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Abstract—This paper presents interaction between a user and
a robot to guide motion through motion planning algorithm. The
interaction aims at improving the guidance of an operator during
a robot motion task in a virtual environment with the help of an
automatic path planning algorithm. Existing works use a two-
step decomposition which limits the interaction between the user
and the ongoing process. We propose a modification of a classic
motion planning method, the Rapidly-exploring Random Tree
to build a Interactive-RRT. This method is based on exchanging
forces between the algorithm and the user, and on data gathering
(labels) from the virtual scene. Examples are shown to illustrate
the Interactive motion planning system and analysis are done in
function on the user’s dexterity to manipulate devices.

I. INTRODUCTION

This work concerns the conception and the realization of a

new approach to solve problems in mechanical assembly of

numeric models (3D C.A.D) based on interaction between a

user and a motion planning algorithm. The assembly problem

inside the digital mockup can be solved generally by two

approaches : virtual reality or automatic path planning.

The goal of using Virtual Reality is to improve the quality

of the designed parts and to reduce the cost and time needed

for their final design. The classical approach uses a Virtual

Reality environment and an interaction device (3D mouse

or a haptic arm) in order to interact with CAD software.

Haptics is a recent enhancement that provides an additional

perceptual modality in virtual environments [3]. and improve

the use of Virtual Reality [21], [4]. The use of a 3D mouse

for interaction, is less expensive than a haptic device and can

give very good results in many design processes [5]. But in

complex scenes with a real non-convex object, the user may

need help to find a solution.

In robotics, a lot of work in motion planning has been

done to compute free paths in digital models for mechanical

systems. With the recent results in random planning algo-

rithm [14] it is possible to solve automatically problems for

systems with many degrees of freedom. The algorithm com-

putes a collision-free roadmap in a configuration space (CS)

where the object is reduced to a point. This point represents

the robot’s model in the environment and the dimension of CS

is equal to the number of degrees of freedom of the mechanical

system. The algorithm searches a free path for a point in the

roadmap. Now, companies uses automatic path planning to

solve PLM applications [7], [12].

There are mainly two families of methods for building

a roadmap, the Probabilistic Roadmap (PRM) [10] and the

Rapidly-exploring Random Tree (RRT) [15]. The roadmap in

the PRM’s case is a graph and in RRT’s case a tree. The RRT

approach is more interesting to our study because it is faster

in the single query case, when the roadmap computation must

be limited in time.

For really constrained environments [6], there are very

effective methods to solve problem. But this is not always the

case, especially when the object must pass through a narrow

passage. It is difficult for the algorithm to find the passage

entrance (see for example [2], [20], [19], [18]). To do so it

will have to investigate randomly all the CS dimensions. On

the other hand when the algorithm finds the narrow passage

entrance in the CS, it will quickly progress to find a solution.

Random algorithms progress easily in narrow passage but have

no global vision of the solution.

On the contrary, in the case of a free or low-constrained

environment, a user will easily find a solution (for example,

we quickly steer the key towards the keyhole). On the other

hand, a user will have much more difficulties to progress in

narrow passages. Thus, the user has a good global vision of

the problem, but finds it difficult to make fine movements.

It is noticeable that the algorithm and a user with an inter-

action device, can both work in complementary fashion. The

complementarity between user and algorithm is the essential

idea of this work.

We choose to integrate the human into the planning loop

via an interaction device, which can be a 3D mouse or a

haptic arm. The user can thus act on the search, showing

areas to explore or to go through. On the other side, the

algorithm can gather information while exploring the scene

(independently from the user’s input) and display them visu-

ally and/or haptically. The main contribution of the method

is to allow simultaneously cooperation between the loop of

roadmap search and the loop of interaction for the user.

The paper is organized as follow. We begin by describing

previous work in interactive motion planning. The general

interaction loop between user and motion planning algorithm

which is at the basis of our work and the problem statement

are summarized in section III. The following section describes

the basic RRT algorithm and extensions that have been made

to answer our problem. The interactive motion planning al-

gorithm, I-RRT, and the main functions are presented in sec-

tion V. Finally, simulation results with an industrial application

device are presented and analysed in section VI and VII.



II. PREVIOUS WORKS

The idea of taking into account user input has been studied

by various authors specialized in motion planning. In [1] the

authors use user-input to work with automatic motion planner.

They show that randomized techniques are quite useful to

transform an approximate user-input path with collisions into

a collision-free path. The idea is to push approximate user

path to free space in CS.

The use of a path planning technique based on harmonic

functions to generate guiding forces that aid a user in a virtual

environment is introduced in [17]. The idea is to compute a

solution channel by cell decomposition that connects the initial

and the final configuration and then two harmonic functions

are computed over the CS to find a guiding path.

RRT Algorithm including heuristics based on a study of the

workspace are presented in [11], [16]. The idea is to discretize

the workspace using an unbalanced octree decomposition and

generate a free continuous volume between initial and final

configuration using A∗. In a second time a free path for the

object is computed by using RRT approach.

In [9] the user selects critical robot configurations with

an haptic interface to facilitate the automatic path planning

research. The advantages of human’s intuition are exploited

to facilitate the robot path planning process. A virtual tele-

operation system provides a convenient tool for manipulating

a virtual robot arm.

In all these studies, it is necessary to note that the interaction

between the automatic search by motion planning algorithm

and the user is simplified by a decomposition in two stages.

In our method we do not separate the two stages.

Following result in [8], this work presents an industrial

application with haptic device and an analysis of the behavior

of the algorithm based on user interaction.

III. APPROACH OVERVIEW

We consider that the human use an interactive devices, I-

Device, (3D-mouse or a haptic device) to guide the robot

motion in a virtual environment. The proposed approach

aims at improving the operator guidance with the help of an

automatic path planning algorithm.

We consider that the user only wants to guide the trajectory

of the object without controlling all the dof. The user move

an objet for assembly/dissasembly robotic stack (free-flying

robot) or a robot.

The approach has to take into account two constraints:

• The user’s direction of movement has to lead the planner

development.

• The planner has to return some useful information to

the user (haptic and/or visual information) concerning

obstacles proximity and if this area has already been

explored.

The general plan is constituted by two main loops which

will work in parallel (see figure 1). In one loop, the path

planner runs to explore the free configuration space and

searches an automatic solution. The RRT method is modified

to take into account the user interaction and to search a

solution in the six dimensional configuration space

In the other loop, the user moves the objet with the I-Device

as he wishes. The user input, Fu, moves the object in the

virtual environment using the physics laws appropriate for the

feedback perception. The returned algorithm pseudo-force, Fa,

must be seen as disturbance. We use pseudo-force instead of

force because data are not a force in the physical sense, it is a

vector proportional to a force. If the I-Device is a real haptic

device, these vectors are transformed into physical forces. We

use the name pseudo-force also to represent the real force with

haptic device.

Environment

Virtual

USER

Roadmap

    Interaction
      Device

force/position

Interactive− RRTNodes

force/position

Fu

Fa

Fig. 1. General loop

IV. RRT PATH PLANNING

[13] introduced the Rapidly-exploring Random Tree (RRT)

approach which is the base of our method. The RRT algorithm

is shown in Algorithm 1.

Starting at a given initial configuration, RRTs incremen-

tally search the configuration space for a path connecting

the initial and the goal configuration. At each iteration a

new configuration, qrand , is sampled (RANDOM CONFIG)

and the extension from the nearest node, qnear, in the tree

(NEAREST NODE) toward this sample is attemped. If the

extension succeeds (CONNECT ) a new node, qnew, and an

edge in the roadmap are created.

Algorithm 1 The RRT-CONNECT algorithm

T (qinit)
for i = 0 to N do

qrand ← RANDOM CONFIG()

qnear ← NEAREST NODE(qrand , T )

if CONNECT(T, qrand ,qnear,qnew) then

Add Vertex(T , qnew)

Add Edge(T , qnear,qnew)

end if

end for

In our case it is necessary to take into account the interaction

with the user. The main modifications of the basic RRT are to

be made on the following stages:



• By definition, the state of the node is binary. If the node

is free and the connection path is also collision free,

the node/edge is created in the roadmap, otherwise, any

information is memorized. It is interesting to memorise

information for the user when the CONNECT function

return false.

• The sampling area in RANDOM CONFIG is a crucial

point to extend efficiently the roadmap. User’s interaction

must be taken into account in the definition of the

sampling area.

• The NEAREST NODE function has not only to take

into account the Euclidian distance but also the most

interesting nodes with regard to the task of the user.

• At each iteration, the new I-Device position must be taken

into account to compute these differents steps

To take into account these various points we propose a new

algorithm called Interactive Rapidly-exploring Random Tree,

I-RRT, which is presented in the next section.

V. INTERACTIVE MOTION PLANNING SYSTEM

Starting at a given initial configuration, RRTs incrementally

search the configuration space for a path connecting the initial

and the goal configuration. At each iteration a new configura-

tion is sampled and the extension from the nearest node in the

tree toward this sample is attempted. If the extension succeeds

a new node in the roadmap is created at a distance ε of the

nearest node. This extension process will be called classical

extension in this article.

The idea of the I-RRT is to take advantage of both human

and computer capabilities for planning a motion into a virtual

scene. The algorithm is shown in Algorithm 2 and the principal

steps are:

• Compute an attractive pseudo-force Fa from the current

tree using the roadmap data (nodes) to influence the user

movement via an I-Device and haptic and/or visual hints.

• Compute an interaction pseudo-force Fu from the user’s

input (position and/or movement) to take into account the

user’s intention.

• Compute sampling from a pseudo-force Fr: choose an

efficient way to combine user’s intentions and algorithm

automatic search (from Fa and Fu).

• Choose nearest neighbor in the tree.

• Extend the roadmap and label the nodes.

A. Pseudo-force computation

We first retrieve the user’s position in the virtual scene

and then take some roadmap nodes (the p nearest nodes)

near this position (NEAREST NEIGHBORS). After getting

their respective labels, we compute the center of mass. The

attractive pseudo-force Fa (Compute FAlgo) is given by the

vector that goes from the user’s position (quser) to the center

of mass (see figure 2).

This force is aimed to avoid the user getting to far from the

roadmap, which can make him too difficult to follow for the

algorithm.

Algorithm 2 The Interactive RRT Algorithm

T (qinit)
for i = 0 to N do

qrand ← SAMPLED CONFIG(Fa,Fu)

qnear ← NEAREST NODE(qrand , T )

Lnear ← NEAREST NEIGHBORS(quser, T )

if CONNECT(T, qrand , qnear, qnew) then

Add Vertex(T , qnew)

Add Edge(T , qnear, qnew)

Update Labels(T , qnear, qnew)

COM← Compute CenterOfMass(Lnear)

Fa← Compute FAlgo(COM, quser);

Fu← Compute FUser(quser);

end if

end for

Fig. 2. Get weights of the nearest neighbors and compute the Center of
Mass and the Force Fa.

The user interaction pseudo-force Fu is return by the I-

Device or computed by user’s movement (Compute FUser).

With the two previous computed pseudo-forces, we can

compute a new one by :

Fr = α.Fu +(1−α).Fa (see figure 3).

The parameter α allows to tune the part of user’s intention

compared with the algorithm search. If α is set to zero, the

algorithm is equivalent to a RRT, without user input. In our

implementation, α is fixed and constant. Fr is used for the

sampling.

B. Sampling method

The sampling is the basis of our method for interactivity be-

tween the algorithm and the user. In many probabilistic motion

planning methods, the sampling is crucial as it determines the

way the roadmap extends itself. Allowing the user to control

the sampling is allowing him to lead the search. The simplest

solution is to sample around the user’s position, but that means

the algorithm is no help to the user and simply follows him,

when possible.

We use Fr to define a Gaussian (elliptic) shooting area

centered on the user’s position and oriented along the force

direction. This allows the algorithm being guided toward the

user’s position while still being close to the space that has

already been explored i.e., the roadmap.

Meanwhile, Fa is sent to the I-Device, thus providing a

guiding pseudo-force that will slightly influence the user’s

movements, and give him some information towards a good



Fig. 3. Sampling area taking into account Fa and Fu.

direction to follow according to nodes labels. The aim is

to have a sampling area deformed along the pseudo-force

direction. If the user moves the I-Device quickly, the sampling

area is close to the Fu direction (in dimension 6)

The sampling is realized by shooting N different random

variables (N corresponding to the dimension of the CS) with

each a Gaussian probability center along the Fr direction.

To take advantage of the algorithm capabilities we also

allow random samples (uniform distribution) once every x

shoots (x is dynamically set from the user’s force). This allows

the algorithm to explore globally the virtual scene and to

gather data from it.

C. Nearest neighbor

The nearest neighbor search is done by comparing the

Euclidean distance between the sampled configuration and

each node of the roadmap.

Then we can compute the center of mass using the pre-

viously computed labels (distance to goal configuration) as

weights for each node. We take a fixed number p of neighbors

(the nearest ones) for this.

D. Extension

First we compute a classical extension. Then, we analyze

the result and classify it in one of these three categories:

• Collision : extension has failed

• Reached : extension succeeds and reaches the last shot

sample qrand

• Obstacle : extension reaches the node qnew but did not

reach the shot sample qrand .

E. Node Labelling

According to this, we compute collision labels for the new

node and the extended node.

In the RRT algorithm, we shoot randomly configurations

and then tests if they are colliding. We do not know “a

priori” the scene topology. The only piece of information we

can obtain is from these collisions tests. In the interactive

algorithm, we used them to label roadmap nodes. There are

two types of node labels that are taken into account in the

algorithm: the distance from the node to the goal configuration

and the number of collisions that occur from trying to extend

the node (towards a shot configuration, when this node was

chosen as the nearest neighbor).

The distance label is a function to guide towards the goal.

The collision label is more interesting. It is a function of

the covered distance during the extension, the extended node’s

number of extensions and his number of collisions.

These labels are used to give visual hints the user and

influence his movement. Information delivered by these labels

are displayed visually by colorizing nodes.

VI. RESULTS

We use a haptic device (haption− virtuose) to move the

object in CAD model. We did not forbid the penetration of

the virtual object (moved by the user) into obstacles, because

without a real 3D display the user can be stuck in a narrow

passage in a complex environment without seeing why he

cannot move. During all the tests the α parameter is equal

to 0.5 for balancing user and algorithm part. The number of

nearest neighbors p is fixed to ten.

The algorithm was implemented in C++ in the software

platform HPP developed at LAAS based on KineoWorks1 The

experiments were performed on a PC Dual Core, 2.1 Ghz and

2 GB ram.

A. Simple 2D Labyrinth

(a) (b)

Fig. 4. The I-RRT follows the user. (a) At start, nodes are sampled
independently. (b) Algorithm tracks the user’s position.

The aim of this example is just to show the principle of our

algorithms when running. We have to move an arrow-shaped

block (Green blocks in figure) in a 2D labyrinth from the left-

bottom corner to the right-top corner (see figure 6. The block

has three degrees of freedom (x, y, θ , CS is a 3-dimensional

space).

At the beginning of the labyrinth, either user and algorithm

can easily find the path to follow. Then, the block must go

through a narrow passage, which entrance is hard to find for

the algorithm. So the user goes forward. The algorithm has to

track the user’s position (figure 4).

After the narrow passage, there are two big rooms, with no

possible exit. The user can see that and avoid going into them.

A classical RRT algorithm will go inside (see figure 6) and

try to explore them, which is really time consuming.

In figure 4 (middle), the user sees a possible solution and

tries it. Unfortunately, the block cannot turn and the user is

stuck. During the time the user tries to go through this passage,

the algorithm explores other ways and finds another passage

(figure 4, right). The user cannot see this solution, it is often

1KineoWorks is the path planning dedicated Software Development Kit
developed by KineoCAM.



(a) (b)

Fig. 5. Breaking the deadlock.(a) The user fall in a dead end.(b) Extension
of the roadmap.

(a) (b)

Fig. 6. Roadmap comparison between Interactive solution (a) and RRT
solution (b).

the case when the user has to move an object in a complex

3D CAD model. It is the relevance of the I-RRT to guide the

user and explore the 6D configuration space.

Finally, the user follows the path found by the algorithm

and reaches the final configuration (figure 6).

B. Industrial case in PLM application

Next example is real use-cases from the automotive industry.

The problem is to find a collision free path dismounting a part

of a car (a silencer) to check the manufacturing process or the

maintainability of the assembly.

We show only a part of the real environment for visualiza-

tion problem and the environment is limited to represent the

reality.

(a) (b)

(c) (d)

Fig. 7. The automotive industrial case.

The input of the algorithm is a CAD model with initial and

final configuration for the silencer (figure 7). The goal of the

user is to take out the silencer by the top.

The example is solved in a few minutes (solution in figure 7

The computation time with the basic RRT takes much more

time.

The computation time to find the solution is strongly depen-

dant on the user dexterity with the 3D-mouse. If the user do

not move the 3D-mouse (or move in the deadlock direction)

the computation time is the RRT time computation.

The roadmap build by the I-RRT with the user’s motion is

shown in figure 7.

VII. ANALYSIS

Fig. 8. Environment used for the tests. The user’s simulated path is
represented in black.

Due to the base principle of this algorithm, it is really

dependant on the user’s dexterity to manipulate devices and

find solutions. Several parameters can greatly modify its

performances. We choose the three parameters that seemed

to influence the most the computing time. The first one is the

sampling method. From the method described in the article,

we derived three other sampling method for comparison. Thus,

we have four sampling methods : a method that samples

around the user’s position (MAG), a method that samples

around the user’s path (PAT H), and the same methods but

with a uniform sampling added (MAG+CS and PAT H +CS).

The second parameter is the standard deviation used by the

sampling methods. It modifies how precise is the tracking

of the position/path of the user. Four different values were

used. The last parameter represents the user’s dexterity and

is the user’s speed. During the tests, the user’s speed was

simulated by incrementing the user’s position by a step ε along

a predefined path. Four different values were used.

On figure 8, we can see the environment used for the tests.

All the results on the curves are means over 50 runs. The

computing time was limited to 900 seconds.

On figure 9, we can observe differences between sampling

methods concerning computing times given the user’s speed.

Each of these four curves shows the case for one standard

deviation value. On parts (a) and (b), we can see that the

sampling method MAG is more efficient than others in terms

of computing time. It takes the best out of the user’s speed. The

performances with the PAT H method are negligible. When a

uniform sampling component is added, we observe that the

computing time is substantially increasing. (magenta curve

PAT H +CS and green curve MAG+CS).

On parts (c) and (d), the methods based on user’s position

tracking are penalized by the increase of the standard deviation



a - Standard deviation 0.1 b - Standard deviation 0.5

c - Standard deviation 1.0 d - Standard deviation 5.0

Fig. 9. Comparing effects of the sampling method on the computing time
given the user’s speed for different standard deviation.

value. On each part, the first values of the curves are equivalent

to the time limit because the user was not fast enough to reach

the goal configuration before.

We can conclude that the user’s speed, the standard devia-

tion and the sampling method are three important parameters

that modifies performances. They should be adapted for each

case. Methods based on simple user tracking (without uniform

sampling of the configuration space) are adapted to experi-

enced user who can move fast and with precision. Methods

with a uniform component can improve performances for

unexperienced users. They allow a global exploration of the

configuration space but are more time consuming. Methods

based on path tracking (PAT H, PAT H +CS) are almost not

affected by the user’s speed and the standard deviation.

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, we described a simple interactive method

designed for assembly/disassembly planning. This method is

based on pseudo-forces exchange between the algorithm and

the user, and on data gathering (labels) from the virtual scene.

We saw that it works well in simple environments and real

industrial case: the algorithm and the user can help each other,

and the trajectory search benefits from each part.

We should integrate a real haptic device in order to use

real forces and contact perception from the virtual scene

instead of using only movements speeds. We have to define

a normalization forces, in order to let the user decide all

along the process. Visual hints have to be inserted from the

labels to have a visual feedback. We also plan to make more

tests on real industrial cases. An interesting point can be to

decouple partially the 3D user motion and the 6D configuration

space in which the graph is developed, to accelerate the

algorithm. Finally, in this work the user moves an object

in a six dimensional space and the roadmap is built in the

same dimensional CS, it can be interesting to extend the same

method for moving object with an interactive device with

a higher dimensional roadmap. For example the user move

an object (6 D) which is held by a virtual mannequin arm

(dimension 10 or more).
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