left Haar measure is the

  The dimension group is simple if the matrices An can be chosen strictly positive. An order unit in the ordered group (H, H + ) is an element u ∈ H + such that for every g ∈ H there exists n ∈ Z + such that g ≤ nu. If (H, H + ) is a simple dimension group then each element in H + \ {0} is an order unit. A unital ordered group is a triple (H, H + , u)

	such that (H, H + ) is an ordered group and u is an order unit. An isomorphism between
	two unital ordered groups (H, H + , u) and (J, J + , v) is an isomorphism φ : H → J such
	that φ(H + ) = J + and φ(u) = v. A state of the unital ordered group (H, H + , u) is
	a homomorphism φ : H → R so that φ(u) = 1 and φ(H + ) ⊆ R + . The infinitesimal
	subgroup of (H, H + , u) is
	inf(H) = {a ∈ H : φ(a) = 0 for all state φ}.
	It is not difficult to show that inf(H) does not depend on the order unit.
	The quotient group H/inf(H) of a simple dimension group (H, H + ) is also a simple
	dimension group with positive cone
	(H/inf(H)

  n+1,k )|F n ∈ {Bn,1, • • • , B n,kn } and such that |{v ∈ Fn+1 ∩ Γn : σ v -1 (B n+1,k )|F n = Bn,i}| = Mn(i, k), for every 2 ≤ i ≤ kn. Notice that the number of such v is at least Mn(2, k), because there are at least Mn(2, k) -1 coordinates to be filled with Bn,2 and at least 1 coordinate to be filled with B n,kn . Thus we have at least Mn(2, k) > kn+1 different ways to fill the coordinates such that the functions Bn+1,1, • • • , B n+1,k n+1 are pairwise different. By construction, every function B n+1,k verifies (C1), (C2) and (C4). Let us assume there are g ∈ Fn+1 and 1 ≤ k, k ′ ≤ kn+1 such that B n+1,k (gv) = B n+1,k ′ (v) for any v where it is defined, then by the induction hypothesis, g ∈ Γn. This implies that σ g -1 (B n+1,k )|F n = B n+1,k ′ |F n = Bn,1. By definition, if g = e then there exists s ∈ Sn such that gs ∈ Fn+1 and σ (gs) -1 (B n+1,k )|F n = Bn,1 or Bn,2. On the other hand, σ s -1 (B n+1,k ′ )|F n = B n,kn . Since σ (gs) -1 (B n+1,k )|F n and σ s -1 (B n+1,k ′ )|F n have to coincide, we deduce that g = e. This shows that the collection Bn+1,1, • • • , B n+1,k n+1 verifies (C3). We conclude applying Lemma 10. Proof of Theorem A. Let ext(K) be the set of extreme points of K. If ext(K) is finite, then the proof is direct from Lemma 2 and Proposition 1. If ext(K) is infinite, the proof follows from Lemma 5 and Proposition 1.

6. Proof of Theorem B.

The claim is then trivial if for every 1 ≤ i ≤ rn we have |Cn,i| ≥ 2. Suppose now, there is at least one component having only one element. Up to change the indexation, we may assume these components are Cn,1, • • • , C n,ln with 1 ≤ ln ≤ rn. If g ∈ Cn,i for 1 ≤ i ≤ ln, then for every s ∈ Sn we have gs ∈ Fn+1 (because g / ∈ h∈Rn Fn+1\Fn+1h -1 and Sn ⊆ Rn), which implies that gs ∈ Sn∪ h∈Rn Fn+1\Fn+1h -1 (gs = e because g / ∈ Sn). Thus if s ∈ Sn and gi ∈ Cn,i for every 1 ≤ i ≤ ln, then {g1s, • • • , g ln s} ⊆ Sn ∪ g∈Rn Fn+1 \ Fn+1g -1 . Since this set has exactly ln elements, we deduce

which contradicts [START_REF] Effros | Dimensions and C * -algebras[END_REF] and shows the claim.

For every n ≥ 0, we will construct a collection of functions Bn,1,

Let F0 be the set of B ∈ Σ F 0 verifying B(e) = 0 and B(g) ∈ Σ\{0} for every g ∈ F0 \{e}.

Let n ≥ 0. Suppose that we have defined Bn,1,

Now we will determine which are the rest of v ∈ Fn+1 ∩ Γn for which

Observe that equation [START_REF] Effros | Dimensions and C * -algebras[END_REF] implies that Mn(1, k) > 1.

By Claim 1, we can write