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We study plane waves in second gradient solids and their reflection and transmission at plane displacement discontinuity
surfaces. The needed extension of the treatment adopted to study plane wave propagation in Cauchy continua is not
straightforward and is developed here. In particular, the balance of mechanical energy valid for second gradient continua
is deduced. The presented results may be of interest as many boundary layer phenomena can be accounted for by second
gradient models. We prove that second gradient elastic moduli may influence, in a measurable manner, how planar waves
behave at discontinuity surfaces: the novel results presented here can be the basis of experimental procedures to estimate
some among these moduli. We explicitly remark that reflection and transmission coefficients which we have estimated
show a significant dependence on frequency, which indeed makes easier to conceive effective measurement methods.
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1 Introduction

In [45], [44] and [46] a complete and consistent continuum theory allowing for the dependence of deformation energy on
second gradient of placement is presented, which systematizes a series of results presented in [47], [48], [49], [96], [97],
[70], [71], [72] [16] and [17]. Second gradient continuum theory does not fit Cauchy format for continuummechanics. For
this reason, only recently the it was appreciated (see [34]). Second gradient constitutive equations have been recognized to
be essential in describing interface phenomena in phase-transition (see e.g. [25], [18], [88], [89]). More recently, second
gradient constitutive equations are being considered of interest also for solids (see, among many others, e.g. [52], [95],
[94], [69], [100], [3], [54], [55], [57], [59], [56], [58], [101]), [93]. Second gradient continua are a particular instance
of multipolar continua, often also called higher order continua, in which the state of deformation is described by the first
n−order gradients of displacement and consequently the state of stress has to bemodelled bymeans of n independent stress
tensors (see [47], [48], [49]). Moreover the differential equations which govern the evolution of multipolar continua are
of higher order and need boundary conditions more complicated than those used in Cauchy continuum models. Especially
this circumstance caused many controversies and discussions about the physical meaning of the various kind of boundary
conditions which were proposed (see e.g. [9]).
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1.1 Second gradient Continua are a non-trivial generalization of Cauchy Continua

Many investigators refused to consider the generalizations proposed in [47], [48], [49], [96], [97], [70], [71] [16]and [17]
until Germain framed clearly second gradient models in the format given to continuum mechanics by Cosserat brothers
in their fundamental works ( [20], [21]). This format was -since then- widely accepted (see e.g. [8]) and starts from the
Principle of Least Action or from the Principle of Virtual Works and has been more recently been applied in different
contexts (see e.g. [63], [64], [65], [23], [24], [40] and [41].

Let B be the body the motion of which needs to be described and let SB be a regular sub-body of B: following the
ideas already presented in [21], Germain assumes that the external powers balance the internal powers plus inertial powers
for every SB . A very elegant textbook which bases continuum mechanics on such a treatment is [87], while an accurate
and updated review of the available results in this research field is given in [66]. When there exists a deformation energy,
then the internal power can be represented as its first variation. When the system is conservative, the postulated principle of
virtual works reduces to the assumption that the action functional is stationary. On the other hand, it is possible, by means
of a Hamilton-Rayleigh principle (see e.g. [32]), to deduce a particular form of the principle of virtual works from a given
action and Rayleigh dissipation functionals.

It has to be explicitly remarked that Germain’s (and multipolar continuum) theory does not fit Cauchy format for contin-
uum mechanics (although not all authors seems to be aware of this circumstance: see e.g. [36]). Indeed, so-called Cauchy
postulate for contact actions is seen to hold, actually, only for a class of materials which results to be rather particular.
Indeed, it results that Cauchy postulate is actually the restriction on the set of constitutive equations which characterizes
Cauchy continua. It has been known since long time (see e.g. [17]) that when deformation energy depends on second
gradient of displacement then contact surface force densities at every Cauchy cut must, in general, depend on the curvature
of such Cauchy cut. Only in very particular cases (see e.g. [31]) second gradient continua show contact actions which may
somehow reduce to the type described by Cauchy. Dependence of contact forces on curvature implies that also contact edge
forces must be present: this circumstance needed the development of many sophisticated mathematical considerations and
theories (see [81], [31], [6], [27], [28], [60], [67], [68], [91], [92], [52]).

By means of Cauchy stress tensor only it is not possible to describe the more complex contact interactions occurring
in second gradient continua. Indeed, contact surface force densities depending on curvature of Cauchy cuts must arise
together with i) contact double-force surface densities and ii) contact edge line force densities. Contact double-forces (of
which contact couples are a particular case) expend power on normal velocity gradients through Cauchy cuts and contact
edge line density forces arise at those lines on Cauchy cuts where the normal suffers concentrated discontinuities. This
point is thoroughly investigated in the literature: for more details we refer e.g. to [81], [31] and all the references there
cited. Therefore the structure of contact interactions in second gradient continua is much more complicated than in the case
of Cauchy continua and needs a more complex mathematical formulation.

Second gradient constitutive equations have been widely recognized to be essential in describing interface phenomena
in phase-transition. Indeed, at the interface between different fluid phases, contact actions are not, because of long range
molecular interactions, falling in the theoretical framework established by Cauchy. This circumstance has been recognized
already by de [25] (see also [90], [18], [42], [43], [30], [29] and references there cited).

More recently also second gradient constitutive equations for solids and porous media are being considered of interest.
The number of papers describing second gradient models is increasing. For models describing phenomena occurring in
fluid saturated porous media we cite: [19], [32], [86], [85] and [61]. For applications to plasticity and damage we limit
ourselves to cite: [98], [39], [4], [2], [84].

Finally, we remark that many efforts were directed to identify microscopic structures which, when modelled at a macro-
scopic level by means of continuum mechanics, need the introduction of second or higher gradient theories: we limit
ourselves to cite [99], [100], [7], [1], [5], [53], [83], [38]. For applications of micro-macro identification methods to phe-
nomena in granular materials we have found interesting the approach used in [101] and [102], and [80].

One has to remark explicitly here that, in the present paper, we have refrained from considering phenomena in which
a relevant amount of kinetic energy can be associated to “microscopic” degrees of freedom: therefore in the expression
of kinetic energy we have not included any time derivative of strain gradient. It has to be underlined that (see [14],
[13], [?], [10]) many interesting phenomena may occur when in a mechanical system “macroscopic” degrees of freedom
are coupled with a large amount of “microscopic” degrees of freedom having “many” and “suitably distributed” natural
vibration frequencies. In order to account for some of these phenomena a “macroscopic” damping term may be added (for
instance using a Rayleigh-Hamilton approach) to the evolution second gradient equations.
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1.2 Well-posed Boundary Conditions and the physical meaning of second gradient theories.

Many controversies which arose in the past about the importance and use of second gradient models concerned the physical
interpretation of the required boundary conditions and the need of establishing measurement procedures for second gradient
constitutive parameters.
The first issue arises whenever a novel theory is introduced by means of the least action principle or by means of

Hamilton-Rayleigh principle or by means of the principle of virtual work. The needed interpretation of the obtained
boundary conditions has been, in our opinion, satisfactorily given by Germain, Green, Rivlin, Toupin and Mindlin. It has
to be clearly remarked (although this statement may be considered obvious) that boundary conditions obtained by means
of a Least Action Principle or a Principle of Virtual Works are easily seen to be mathematically well-posed, once suitable
assumptions are accepted on deformation and dissipation energy functionals.
In this paper, we propose to address the second issue (i.e. how to determine experimentally some of the introduced

second gradient constitutive parameters): to do so we study plane waves in second gradient solids and their reflection and
transmission at planar surfaces in which displacement and/or its normal derivative may suffer a jump. Our aim is to start,
for second gradient solids, to generalize the classical study of wave propagation which, for standard first gradient elastic
media, is presented in many textbooks. We found particularly interesting -among those more often used- [50] and [51].
This extension is feasible but non-trivial: for instance we needed to extend the treatment due to [18] to second gradient
solids. In quoted paper the mechanical energy balance for second gradient fluids is established in Eulerian description. We
extend it to second gradient solids by using a Lagrangian description.
About the important question concerning the phenomena which may be described by means of second gradient mod-

els there is a rather widespread agreement in the literature: many interesting boundary layer phenomena, related to the
underlying micro-structure, can be accounted for by means of these models and these boundary phenomena may greatly
influence wave propagation, transmission and reflection. To our knowledge, only in [96] such a theoretical study has been
initiated, even if only for a particular class of second gradient continua: those for which double contact forces reduce to
contact couples. Toupin studies accurately how dispersion formulas change when considering second gradient continua:
with few modifications we can use his results as they are. However, we needed to prove that second gradient constitutive
parameters determine, in a measurable manner, how planar waves behave at considered discontinuity surfaces. The novel
results presented here can be the basis of experimental procedures to estimate some of second gradient constitutive param-
eters. Indeed, we show that for some kinds of boundary conditions the reflection and transmission coefficients remarkably
depend on second gradient elastic moduli and that this dependence is increased when the frequency of the incident wave
increases. We also showed the influence of second gradient elastic moduli on the dependence on frequency of transmission
and reflection coefficients and performed a preliminary comparison with some experimental results which have attracted
our attention ( [62]).
The principal aim of this paper is to explicitly show how second gradient theories allow for the description of frequency-

dependent reflection and transmission phenomena at a discontinuity surface between two continua. Indeed, this dependence
on frequency of the amount of transmitted/reflected energy is experimentally often observed (see e.g. [37]) and is related on
particular physical phenomena occurring in the medium due to the interaction of the propagating wave with an underlying
micro-structure. Indeed, experience shows that many characteristics of reflected/transmitted waves often depend on the
frequency of the incident wave. Nevertheless, this dependence is not taken into account by classical continuum models. A
second gradient theory, on the other hand, allows for the possibility of describing some of the observed frequency-dependent
phenomena since it is capable of taking into account the existence of a micro-structure at smaller scale, while classical
Cauchy continuum theory is based on the hypothesis that the medium which it describes is completely homogeneous
at microscopic level, i.e. that any kind of heterogeneity is present inside a Representative Elementary Volume of the
continuummatrix. On the contrary, as in reality a perfectly continuum medium does not exist, all media are heterogeneous
at a sufficiently small scale. If the wavelength of the travelling wave is comparable to the characteristic length of the
underlying micro-structure (e.g. spacing between the heterogeneities at the micro-scale) then the propagation phenomena
will be consistently affected by the presence of these heterogeneities. Instead, if the wavelength is sufficiently bigger than
this characteristic length then the mediumwill behave rather as a continuum and the propagation phenomena will be poorly
affected by the presence of a heterogeneous micro-structure. These expected frequency-dependent phenomena related to
the presence of a heterogeneous micro-structure are forecast by our model and are carefully discussed in the section 6 of
this paper.
On the other hand, the problem of extending the presented results to the case of non-orthogonal plane waves and to more

general boundary conditions including surface mechanical properties of the interface and to wave propagation in second
gradient porous media will be addressed in future investigations. Further generalization should also include the study of
propagation of waves in non-linear/non-isotropic second gradient continua. This could be done generalizing the results
presented e.g. in [35], where some interesting results on wave propagation in pre-stressed anisotropic media are presented.
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1.3 Applicability of presented theoretical treatment and the possibility of considering more complex
boundary conditions.

First of all we must remark that, although second gradients of displacement are introduced in the proposedmodel, it remains
linear when considering its application to wave propagation. This means that, in the presented treatment, we can continue
to use the so called “principle of superposition of effects”. We are aware of the fact that real waves are not monochromatic:
however reasonably “narrow” Fourier spectra are experimentally feasible when producing acoustic waves (see e.g. [62]).
Secondly we are also aware that at the interface of different solids many phenomena may occur: related to sharp vari-

ations of elastic moduli, imperfections, non-perfect adhesion and so on. Interfaces may be sharp or may have a thickness
of the order of magnitude of the wavelength. Moreover, the interfaces may be endowed with mass, deformation energy,
frictional properties and other physical properties. Many investigations has been made in this field: we consider very in-
teresting those presented in [73] or in [75], [76], [77], [78], [80] which suggest how in our model one could incorporate
micromechanical, frictional effects or interfacial roughness and nonlinearities. Moreover, if some uncertainties or inho-
mogeneities are present at a “microscopic” level in the neighborhood of the interface then the methods developed in [12]
or [22] would allow the formulation of suitable “interface balance of energy” by generalizing the condition formulated in
the present paper: the methods presented in cited papers seem most suitable as they are capable to account for nonstationary
processes also .
Using the Archimedean spirit we would like to focus our attention only to those phenomena which may be described

by second gradient models: a good experimental setup has to be conceived to isolate (exactly!) the phenomena which
presented model can describe distinguishing them from all the others. One has to be aware that there are left (as it always
happens!) relevant phenomena which we refrain from modelling here. Indeed, this is exactly the most suitable approach
to be used: introducing too complex models could imply the need of very complicated numerical simulations (see e.g. the
efforts needed in [79] to attack what is a rather simplified model of contact phenomena).
In second gradient continua two kinds of contact actions are possible: they correspond, at a microscopic level, to shorter

range and longer range interactions. These two kind of contact interactions are related to two different kinds of macroscopic
deformation energies: depending respectively on strain and strain gradient.
Longer range (or second gradient) interactions may be the source of boundary layers at discontinuity surfaces. We want

to understand how to detect these boundary layers by means of measurements of the intensity of transmitted and reflected
monochromatic waves. Therefore we assume that it is possible i) to prepare an interface thin enough and ii) to send towards
it a monochromatic plane wave having a wavelength greater than the interface thickness but comparable with the range of
long interactions.
We consider few boundary conditions which arise naturally in the framework of the theory of second gradient continua.

One of these boundary conditions is based on the assumption that at the transmitting and reflecting interface the displace-
ments of the two half spaces are arbitrary and that the mechanical connection between them is assured only by “long range”
(second gradient) contact actions: in the remainder of this paper we will call this constraint “generalized internal roller”.
Such an assumption can account for an interface which has been “weakened” with respect to the “undamaged” solids which
it is connecting: it is clearly valid only when these displacement are small enough. When displacements are large or when
the solids in contact are porous and infused by a fluid then shock waves may be initiated and more generally impact phe-
nomena can be of relevance at the interface: in these case the study presented in Carcaterraet al. (2000) and Carcaterra and
Ciappi (2000) may indicate some useful generalizations of the boundary conditions which we present here.
In conclusion: the present paper wants to establish some theoretical predictions which are valid under all previously

listed assumptions. This seems to be reasonable and experimental setups described by the presented model seem physically
feasible. Indeed the preliminary comparison with some experimental data which we could find in the literature ( [62])
shows that the dependence of reflected wave intensity on frequency which we forecast is, at least qualitatively, similar to
those they measured .

2 Mechanical energy transport in second gradient continua
In this section we deduce, starting from the appropriate equation of motion, the mechanical energy conservation law for a
three-dimensional second gradient continuum. Similar results can be found in [18] for second gradient fluids.
Let χ : B × (0, T ) → R3 be the placement map which, at any instant t, associates to any material particle X ∈ B its

position in the physical space. The displacement field is then defined as u(X, t) := χ(X, t)−X. We set F := ∇χ and we
denote by ε := (FT ·F− I)/2 the classical Green-Lagrange deformation tensor. Let ρ be the mass per unit volume of the
considered continuum in its reference configuration, we introduce, by means of

E =
1

2
ρ (u̇)2 +Ψ (ε,∇ε) , (1)
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the total Lagrangian energy density of the considered second gradient continuum, as given by the sum of the kinetic and
deformation energy, which we denote by Ψ. Here and in the sequel a superposed dot represents partial differentiation with
respect to time, i.e. what is usually called the material time derivative. Moreover, we recall that, in absence of body forces,
the equation of motion for a second gradient continuum reads (see e.g. [45], [33] or [86] for a variational deduction of the
equations of motion for second gradient materials) 1

div

[

F ·

(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))]

= ρü (2)

Differentiating Eq. (1) with respect to time and using Eq. (2), it can be shown that 2

∂E

∂t
+ div

[

−u̇ · F ·

(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))

−
(

(∇u̇)T · F
)

:
∂Ψ

∂∇ε

]

= 0. (3)

In the calculations for obtaining Eq. (3) we used the fact that ε is a second order symmetric tensor, that ∇ε is a third order
tensor symmetric with respect to its first two indices and that ∇F is a third order tensor symmetric with respect to its last
two indices. Thus this last equation represents the Lagrangian form of energy balance for a second gradient 3D continuum
in the general non-linear case.
We now want to focus our attention to the particular case of linear elasticity in order to study linear plane waves in

second gradient 3D continua. To this purpose, we note that, when linearising in the neighbourhood of a stress-free reference
configuration, the gradient of placement F in Eq. (3) is substituted by the identity matrix and that the equation of motion
and mechanical energy balance for a second gradient continuum respectively reduce to

div [S− divP] = ρü,
∂E

∂t
+ div

[

−u̇ · (S− divP)− (∇u̇)T : P
]

= 0, (4)

where, following the nomenclature of Germain, S and P are the linearised Piola-Kirchoff first and second gradient stress
tensors respectively. In order to lighten the notation, however, we will refer to these two tensors simply as stress and
hyper-stress tensor respectively. It is well known that in the case of isotropic material S = 2µE + λ (trE) I, where
E = (∇u+(∇u)T )/2 is the linearised Green-Lagrange deformation tensor and λ and µ are the so-called Lamé coefficients.
As for the hyper-stress third order tensorP, it can be shown (see e.g. [?]DSV that in the case of isotropic materials it takes
the following simplified form3

P =c2
[

2I⊗ divE+ (I⊗∇(trE))T23 +∇(trE)⊗ I

]

+ c3I⊗∇(trE)

+ 2c5
[

(I⊗ divE)T23 + divE⊗ I
]

+ 2c11∇E+ 4c15(∇E)T12 , (5)

where c2, c3, c5, c11 and c15 are constants depending on the material properties of the considered second gradient contin-
uum. As it will be seen to be useful later on, we define the following coefficients

Λ := c3 + 2(c5 + c15) + 4c2, M := c11 + c15 + c5, (6)

which parallel the first gradient Lamé coefficients λ and µ.

3 Dispersion Formulas

Let us now consider a wave travelling in the considered second gradient continuum. We denote by x1 the axis of a reference
frame the direction of which coincides with the propagation direction and by x2 and x3 the other two directions forming a
Cartesian basis with x1. We assume that the displacement vector has three non-vanishing components depending only on
the x1 coordinate and on time, i.e. u(x1, t) = (u1(x1, t), u2(x1, t), u3(x1, t)). In the following we will say that we are in

1 The symbol div stands for the usual divergence operator, e.g. (divA)ij = Aijk,k . Here and in the sequel we adopt Einstein summation convention
over repeated indices. The symbol∇ stands for the usual gradient operator, e.g. (∇A)ijk = Aij,k . A central dot indicates a simple contraction between
two tensors of any order, e.g. (A ·B)ijhk = AijpBphk

2 A double dot indicates a double contraction between two tensors of any order, e.g. (A : B)ij = AihkBkhj .
3 We define the transposition operations of a third order tensor as AT23

ijk = Aikj and A
T12

ijk = Ajik and the symbol ⊗ as the usual tensor product
operation between two tensors of any order (e.g. (A⊗ B)ijhk = AijBhk)
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presence of a unidirectional wave propagation. With this assumption it is easy to show that the associated matrix form of
the linearised deformation tensor reads

E =





u′
1 u′

2/2 u′
3/2

u′
2/2 0 0

u′
3/2 0 0



 (7)

where we clearly denote by an apex the partial differentiation with respect to the space variable x1. Using (7) to calculate
the stress and hyper-stress tensors S = 2µE+ λ(trE) I andP (see Eqs. (5) and (6)), the equation of motion (4)1 takes the
following form

(λ+ 2µ)u′′
1 − (Λ+ 2M)u′′′′

1 = ρü1, (8)
µu′′

2 −Mu′′′′
2 = ρü2, µu′′

3 −Mu′′′′
3 = ρü3. (9)

We notice that the equations of motion obtained in this unidirectional wave propagation are completely uncoupled due to the
particular constitutive relations assumed for isotropic, linear elastic, second gradient continua. Moreover, the conservation
of energy (4)2 gives ∂E/∂t+H ′ = 0 where we denote

H :=− (λ+ 2µ)(u′
1u̇1)− µ(u′

2u̇2)− µ(u′
3u̇3) (10)

+ (Λ + 2M)(u′′′
1 u̇1 − u′′

1 u̇
′
1) +M(u′′′

2 u̇2 − u′′
2 u̇

′
2) +M(u′′′

3 u̇3 − u′′
3 u̇

′
3),

the energy flux in the considered particular case. We also remark thatM andΛ+2M are positive due to definite-positiveness
of the internal energy (see e.g. dell’Isola et al. (2009b)). We now assume that the displacement field admits a classical
wave solution in the form

u =





u1

u2

u3



 =





α1

α2

α3



 ei(ωt−kx1) (11)

where the eigenvector (α1,α2,α3) gives the longitudinal and transversal amplitudes of the considered wave, ω is the
positive real frequency and k its wave number. Using this wave form for u in the equations of motion for longitudinal and
transversal displacement (8) and (9) we get the following dispersion relations for a second gradient continuum

(Λ + 2M)k41 + (λ+ 2µ)k21 − ρω2 = 0,

Mk42 + µk22 − ρω2 = 0, Mk43 + µk23 − ρω2 = 0,

where k1 is the wave number relative to the eigenvector (1, 0, 0), k2 and k3 are the wave numbers relative to the eigenvectors
(0, 1, 0) and (0, 0, 1) respectively. Since we are dealing with isotropic media, the two transverse dispersion relations
coincide: in what follows we therefore shall ignore the last dispersion relation.
Because of isotropy, the waves arising in considered medium can be either purely transversal or purely longitudinal. We

now look for non-dimensional form of these relations by setting: k1 = klk̃l, ω = ωlω̃ for longitudinal waves and k2 = ktk̃t,
ω = ωtω̃ for transverse waves. Here kl (or kt), ωl (or ωt) are characteristic values of the wave number and of the frequency
for longitudinal (or transverse) waves respectively; moreover, k̃l, k̃t and ω̃ are the corresponding dimensionless variables.
This leads to

L2
l k

2
l k̃

4
l + k̃2l −

ρ

(λ+ 2µ)

ω2
l

k2l
ω̃2 = 0,

L2
tk

2
t k̃

4
t + k̃2t −

ρ

µ

ω2
t

k2t
ω̃2 = 0,

where Ll :=
√

(Λ + 2M)/(λ+ 2µ) and Lt :=
√

M/µ are the characteristic length of second gradient interactions
for longitudinal and transversal waves respectively. To our knowledge, similar dispersion formulas for a particular class of
second gradient materials has been already studied only by [96]. We finally choose k2l and k2t to be such that the coefficients
of ω̃2 in the two dispersion relations are both equal to one and hence we get

k2l = ρω2
l /(λ+ 2µ) k2t = ρω2

t /µ. (12)
Copyright line will be provided by the publisher
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The dispersion relations thus reduce to

ε2l k̃
4
l + k̃2l − ω̃2 = 0, ε2t k̃

4
t + k̃2t − ω̃2 = 0, (13)

where we set

εl = kl Ll, εt = kt Lt.

In other words, the introduced quantity εl (or εt) is the ratio between the characteristic second gradient length and the
wave length for longitudinal (transverse) waves. The chosen non dimensional form of the dispersion equations implies that
when ω̃ = 1, then the dimensional frequency ω takes the characteristic value ω = ωl = εlLl

√

(λ + 2µ)/ρ in the case of
longitudinal waves and the value ω = ωt = εtLt

√

µ/ρ in the case of transverse waves. Analogously, when k̃ = 1, then the
dimensional wave number takes the characteristic value k1 = kl = εl/Ll in the case of longitudinal waves and the value
k2 = kt = εt/Lt in the case of transverse waves.
The relationships between the dimensionless wave number and frequency is thus easily recovered both for longitudinal

and transverse waves by solving the bi-quadratic equations (13):

k̃l = ±

√

−1±
√

1 + 4 ε2l ω̃
2

2ε2l
, k̃t = ±

√

−1±
√

1 + 4 ε2t ω̃2

2ε2t
.

If we consider the positive real numbers

k̃pl =

√

−1 +
√

1 + 4 ε2l ω̃
2

2ε2l
, k̃sl =

√

1 +
√

1 + 4 ε2l ω̃
2

2ε2l
, (14)

k̃pt =

√

−1 +
√

1 + 4 ε2t ω̃
2

2ε2t
, k̃st =

√

1 +
√

1 + 4 ε2t ω̃
2

2ε2t
, (15)

the four roots associated to longitudinal waves are clearly±k̃pl , ±jk̃sl , and analogously we have for the transverse waves the
four roots ±k̃pt , ±jk̃st , where j stands for the imaginary unit. It is clear that one can derive the corresponding dimensional
quantities kp1 and ks1 (for longitudinal waves) and k

p
2 and ks2 (for transverse waves) just multiplying the non-dimensional

roots k̃l and k̃t by kl and kt respectively (see eqs. (12)). As we will see in more detail later on, the roots k̃p are associated
to propagative waves which are a second gradient generalization of the waves propagating in a first gradient material, while
the roots k̃s are the so-called standing waves (or evanescent waves) (see e.g. [50], [51], [15]) and are peculiar of second
gradient models. These standing waves will be seen to play a significant role close to material discontinuity surfaces in
second gradient continua where phenomena of reflection and transmission may occur. Indeed, there are other physical
situations in which standing waves may appear. For instance, [82] showed that this may occur when studying coupling
between the transversal displacement u and the longitudinal displacement w in one-dimensional beams.

4 Natural and kinematical boundary conditions at surfaces where displacement or
normal derivative of displacement may be discontinuous

The problem of finding boundary conditions to be imposed at discontinuity surfaces is always challenging for the modelling
of any physical phenomenon. Indeed, the only possible method which leads to surely well-posed boundary conditions,
compatible with the obtained bulk equations of motion, is to use a variational principle. This is the case also when looking
for the correct set of boundary conditions associated to the motion of a second gradient continuum. We just recall here the
boundary (or jump) conditions found for a second gradient material in dell’Isola [33] or [86]. The boundary conditions on
the considered discontinuity surface S, in absence of external surface and line actions, can be deduced from the following
duality conditions

[|t · δu|] = 0, [|τ · (δu)n|] = 0, [|f · δu |] = 0. (16)

The first two of these conditions are valid on S while the last one is valid on the edges of S, if any. In the previous formulas
(16) we set

t :=

[

F ·

(

∂Ψ

∂ε
− div

(

∂Ψ

∂∇ε

))]

· n− divS
(

F ·
∂Ψ

∂∇ε

· n

)

,

τ :=

(

F ·
∂Ψ

∂∇ε

· n

)

· n, f :=

(

F ·
∂Ψ

∂∇ε

· n

)

· ν.
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Moreover, n is the unit normal vector to the surface S, divS stands for the surface divergence operator on S, if the edge is
regarded as the border of a surface then ν is the normal vector to the considered edge which is tangent to the surface, δu
is the variation of the displacement field and (δu)n := ∇(δu) · n stands for the normal derivative of the variation of the
displacement field. Finally, given a quantity a defined everywhere and having continuous traces a+ and a−on the two sides
of S respectively, we have set [|a|] := a+ − a− (we use the same symbol for the jump across edges).
When choosing arbitrary displacement variation δu continuously varying through S and arbitrary normal derivative

(δu)ncontinuously varying through S in equations (16), one gets a particular set of natural jump conditions, which can
be interpreted as the vanishing jump of internal surface forces ([|t|] = 0), the vanishing jump of internal surface double
forces ([|τ |] = 0) and the vanishing jump of internal line actions ([|f |] = 0) respectively (see [45] and Germain (1973b)
for the first introduction of the concept of contact double force). Indeed, if it happens that the displacement field, due to a
particular constraint, verifies the particular equation δu− = δu+ =: δu (vanishing jump of the displacement field), and δu
is arbitrary, then in order to fulfil conditions (16)1 and (16)3 one must require that also the jumps of the dual quantities to
δu (i.e. surface forces and line forces) are vanishing. Analogously, if the normal derivative of displacement is assigned to
be equal on both sides of S and this common value is arbitrary, then in order eq. (16)2 to be verified one must also impose
continuity of internal double forces. Conditions of the type δu− = δu+, or any similar relationship among δu± and
(δu)±n , are called kinematical boundary conditions. Once the kinematical boundary conditions are chosen, the associated
dual conditions necessary and sufficient to fulfil duality conditions (16), are called natural boundary conditions associated to
the chosen kinematical ones. Therefore, in addition to those previously discussed, other kinematical choices are possible in
the previously formulated duality conditions, these choices being indicated by the admissible kinematics of the considered
system or, in simpler words, by the considered phenomenology. We discuss here some kinematical constraints for second
gradient continua, which we call generalized internal clamp, generalized internal hinge and generalized internal roller and
the natural boundary conditions associated to them.

• Generalized internal clamp.
We define this constraint imposing the continuity of both the displacementu and the normal derivative of displacement
∇u · n (and therefore of the test function δu and of its normal derivative (δu)n) at the discontinuity surface S which
from now on we assume to be regular (i.e S has no edges). As already noticed, in this case boundary conditions are

[|u |] = 0, [|∇u · n|] = 0, [|t|] = 0, [|τ |] = 0. (17)

If we consider unidirectional wave propagation, and if we choose a flat surface S such that its normal is given by
n = (1, 0, 0), then the jump conditions (17) particularize into

[|u1|] = 0, [|u′
1|] = 0, [|(λ + 2µ)u′

1 − (Λ+ 2M)u′′′
1 )|] = 0, [|(Λ + 2M)u′′

1 |] = 0,

[|u2|] = 0, [|u′
2|] = 0, [|(µu′

2 −Mu′′′
2 )|] = 0, [|Mu′′

2 |] = 0, (18)
[|u3|] = 0, [|u′

3|] = 0, [|(µu′
3 −Mu′′′

3 )|] = 0, [|Mu′′
3 |] = 0.

• Generalized internal elastic hinge
We introduce the constraint of generalized internal elastic hinge at surface S assuming that there exists a surface
deformation energy density ΨS localized on S, quadratically dependent on the surface relative displacement. In other
words, we assume that u+ and u− can be different, and can vary independently. In formulas, the introduced surface
deformation energy density is given by:

ΨS =
1

2
knS(u

+ · n− u
− · n)2 +

1

2
k‖S(u

+
‖ − u−

‖ )
2, (19)

where we denoted by u‖ the tangential component of the displacementu. When both surface elastic moduli knS and k
‖
S

tend to infinity, this energy will impose continuity of displacements at S. We will assume that (δu)+n and (δu)−n can
independently take arbitrary values on the two sides of S. These last conditions, together with the duality condition
(16)2, imply that the double forces must be separately vanishing on the two sides of S. In formulas, the four conditions
for a generalized elastic hinge can be seen to read

[|t|] = 0, knS [|u · n |] = t
+ · n, k‖S

[
∣

∣u‖

∣

∣

]

= t+‖ , τ
+ = 0, τ

− = 0, (20)

where we denoted by t+‖ the tangential component of the force t
+ on the + side of S. More complex surface contact

phenomena may be eventually modelled by means of more sophisticated boundary conditions. In this context future
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investigations will exploit the results presented in [73], [75], [76], [78], [79]. In the considered unidirectional wave
propagation these conditions reduce to

[|(λ+ 2µ)u′
1 − (Λ + 2M)u′′′

1 )|] = 0, knS [|u1|] = ((λ+ 2µ)u′
1 − (Λ+ 2M)u′′′

1 )
+
, (21)

((Λ+ 2M)u′′
1)

+
= 0, ((Λ+ 2M)u′′

1)
−
= 0

[|(µu′
2 −Mu′′′

2 )|] = 0, k‖S [|u2|] = (µu′
2 −Mu′′′

2 )
+
,

(Mu′′
2)

+
= 0, (Mu′′

2)
−
= 0,

[|(µu′
3 −Mu′′′

3 )|] = 0, k‖S [|u3|] = µu+′
3 −Mu+′′′

3

(Mu′′
3)

+
= 0, (Mu′′

3)
−
= 0.

• Generalized 3D internal roller
We define the last kind of kinematical constraint considered in this paper which we call generalized roller and which
is defined in such a way that it allows independently arbitrary displacements on both sides of S (which implies
separately δu+ and δu− to be arbitrary) and such that the normal derivative of displacement is continuous through S
(i.e. [|∇u · n|] = 0). The first condition together with eq. (16)1 implies that the generalized force must be separately
vanishing on both sides of S, while the second condition implies continuity of double forces through S. Hence the
four conditions for a generalized roller are

t
+ = 0, t

− = 0, [|∇u · n|] = 0, [|τ |] = 0. (22)

It can be shown that in the considered unidirectional propagation case these equations simplify into

((λ + 2µ)u′
1 − (Λ+ 2M)u′′′

1 ))
±
= 0, [|u′

1|] = 0, [|(Λ+ 2M)u′′
1 |] = 0,

(µu′
2 −Mu′′′

2 )
+
= (µu′

2 −Mu′′′
2 )

−
= 0, [|u′

2|] = 0, [|Mu′′
2 |] = 0, (23)

(µu′
3 −Mu′′′

3 )
+
= (µu′

3 −Mu′′′
3 )

−
= 0, [|u′

3|] = 0, [|Mu′′
3 |] = 0.

As occurs for the dispersion relations, also for the boundary conditions, we can notice that in the considered linear-
elastic case, they are completely uncoupled in the longitudinal and transversal displacement due to isotropy and to the fact
that the displacement only depends on the x1 variable.

5 Transmission and reflection at discontinuity surfaces
Let us now recall that we are considering a flat discontinuity surface S inside the considered second gradient continuum. We
denote by n the unit normal to S and we choose the fixed reference frame in such a way that n points in the x1 direction: we
are assuming that the vector n is always the same at any point of S (see Fig.1). As before, we denote by x2 and x3 the other
two directions of the fixed reference frame forming a Cartesian basis with x1. Using the equations of motion (8) and (9)
on both sides of S and the linearised jump conditions (18), (21) or (23), we are able to describe the motion of two different
isotropic, linear-elastic second gradient continua which are in contact through the discontinuity surface S and considering
three different constraints at this surface (generalized internal clamp, generalized internal hinge and generalized internal
roller). Nevertheless, in this paper we limit ourselves to the case of two second gradient continua with the same material
properties (same first and second gradient elasticity parameters) in contact through the surface S at which we impose the
three generalized types of constraints discussed before.
Let us start by studying the case of longitudinal waves (the involved field is then the one we previously denoted by

u1) impacting at the interface S and then we will repeat the reasoning for transverse waves (the involved field is then u2):
this is allowed to the fact that the obtained problem is completely uncoupled with respect to longitudinal and transversal
displacements.
Then let us consider an incident longitudinal wave ul

i propagating in the x1 direction and defined as

ul
i = αl

ie
j(ωt−kp

1
x1),

where αl
i is the amplitude of the incident (subscript i), longitudinal (superscript l) wave which we assume to be assigned,

ω is the real positive frequency of such an incident wave and, kp1 = k̃pl kl (see eqs. (14)1and 12) is the positive real wave
Copyright line will be provided by the publisher
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Fig. 1 Domain with flat discontinuity surface
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Fig. 2 Reflected and transmitted waves

number associated to the propagating wave travelling in the x1 direction. When this wave reaches the interface S reflection
and transmission phenomena take place (see Fig. 2). We call ul

r and ul
t the reflected and transmitted longitudinal wave

respectively. According to the geometry of the considered problem and to equations (14) the reflected wave propagates
always in the x1 direction and take the following form

ul
r = ulp

r + uls
r = αl

re
j(ωt+kp

1
x1) + βl

re
j(ωt−jks

1
x1),

where αl
r is the amplitude of the propagative reflected wave travelling in the −x1 direction and βl

r is the amplitude of the
standing reflected wave. Note that ks1 = k̃sl kl (see eqs. (14)2 and (12)) is the positive real wave number associated to the
standing wave and that the standing reflected wave vanishes as x1 approaches −∞. Analogously, the transmitted wave is
may be represented by

ul
t = ulp

t + uls
t = αl

te
j(ωt−kp

1
x1) + βl

te
j(ωt+jks

1
x1),

where αl
t is the amplitude of the propagative transmitted wave travelling in the x1 direction and βl

t is the amplitude of
the standing transmitted wave. Note that the standing transmitted wave vanishes as x1 approaches +∞. We remark that,
among the two possible standing reflected (transmitted) waves we did not consider that one which diverges as x1 → −∞
(x1 → +∞), as we assume a Sommerfeld-type condition at infinity.
As we want to deal with dimensionless quantities, we introduce the non-dimensional counterpart of these displacements

by considering the non-dimensional variables t̃ = ωlt and x̃1 = klx1, where the characteristic quantities ωl and kl have
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been defined in section 3. We can then introduce the non-dimensional form of the considered displacements as

ũl
i :=

ul
i

αl
i

= ej(ω̃t̃−k̃p
l
x̃1), (24)

ũl
r :=

ul
r

αl
i

= α̃l
re

j(ω̃t̃+k̃p
l
x̃1) + β̃l

re
j(ω̃t−jk̃s

l x̃1), (25)

ũl
t :=

ul
t

αl
i

= α̃l
te

j(ω̃t̃−k̃p
l
x̃1) + β̃l

te
j(ω̃t+jk̃s

l x̃1), (26)

where clearly we set α̃l
r = αl

r/α
l
i, β̃l

r = βl
r/α

l
i, α̃l

t = αl
t/α

l
i and β̃l

t = βl
t/α

l
i, where k̃

p
l and k̃sl are given by Eqs. (14) and

where the dimensionless frequency ω̃ = ω/ωl has been defined in section 3.
It is clear that once the frequency and the first and second gradient elasticity parameters are given, the only unknowns

of the reflection/transmission problem are the four amplitudes α̃l
r, β̃l

r, α̃l
t and β̃l

t. These four scalar unknowns can be found
for each of the three types of constraints introduced by considering Eqs. (18)1, (21)1 and (23)1 respectively which only
involve the longitudinal displacement. In conclusion, if we notice that here the first component of [|u|] takes the form
[|u1|] = ul

i − ul
r − ul

t, and if we replace the wave form of the longitudinal displacement field in the non-dimensional
version of equations (18)1, (21)1 and (23)1 at x1 = 0, we can finally recover the expression of the four amplitudes for each
of the three types of constraints considered.

• Generalized internal clamp.
As for the generalized internal clamp, the non-dimensional jump conditions (18) in the considered case in which the
two continua on the two sides of S have the same material properties simply read

[|ũ1|] = 0, [|ũ′
1|] = 0,

[
∣

∣ũ′
1 − ε2l ũ

′′′
1

∣

∣

]

= 0, [|ũ′′
1 |] = 0, (27)

where, with a slight abuse of notation, we indicate with an apex the derivation operation with respect to the dimension-
less space variable x̃1. Replacing the aforementionedwave form for non-dimensional displacements in these boundary
conditions we calculate the following non-dimensional amplitudes for longitudinal waves

α̃l
r = 0, β̃l

r = 0, α̃l
t = 1, β̃l

t = 0. (28)

This means that in the case of a perfect internal clamp at the surface S, the incident wave is completely transmitted.
This result is not astonishing if we think that the two materials on both sides of S have been chosen to have the
same material properties: indeed, it is as if there were no discontinuity at all and hence the incident wave proceeds
unperturbed across the surface S.

• Generalized elastic internal hinge.
As for the generalized elastic internal hinge between two continuawith the samematerial properties, the non-dimensional
form in the normal direction of jump conditions (21) reads

k̃nS [|ũ1|] =
(

ũ′
1 − ε2l u

′′′
1

)+
,

[
∣

∣ũ′
1 − ε2l u

′′′
1

∣

∣

]

= 0, (ũ′′
1 )

+ = 0, (ũ′′
1)

− = 0, (29)

where we introduced the dimensionless rigidity k̃nS = knS/(kl(λ + 2µ)). This non-dimensional choice implies that
when k̃nS = 1 then the dimensional rigidity takes the value knS = kl(λ+ 2µ). The physical meaning of the rigidity k̃nS
can be intuitively got by thinking to the considered constraint as a series of elastic springs (of rigidity k̃nS) joining the
two sides of the discontinuity. When k̃nS goes to infinity, then the springs become infinitely stiff so that the displacement
on the two sides of the discontinuity takes the same value and the introduced constraint particularizes to a generalized
internal hinge. We explicitly remark that the non-dimensional form of the rigidity previously introduced is just one
possible choice: this choice does not affect the physical interpretation of the limiting value of k̃nS which we have just
given.
It is easy to prove that in the limit case of the elastic constant k̃nS to infinity these boundary conditions reduce to

[|ũ1|] = 0,
[∣

∣ũ′
1 − ε2l u

′′′
1

∣

∣

]

= 0, (ũ′′
1 )

+ = 0, (ũ′′
1)

− = 0. (30)
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We will refer to this limit case as generalized internal hinge in virtue of the continuity of displacement which is
imposed at the discontinuity surface. This constraint differs from the generalized internal clamp defined by means
of Eqs. (27) because the double force (second derivative of displacement) is zero on both sides of the discontinuity,
while it can take an arbitrary value in the case of the clamp (even if this value must be the same on both sides). The
similarities of the considered 3D constraints with the classical internal hinge and clamp for Euler-Bernoulli beams can
be immediately pointed out. Indeed, as far the generalized internal hinge is considered, equation (30)1 (continuity of
displacement) implies by duality the continuity of force (Eq. (30)2), while the double forces (which parallels couples
in classical beam theory) are arbitrary on both sides (Eqs. (30)3 and (30)4). As for the generalized internal clamp, it
is easy to recognize that Eqs. (27)1 and (27)3 parallel the continuity of displacement and force respectively, Eq. (27)4
gives continuity of double forces (continuity of couples in the case of Euler-Bernoulli beams) which also implies Eq.
((27)2) by duality. Indeed this constraint is the 3D counterpart of the internal clamp used in the theory of beams.
Using the considered wave form for displacements in boundary conditions 29, the calculated non-dimensional ampli-
tudes take the form

α̃l
r =

k̃pl (k̃
p
l − jk̃sl ){k̃

s
l

[

k̃sl ε
2
l

(

k̃sl (εlk̃
p
l )

2 + 2k̃nS

)

+ 1
]

− 2k̃nS}

(k̃pl + jk̃sl )(k̃
p
l k̃

s
l ε

2
l − j)

[

(k̃pl εlk̃
s
l )

2 + 2k̃nS k̃
s
l − jk̃pl (k̃

s
l − 2k̃nS)

]

β̃l
r =

2(k̃pl )
2
(

ε2l (k̃
p
l )

2 + 1
) [

(k̃pl εlk̃
s
l )

2 + k̃nS k̃
s
l − jk̃pl (k̃

s
l − k̃nS)

]

(k̃pl + jk̃sl )k̃
s
l (k̃

p
l k̃

s
l ε

2
l − j)

[

(k̃pl εlk̃
s
l )

2 + 2k̃nS k̃
s
l − jk̃pl (k̃

s
l − 2k̃nS)

]

α̃l
t =

2k̃sl (k̃
s
l + jk̃pl )k̃

n
S

[

(εlk̃
p
l )

2 + 1
]

(k̃pl + jk̃sl )(k̃
p
l k̃

s
l ε

2
l − j)

[

(k̃pl ε
2
l k̃

s
l )

2 + 2k̃nS k̃
s
l − jk̃pl (k̃

s
l − 2k̃nS)

]

β̃l
t =

2(k̃pl )
2(k̃sl + jk̃pl )k̃

n
S

(

(εlk̃
p
l )

2 + 1
)

(k̃pl + jk̃sl )k̃
s
l (k̃

p
l k̃

s
l ε

2
l − j)

[

(k̃pl εlk̃
s
l )

2 + 2k̃nS k̃
s
l − jk̃pl (k̃

s
l − 2k̃nS)

]

In the limit of elastic constant k̃nS to infinity we have the case of the internal hinge and the calculated non-dimensional
amplitudes take the following simplified form

α̃l
r =

jk̃pl [1− ε2l (k̃
s
l )

2]

(k̃pl + jk̃sl )(−j + ε2l k̃
p
l k̃

s
l )
, β̃l

r =
(k̃pl )

2[1 + ε2l (k̃
p
l )

2]

k̃sl (k̃
p
l + jk̃sl )(−j + ε2l k̃

p
l k̃

s
l )
,

α̃l
t =

k̃sl [1 + ε2l (k̃
p
l )

2]

(k̃pl + jk̃sl )(−j + ε2l k̃
p
l k̃

s
l )
, β̃l

t =
(k̃pl )

2[1 + ε2l (k̃
p
l )

2]

k̃sl (k̃
p
l + jk̃sl )(−j + ε2l k̃

p
l k̃

s
l )
. (31)

• Generalized 3D internal roller.
Finally, if we consider a generalized roller between two continuawith the samematerial properties, the non-dimensional
form of jump conditions (23) reads

[|ũ′
1|] = 0, (ũ′

1 − ε2l u
′′′
1 )+ = 0, (ũ′

1 − ε2l u
′′′
1 )− = 0, [|ũ′′

1 |] = 0,

Using the considered wave form for dimensionless displacements in these boundary conditions we get the following
values for non-dimensional amplitudes

α̃l
r =

ksl [1 + ε2l (k̃
p
l )

2]

(k̃pl + jk̃sl )(−j + ε2l k̃
p
l k̃

s
l )
, β̃l

r =
(k̃pl )

2[1 + ε2l (k̃
p
l )

2]

k̃sl (k̃
p
l + jk̃sl )(−j + ε2l k̃

p
l k̃

s
l )
,

α̃l
t =

jk̃pl [−1 + ε2l (k̃
s
l )

2]

(k̃pl + jk̃sl )(−j + ε2l k̃
p
l k̃

s
l )
, β̃l

t =
−(k̃pl )

2[1 + ε2l (k̃
p
l )

2]

k̃sl (k̃
p
l + jk̃sl )(−j + ε2l k̃

p
l k̃

s
l )
. (32)

Let us now consider the case of transverse waves travelling in the x1 direction. As done for longitudinal waves, we
introduce the incident transversal displacement as:

ut
i = αt

ie
j(ωt−kp

2
x1),
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where αt
i is the amplitude of the incident transverse wave which we assume to be known and kp2 is the wave number

associated to a transverse wave propagating in the x1 direction. We then call ut
r and ut

t the reflected and transmitted
transverse wave respectively. According to the geometry of the considered problem the reflected and transmitted waves
take the following form

ut
r = utp

r + uts
r = αt

re
j(ωt+kp

2
x1) + βt

re
j(ωt+jks

2
x1),

where αt
r is the amplitude of the propagative reflected wave travelling in the −x1 direction and βt

r is the amplitude of
the standing reflected wave. Note that the standing reflected wave goes to zero as x1 approaches −∞. Moreover, the
transmitted wave is defined as

ut
t = utp

t + uts
t = αt

te
j(ωt−kp

2
x1) + βt

te
j(ωt−jks

2
x1),

The obtained equations for transversal waves are formally analogous to longitudinal ones, since one has just to replace
ũ1 with ũ2 and all the subscripts and superscripts l with the subscripts and superscripts t respectively. Repeating the
calculations performed for longitudinal waves, we can then calculate the four amplitudes α̃t

r, β̃t
r, α̃t

t and β̃t
t of the reflected

and transmitted transverse waves for the three considered types of constraints imposed at the surface S.

6 Dependence of transmission and reflection coefficients on second gradient elastic
moduli

In this section we will show plots displaying the reflection and transmission coefficients at discontinuity surfaces of the
three types considered before as functions of second gradient elastic moduli. To do so, we start by noticing that owing
to the fact that the problem is completely uncoupled in the longitudinal and transversal displacements, we can account
separately for the energy fluxes of longitudinal and transversal waves. Moreover, due to the linearity of the problem in
study, we can consider separate contributions for the fluxes of the incident, reflected and transmitted waves which, starting
from expression (10), can be written in terms of the introduced non-dimensional variables respectively as

H̃ l
i(x̃1, t̃) = (αl

i)
2klωl(λ+ 2µ)

[

−
(

ũl
i

)′ ˙̃ul
i + ε2l

(

(

ũl
i

)′′′ ˙̃ul
i −

(

ũl
i

)′′ ( ˙̃ul
i

)′
)]

,

H̃ l
r(x̃1, t̃) = (αl

i)
2klωl(λ+ 2µ)

[

−
(

ũl
r

)′ ˙̃ul
r + ε2l

(

(

ũl
r

)′′′ ˙̃ul
r −

(

ũl
r

)′′ ( ˙̃ul
r

)′
)]

, (33)

H̃ l
t(x̃1, t̃) = (αl

i)
2klωl(λ+ 2µ)

[

−
(

ũl
t

)′ ˙̃ul
t + ε2l

(

(

ũl
t

)′′′ ˙̃ul
t −

(

ũl
t

)′′ ( ˙̃ul
t

)′
)]

,

where we recall that, with a slight abuse of notation, the apex and the dot stand here for the derivation operations with
respect to the introduced dimensionless space and time variables. A simple inspection of Eqs. (33), and recalling that
the displacement field take the wave form (11), shows that for higher frequencies and shorter wavelengths (i.e. larger
wave number k) the amount of energy transported because of second gradient effects increases. The corresponding energy
fluxes for transversal waves are formally analogous and are obtained from the previous ones just replacing everywhere
the apex l with the apex t and the parameter εl with the parameter εt. In order to be able to calculate the reflection and
transmission coefficients for the considered problem, we substitute in Eqs. (33) the wave forms (24) , (25) and (26) for the
displacements and we calculate the integrals over the period 2π/ω̃ of the introduced energy fluxes. It can be shown that,
due to conservation of energy, these integrals do not depend on the space variable x̃1. Owing to this independence on the
variable x̃1, in order to simplify calculations, we can simply introduce these integrals as

J l
i =

∫ T

0
H̃ l

i(0, t̃)dt̃, J l
r =

∫ T

0
H̃ l

i(−∞, t̃)dt̃, J l
t =

∫ T

0
H̃ l

i(+∞, t̃)dt̃.

We are then finally able to introduce the reflection and transmission coefficients for longitudinal waves as

Rl :=
J l
r

J l
i

, Tl :=
J l
t

J l
i

,

which are such that Rl + Tl = 1. The reflection and transmission coefficientsRt and Tt for transversal waves are formally
analogous.
We show in the following figures the behaviour of reflection and transmission coefficients in terms of both the second
gradient parameter ε and the frequency ω. These figures refer to both the longitudinal and transversal case: one has just to
interpret ε as εl and εt respectively.
Referring to Fig.3, we can start noticing that, when the second gradient parameter tends to zero, the generalized internal

hinge (continuity of displacement and arbitrary normal derivative of displacement at the considered surface of discontinuity)
Copyright line will be provided by the publisher

Page 13 of 21

Wiley-VCH

ZAMM - Zeitschrift fuer Angewandte Mathematik und Mechanik



For Peer Review

16 F. Author, S. Author, and T. Author: Waves in Second Gradient Continua

0 2 4 6 8 10
!0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ε
2

R,
T

Ω
$
%0

Ω
$
%0Reflection

Transmission

0 2 4 6 8 10
!0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ε
2

R,
T

Ω
$
%1

Ω
$
%1

Reflection

Transmission

0 2 4 6 8 10
!0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ε
2

R,
T

Ω
$
%5

Ω
$
%5

Reflection

Transmission

0 2 4 6 8 10
!0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ε
2

R,
T

Ω
$
%10
Ω
$
%10

Reflection

Transmission

Fig. 3 Reflection and transmission coefficients for a generalized internal hinge (kn
S → ∞) as a function of the second gradient parameter

ε2 and for different values of the non-dimensional frequency. The plots for the generalized internal roller are completely specular: the
blue dashed lines must be referred to the reflection coefficient, while the red lines must be referred to the transmission coefficient.

implies that all the energy is transmitted independently on the value of the frequency. If the second gradient parameter
is not vanishing, then the value of the frequency starts to play a role on the amount of energy which is transmitted or
reflected. In particular, for very low frequencies (approaching to zero), the energy of the travelling wave continue to
be almost completely transmitted independently on the value of the second gradient parameter ε2. When increasing the
frequency, the fact that the normal derivative of displacement at the discontinuity can take arbitrary value on both sides
starts to play a role in the sense that the amount of reflected energy starts to increase, while the amount of transmitted
energy decreases. This behavior can be directly related with the fact that, as it is well known (see e.g. [70], [71], [96]
and [97]), second gradient theories take into account the existence of an underlying micro-structure even if remaining in
the framework of a macroscopic model. More particularly, the fact that, for a given value of the second gradient parameter,
an increasing frequency implies an increased amount of reflected energy can be explained if one thinks that the wavelength
of the travelling wave decreases and becomes comparable to the characteristic length of the heterogeneities that are present
in the material at a microscopic level. In other words, for very large wavelengths (small frequencies) the medium can be
reasonably considered homogeneous even very close to the interface of discontinuity. In this case, when the considered
wave reaches the interface, the continuity of displacements guarantees that the wave can continue undisturbed its path
across the discontinuity itself. On the other hand, for smaller wavelengths (higher frequencies) the medium cannot longer be
considered homogeneous since the wave starts interacting with the underlyingmicroscopic heterogeneities. More precisely,
high frequency waves activate “long range interactions” at the microscopic level which result in an increasing amount of
energy transported in the bulk because of the time derivative of displacement gradient (see Eqs. (33) and subsequent
considerations or, more generally, Eq. (4)). However, normal strains (normal gradient of displacement) at the two sides
of the discontinuity interface are uncoupled because of the chosen boundary condition (generalized internal hinge) so that
this amount of energy propagating because of microscopic interactions is actually reflected at the interface. The two just
considered circumstances can be physically interpreted as follows: high frequency waves propagating in the bulk activate
long-range interactions at a microscopic level and induce coupled deformations of close microscopic deformable structures,
with a non-negligible amount of energy travelling because of this coupling. However, since at the considered interface we
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assume that close microscopic structures situated at different sides are uncoupled, the amount of energy transported by
these microscopically-interacting structures can only be reflected. Always referring to Fig.3, we can finally remark that, for
a fixed value of the frequency (and hence of the wavelength 1/kl), the amount of reflected energy increases for increasing
values of the second gradient parameter up to the value ε2 ≈ 4 and then it takes an almost constant value for greater values of
ε2. This is completely sensible and it means that, for a fixed value of the wavelength (1/kl), the amount of reflected energy
increases with the value of the second gradient parameter (ε = Ll kl) in the range of values in which ε is sufficiently close
to one (or equivalently in the range in which the considered wavelength is comparable to the second gradient characteristic
length Ll). In this range, the amount of reflected energy becomes more and more important when ε increases since the
considered wavelength becomes comparable to the value of the second gradient characteristic length. For values of the
second gradient parameter larger than four (or equivalently Ll > 4/kl) the amount of reflected (transmitted) energy has a
less relevant variation.
Considerations for the generalized internal roller are completely reversed with respect to those just made for the general-

ized internal hinge and can be deduced from Fig.3 reversing the curves of reflection and transmission coefficients. We start
by noticing that when the second gradient parameter tends to zero, all the energy is reflected at the considered interface.
Moreover, we notice that for very small values of the frequency (approaching to zero) approximately the total amount of
the energy is still reflected independently on the value of the second gradient parameter. As before, this can be explained
with the fact that, as the wavelength is sufficiently large then the medium can be considered homogeneous, and that the
considered constraint allows arbitrary displacements on both sides of the considered interface. In some sense, it is like the
interface was a free interface (no other medium on the other side) so that the incident wave can be reflected only. On the
other hand, for non-vanishing values of the second gradient parameter and for increasing values of the frequency, some of
the incident energy starts to be transmitted. As before, this can be explained with the fact that, for decreasing wavelengths,
the wave starts interacting with the micro-structure on the other side of the discontinuity surface. This means that the
heterogeneities “start moving” at the microscopic level and create some mechanical interactions between the two sides of
the considered interface, so allowing some energy transmission. The fact that for a fixed frequency the generalized roller
allows for an increasing transmitted energy when increasing the value of the second gradient parameter up to the value
ε2 ≈ 4 can be as before be explained by considering that the second gradient interactions becomes more important when
the wavelength becomes comparable to the characteristic second gradient length.
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Fig. 4 Reflection and transmission coefficients for a generalized internal hinge (kn
S → ∞) as a function of the non-dimensional

frequency and for different values of the second gradient parameter ε2. The plots for the generalized internal roller are completely
specular: the blue dashed lines must be referred to the reflection coefficient, while the red lines must be referred to the transmission
coefficient.

Referring to Fig.4, we can notice once again that, for a generalized internal hinge and once fixed the value of the second
gradient parameter, an increase in the frequency results in an increased amount of reflected energy and hence in a decreasing
of the transmitted one. Moreover, one also recovers that, for sufficiently large frequencies ω̃, the amount of reflected energy
increases with ω̃ for values of the second gradient parameter up to a given threshold, while it keeps an almost constant value
for values of the second gradient parameter larger than the threshold: this behavior was already noticed when analysing
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Fig.3. Indeed, in Fig.4 we can indirectly observe a boundary layer effect which was not detectable in the previous figure:
a very small increase in the frequency imply a sudden increase of the amount of reflected energy for big values of the
second gradient parameter. This means that for high values of the second gradient parameter the characteristic length
which measures the spacing between the heterogeneities at the microscopic level is so large (i.e. the heterogeneities are
so dispersed) that the energy can be completely reflected only when the wavelength tends to infinity (frequency tends
to zero). In other words, the heterogeneities are dispersed enough that the medium can be considered as homogeneous
only for very large wavelengths and, for some reason (e.g. very different stiffness of the inclusions with respect to the
matrix), the presence of these heterogeneities cannot be neglected at the macroscopic level. Analogous considerations for
the generalized internal roller can be done starting from Fig.4 and reversing the reflection and transmission coefficient.
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Fig. 5 Reflection and transmission coefficients for a generalized elastic internal hinge as a function of the second gradient parameter ε2,
for different values of the surface rigidity kn

S ∈ [0, 30] and for a fixed value of the non-dimensional frequency ω̃ = 10

Figure 5 shows reflection and transmission coefficients for a generalized elastic internal hinge as a function of the second
gradient parameter, for a fixed value of the frequency and for different values of the elastic rigidity at the interface. As we
already noticed this constraint reduce to the generalized internal hinge when the rigidity k̃nS tends to infinity. It can be
remarked from this figure that when the elastic rigidity tends to zero, then this constraint reduces to the generalized internal
roller. We can notice that a critical value of the elastic rigidity k̃nS = 5 exists corresponding to which a switch can be
observed. More precisely, for values of the rigidity between 0 and 5 the larger amount of energy is reflected so that the
considered constraint basically behave like a generalized internal roller. For values of the rigidity bigger than 5 a critical
value of the second gradient parameter exists such that for ε2 smaller than this critical value the bigger amount of energy is
transmitted (the constraint behave as a generalized internal roller), while for for ε2 bigger than this critical value the larger
amount of energy is reflected (the constraint behave as a generalized internal hinge).
As for Fig.6, considerations analogous to those previously done before can be repeated. We start remarking that in the

case of a generalised elastic internal hinge a critical value of the frequency (between ω̃ = 1 and ω̃ = 2) exists corresponding
to which another switch can be observed. More precisely, for values of the frequency smaller than this critical value the
larger amount of energy is transmitted and the considered constraint basically behave like a generalized internal hinge. For
values of the frequency bigger than this critical value, a critical value of the second gradient parameter exists such that for
ε2 smaller than this critical value the larger amount of energy is transmitted (the constraint behaves more like a generalized
internal hinge), while for higher values of the second gradient parameter the larger amount of energy is reflected (the
constraint behaves more like a generalized internal roller). This behavior can be explained if one thinks that the considered
constraint can be thought as a surface distribution of elastic springs of rigidity k̃nS between the two sides of the considered
interface. For a fixed value of k̃nS and for very small frequencies it is reasonable that the spring remains at rest so that the
jump of displacement between a point on one side of the discontinuity and the corresponding point on the other side is
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Fig. 6 Reflection and transmission coefficients for a generalized elastic internal hinge as a function of the second gradient parameter ε2,
for k̃n

S = 10 and for different values of ω̃ ∈ [0, 30].

vanishing and the energy can be transmitted through the discontinuity (the constraint behaves like a generalized internal
hinge). When increasing the frequency, it is easy to understand that a threshold value (of the frequency) exists corresponding
to which the springs start elongating and hence a loss of contact between the two sides of the interface arrives resulting in
a decreasing of the transmitted energy. How the energy can be trapped in motions of extra degrees of freedom localized
at the interface could be studied using the methods presented in [14] and [13]. The critical value of the second gradient
parameter can be explained by thinking that for ε2 smaller than this critical value the heterogeneities at the microscopic
level can be considered concentrated enough that they are able to create a sufficient quantity of long range interactions
between the two sides of the discontinuity surface so that a larger amount of energy continue to be transmitted. For values
of ε2 larger than the critical value the underlying heterogeneities are so dispersed that the long range interactions between
the two sides of the discontinuity drastically reduce so resulting in a decrease of the transmitted energy. Clearly if the value
of the frequency becomes very large then the springs can elongate of a big amount and the two sides of the discontinuity
become so far away that the micro-heterogeneities are not able to create any long range interaction any more and the energy
is completely reflected (generalized internal roller) independently on the characteristic second gradient parameter.

7 Conclusions

The presented results show that it is conceivable to design an experimental method for getting estimates of some second
gradient elastic moduli. Indeed, we propose to use a discontinuity surface between two macroscopically homogeneous
second gradient solids to perform measurements of reflection and transmission coefficients at this interface: the presented
results seem to supply a method for measuring the bulk properties of considered continua starting from these coefficients.
The results obtained in the last section of this paper show that the concepts presented here may be of interest as the
boundary layer which may arise greatly influences wave transmission and reflection even in the considered simple cases. We
assume that the discontinuity surface is the only possible localization of displacement (and normal gradient of displacement)
eventual jumps. Moreover we also consider interfaces on which surface elastic energy is concentrated. More complicated
discontinuity surfaces may be conceived carrying mechanical properties which may directly influence transmission and
reflection coefficients. Even if the investigation of the behavior of suchmore general discontinuity surfaces is of importance,
the simplest discontinuity we considered here seems suitable for the conception of an effective experimentation.
The field of second gradient continuum theories, even if it is attracting much more interest in the last years, still receives

some criticism due to the fact that no experimental measurement techniques of second gradient elastic moduli are available
in the literature. Performing the proposed experimental indirect measurements by using reflection and transmission of
plane waves would undoubtedly be of great scientific and technological interest. Measuring these moduli for a certain class
of solids would then be useful as a starting point for further investigations. More complicated subsequent analyses should
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involve the study of structured interfaces between second gradient solids, or permeable and impermeable interfaces between
different porous media in presence of Darcy-type fluid flow, or interfaces between damaged and undamaged solids.
Finally, we want to state that a very strong indication of the potential utility of the proposed analysis is given by the

experimental evidence obtained by [62]. The experimentally measured dependence of the reflected and transmitted signals
at the “prepared” surface between dentine and surrounding fluid greatly resembles the dependence which we have obtained
theoretically for the here treated case of generalized internal roller . The theoretical previsions which we obtain seems
closer to experimental evidence than the previsions obtained, starting from a different einsatz, by [62] themselves. Indeed,
they assume that: i) the interface is constituted by a Cauchy continuum with space-varying elastic moduli, ii) the dentine
can be modelled as a Cauchy continuum. We expect that the development of a model of porous second gradient material
saturated by a fluid in contact with a pure fluid through a suitably structured interface should provide a deeper theoretical
understanding of aforementioned experimental evidence.
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[87] J. Salençon , Mécanique des milieux continus Ed. Ellipses (1988)-(1995) Handbook of Continuum Mechanics Ed. Springer, Berlin,
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