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Abstract

We present the group fused Lasso for detection of multiple change-points shared by a set of
co-occurring one-dimensional signals. Change-points aredetected by approximating the original
signals with a constraint on the multidimensional total variation, leading to piecewise-constant ap-
proximations. Fast algorithms are proposed to solve the resulting optimization problems, either
exactly or approximately. Conditions are given for consistency of both algorithms as the number of
signals increases, and empirical evidence is provided to support the results on simulated and array
comparative genomic hybridization data.

1 Introduction

Finding the place (or time) where most or all of a set of one-dimensional signals (orprofiles) jointly
change in some specific way is an important question in several fields. A common situation is when
we want to find change-points in a multidimensional signal, e.g., in audio and image processing [1, 2],
to detect intrusion in computer networks [3, 4], or in financial and economics time series analysis [5].
Another important situation is when we are confronted with several 1-dimensional signals which we
believe share common change-points, e.g., genomic profilesof a set of patients. The latter application is
increasingly important in biology and medicine, in particular for the detection of copy-number variation
along the genome [6], or the analysis of microarray and genetic linkage studies [7]. The common
thread in biological applications is the search for data patterns shared by a set of individuals, such as
cancer patients, at precise places on the genome; in particular, sudden changes in measured values. As
opposed to the segmentation of multidimensional signals such as speech, where the dimension is fixed
and collecting more data means having longer profiles, the length of signals in genomic studies (i.e.,
the number of probes measured along the genome) is fixed for a given technology while the number of
signals (i.e., the number of individuals) can increase whenwe collect data about more patients. From a
statistical point of view, it is therefore of interest to develop methods that identify multiple change-points
shared by several signals that can benefit from increasing the number of signals.

There exists a vast literature on the change-point detection problem [8, 9]. Here we focus on compu-
tationally efficient methods to segment a multidimensionalsignal by approximating it with a piecewise-
constant one, using quadratic error criteria. It is well-known that, in this case, the optimal segmentation
of a p-dimensional signal of lengthn into k segments can be obtained inO(n2pk) by dynamic pro-
gramming [10, 11, 12]. However, the quadratic complexity inn is prohibitive in applications such as
genomics, wheren can be in the order of105 to 107 with current technology. An alternative to such
global procedures, which estimate change-points as solutions of aglobal optimization problem, are fast
local procedures such as binary segmentation [13], which detect breakpoints by iteratively applying a
method for single change-point detection to the segments obtained after the previous change-point is
detected. While such recursive methods can be extremely fast, in the order ofO(np log(k)) when the
single change-point detector isO(np), quality of segmentation is questionable when compared with
global procedures [14].
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For p = 1 (a single signal), an interesting alternative to these global and local procedures is to
express the optimal segmentation as the solution of a convexoptimization problem, using the (convex)
total variation instead of the (non-convex) number of jumpsto penalize a piecewise-constant function
in order to approximate the original signal [15, 16]. The resulting piecewise-constant approximation of
the signal, defined as the global minimum of the objective function, benefits from theoretical guaranties
in terms of correctly detecting change-points [17, 18], andcan be implemented efficiently inO(nk) or
O(n log(n)) [19, 17, 20].

In this paper we propose an extension of total-variation based methods for single signals to the
multidimensional setting, in order to approximate a multidimensional signal with a piecewise-constant
signal with multiple change-points. We define the approximation as the solution of a convex optimization
problem which involves a quadratic approximation error penalized by the sum of the Euclidean norms
of the multidimensional increments of the function. The problem can be reformulated as a group Lasso
[21], which we show how to solve exactly and efficiently. Alternatively, we provide an approximate yet
often computationally faster solution to the problem usinga group LARS procedure [21]. In the latter
case, using the particular structure of the design matrix, we can find the firstk change-points inO(npk),
thus extending the method of [17] to the multidimensional setting.

Unlike most previous theoretical investigations of change-point methods (e.g., [17, 18]), we are not
interested in the case where the dimensionp is fixed and the length of the profilesn increases, but in
the opposite situation wheren is fixed andp increases. Indeed, this corresponds to the case in genomics
where, for example,n would be the fixed number of probes used to measure a signal along the genome,
and p the number of samples or patients analyzed. We want to designa method that benefits from
increasingp in order to identify shared change-points, even though the signal-to-noise ratio may be very
low within each signal. As a first step towards this question,we give conditions under which our method
is able to consistently identify a single change-point asp increases. We also show by simulation that
the method is able to correctly identify multiple change-points asp → +∞, validating its relevance in
practical settings.

The paper is organized as follows. After fixing notation in Section 2, we present the group fused
Lasso method in Section 3. We propose two efficient algorithms to solve it in Section 4, and discuss
its theoretical properties in Section 5. Lastly, we providean empirical evaluation of the method and
a comparison with other methods in the study of copy number variations in cancer in Section 6. A
preliminary version of this paper was published in [22].

2 Notation

For any two integersu ≤ v, we denote by[u, v] the interval{u, u+ 1, . . . , v}. For anyu × v matrix

M we noteMi,j its (i, j)-th entry, and‖M‖ =
√
∑u

i=1

∑v
j=1M

2
i,j its Frobenius norm (or Euclidean

norm in the case of vectors). For any subsets of indicesA =
(
a1, . . . , a|A|

)
∈ [1, u]|A| andB =

(
b1, . . . , b|B|

)
∈ [1, v]|B|, we denote byMA,B the |A| × |B| matrix with entriesMai,bj for (i, j) ∈

[1, |A|]× [1, |B|]. For simplicity we will use• instead of[1, u] or [1, v], i.e.,Ai,• is thei-th row ofA and
A•,j is thej-th column ofA. We note1u,v theu× v matrix of ones, andIp thep× p identity matrix.

3 Formulation

We considerp real-valued profiles of lengthn, stored in ann × p matrix Y . The i-th profile Y•,i =
(Y1,i, . . . , Yn,i) is thei-th column ofY . We model each profile as a piecewise-constant signal corrupted
by noise, and assume that change-point locations tend to be shared across profiles. Our goal is to detect
these shared change-points, and benefit from the possibly large numberp of profiles to increase the
statistical power of change-point detection.
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3.1 Segmentation with a total variation penalty

Whenp = 1 (a single profile), a popular method to find change-points in asignal is to approximate it by
a piecewise-constant function using a quadratic error criterion, i.e., to solve

min
U∈Rn

‖Y − U ‖2 subject to
n−1∑

i=1

δ(Ui+1 − Ui) ≤ k , (1)

whereδ is the Dirac function, equal to0 if its argument is null,1 otherwise. In other words, (1) expresses
the best approximation ofY by a piecewise-constant profileU with at mostk jumps. It is well-known
that (1) can be solved inO(n2k) by dynamic programming [10, 11, 12]. Although very fast whenn
is of moderate size, the quadratic dependency inn renders it impractical in current computers whenn
reaches millions or more, which is often the case in many application such as segmentation of genomic
profiles.

An alternative to the combinatorial optimization problem (1) is to relax it to a convex optimization
problem, by replacing the number of jumps by the convex totalvariation (TV) [15], i.e., to consider:

min
U∈Rn

1

2
‖Y − U ‖2 + λ

n−1∑

i=1

|Ui+1 − Ui | . (2)

For a givenλ > 0, the solutionU ∈ R
n of (2) is again piecewise-constant. Recent work has shown that

(2) can be solved much more efficiently than (1): [19] proposed a fast coordinate descent-like method,
[17] showed how to find the firstk change-points iteratively inO(nk), and [20] proposed aO(n ln(n))
method to find all change-points. Adding penalties proportional to theℓ1 or ℓ2 norm ofU to (2) does not
change the position of the change-points detected [16, 23],and the capacity of TV denoising to correctly
identify change-points whenn increases has been investigated in [17, 18].

Here, we propose to generalize TV denoising to multiple profiles by considering the following con-
vex optimization problem, forY ∈ R

n×p:

min
U∈Rn×p

1

2
‖Y − U ‖2 + λ

n−1∑

i=1

‖Ui+1,• − Ui,• ‖ . (3)

The second term in (3) can be considered a multidimensional TV: it penalizes the sum of Euclidean
norms of the increments ofU , seen as a time-dependent multidimensional vector, and reduces to the
classical 1-dimensional TV whenp = 1. Intuitively, whenλ increases, this penalty will enforce many
increment vectorsUi+1,• − Ui,• to collapse to0, just like the total variation in (2) in the case of1-
dimensional signals. This implies that the positions of non-zero increments will be the same for all
profiles. As a result, the solution to (3) provides an approximation of the profilesY by ann× p matrix
of piecewise-constant profilesU which share change-points.

While (3) is a natural multidimensional generalization of the classical TV denoising method (2), we
more generally investigate the following variant:

min
U∈Rn×p

1

2
‖Y − U ‖2 + λ

n−1∑

i=1

‖Ui+1,• − Ui,• ‖

di
, (4)

where(di)i=1,...,n−1 are position-dependant weights which affect the penalization of the jump differently
at different positions. While (4) boils down to (3) for uniform weightsdi = 1, i = 1, . . . , n − 1, we
will see that the unweighted version suffers from boundary effects and that position-dependent schemes
such as:

∀i ∈ [1, n − 1], di =

√
n

i(n − i)
, (5)

are both theoretically and empirically better choices.
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To illustrate the grouping effect of the penalty in (4), Figure 1 compares the segmentation of three
simulated profiles obtained with and without enforced sharing of change-points across profiles. We sim-
ulated three piecewise-constant signals corrupted by independent additive Gaussian noise. All profiles
have length 500 and share the same5 change-points, though with different amplitudes, at positions 38,
139, 268, 320 and 397. On the left-hand side, we show the first5 change-points captured by TV denois-
ing with weights (5) applied to each signal independently. On the right, we show the first5 change-points
captured by formulation (4). We see that the latter formulation finds the correct change-points, whereas
treating each profile independently leads to errors. For example, the first two change-points have a small
amplitude in the second profile and are therefore very difficult to detect from the profile only, while they
are very apparent in the first and third profiles.
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Figure 1: First5 change-points detected on three simulated profiles by TV denoising of each profile
(left) and by joint TV denoising (right).

3.2 Reformulation as a group Lasso problem

It is well-known that the 1-dimensional TV denoising problem (2) can be reformulated as a Lasso regres-
sion problem by an appropriate change of variable [17]. We now show that our generalization (4) can be
reformulated as a group Lasso regression problem, which will be convenient for theoretical analysis and
implementation [21]. To this end, we make the change of variables(β, γ) ∈ R

(n−1)×p×R
1×p given by:

γ = U1,• ,

βi,• =
Ui+1,• − Ui,•

di
for i = 1, . . . , n− 1 .
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In other wordsdiβi,j is the jump between thei-th and the(i + 1)-th positions of thej-th profile. We
immediately get an expression forU as a function ofβ andγ:

U1,• = γ ,

Ui,• = γ +
i−1∑

j=1

djβj,• for i = 2, . . . , n .

This can be rewritten in matrix form as

U = 1n,1γ +Xβ , (6)

whereX is then×(n−1) matrix with entriesXi,j = dj for i > j, and0 otherwise. Making this change
of variable, we can re-express (4) as follows:

min
β∈R(n−1)×p ,γ∈R1×p

1

2
‖Y −Xβ − 1n,1γ ‖

2 + λ

n−1∑

i=1

‖βi,• ‖ . (7)

For anyβ ∈ R
(n−1)×p, the minimum inγ is attained withγ = 11,n(Y −Xβ)/n. Plugging this into (7),

we get that the matrix of jumpsβ is solution of

min
β∈R(n−1)×p

1

2
‖ Ȳ − X̄β ‖2 + λ

n−1∑

i=1

‖βi,• ‖ , (8)

whereȲ andX̄ are obtained fromY andX by centering each column.
Equation (8) is now a classical group Lasso regression problem [21], with a specific design matrix

X̄ and groups of features corresponding to the rows of the matrix β. The solutionβ of (8) is related to
the solutionU of our initial problem (4) by equation (6).

4 Implementation

Although (4) and (8) are convex optimization problems that can in principle be solved by general-
purpose solvers [24], we want to be able to work in dimensionsthat reach millions or more, making
this computationally difficult. In particular, the design matrix X̄ in (8) is a non-sparse matrix of size
n× (n− 1), and cannot even fit in a computer’s memory whenn is large. Moreover, we would ideally
like to obtain solutions for various values ofλ, corresponding to various numbers of change-points, in
order to be able to select the optimal number of change-points using statistical criteria. In the single
profile case (p = 1), fast implementations inO(nk) or O(n lnn) have been proposed [19, 17, 20].
However, none of these methods is applicable directly to thep > 1 setting since they all rely on specific
properties of thep = 1 case, such as the fact that the solution is piecewise-affine in λ and that the set of
change-points is monotically decreasing withλ.

In this section we propose two algorithms to respectivelyexactlyor approximatelysolve (4) effi-
ciently. We adopt the algorithms suggested by [21] to solve the group Lasso problem (8) and show how
they can be implemented very efficiently in our case due to theparticular structure of the regression
problem. We have placed in Annex A several technical lemmas which show how to efficiently perform
several operations with the given design matrixX̄ that will be used repeatedly in the implementations
proposed below.

4.1 Exact solution by block coordinate descent

A first possibility to solve the group Lasso problem (8) is to follow a block coordinate descent approach,
where each group is optimized in turn with all other groups fixed. It can be shown that this strategy
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converges to the global optimum, and is reported to be stableand efficient [21, 25]. As shown by [21],
it amounts to iteratively applying the following equation to each blocki = 1, . . . , n − 1 in turn, until
convergence:

βi,• ←
1

γi

(

1−
λ

‖Si ‖

)

+

Si , (9)

whereγi = ‖ X̄•,i ‖
2 = i(n−i)d2i /n andSi = X̄⊤

•,i

(
Ȳ − X̄β−i

)
, and whereβ−i denotes the(n−1)×p

matrix equal toβ except for thei-th rowβ−i
i,• = 0. The convergence of the procedure can be monitored

by the Karush-Kuhn-Tucker (KKT) conditions:

−X̄⊤
•,i

(
Ȳ − X̄β

)
+

λβi,•
‖βi,• ‖

= 0 ∀βi,• 6= 0 ,

‖ − X̄⊤
•,i

(
Ȳ − X̄β

)
‖ ≤ λ ∀βi,• = 0 .

(10)

Since the number of blocksn can be very large and we expect only a fraction of non-zero blocks at the
optimum (corresponding to the change-points), we implemented this block coordinate descent with an
active set strategy. In brief, a set of active groupsA corresponding to non-zero groups is maintained, and
the algorithm alternates between optimizingβ over the active groups inA and updatingA by adding
or removing groups based on violation of the KKT conditions.The resulting pseudo-code is shown
in Algorithm 1. The inner loop (lines 3-7) corresponds to theoptimization ofβ on the current active
groups, using iteratively block coordinate descent (9). After convergence, groups that have been shrunk
to0 are removed from the active set (line 8), and the KKT conditions are checked outside of the active set
(lines 9-10). If they are not fulfilled, the group that most violates the conditions is added to the active set
(line 11), otherwise the current solution satisfies all KKT conditions and is therefore the global optimum
(line 13).

Although it is difficult to estimate the number of iterationsneeded to reach convergence for a certain
level of precision, we note that by Lemma 5 (Annex A), computation of X̄⊤Ȳ in line 1 can be done in
O(np), and each group optimization iteration (lines 3-7) requires computingX̄⊤

•,iX•,A (line 5), done in
O(|A|) (see Lemma 6 in Annex A), then computingSi (line 5) inO(|A|p) and soft-thresholding (line 6)
in O(p). The overall complexity of each group optimization iteration is thereforeO(|A|p). Since each
group inA must typically be optimized several times, we expect complexity that is at least quadratic
in |A| and linear inp for each optimization over an active setA (lines 3-7). To check optimality of a
solution after optimization over an active setA, we need to computēX⊤X̄β (line 9) which takesO(np)
(see Lemma 7, Annex A). Although it is difficult to upper boundthe number of iterations needed to
optimize overA, this shows that a best-case complexity to findk change-points, if we correctly add
groups one by one to the active set, would beO(npk) to checkk times the KKT conditions and find
the next group to add, andO(pk3) in total if each optimization over an active setA is in O(p|A|2). In
Section 6, we provide some empirical results on the behaviorof this block coordinate descent strategy.

4.2 Group fused LARS implementation

Since exactly solving the group Lasso with the method described in Section 4.1 can be computationally
intensive, it may be of interest to find fast, approximate solutions to (8). We propose to implement a
strategy based on the group LARS, proposed in [21] as a good way to approximately find the regular-
ization path of the group Lasso. More precisely, the group LARS approximates the solution path of (8)
with a piecewise-affine set of solutions and iteratively finds change-points. The resulting algorithm is
presented here as Algorithm 2, and is intended to approximately solve (8). Change-points are added one
by one (lines 4 and 8), and for a given set of change-points thesolution moves straight along a descent
direction (line 6) with a given step (line 7) until a new change-point is added (line 8). We refer to [21]
for more details and justification for this algorithm.

While the original group LARS method requires storage and manipulation of the design matrix [21],
implausible for largen here, we can again benefit from the computational tricks provided in Annex A

6



Algorithm 1 Block coordinate descent algorithm

Require: centered datāY , regularization parameterλ.
1: InitializeA ← ∅, β = 0, C ← X̄⊤Ȳ .
2: loop
3: repeat
4: Pick i ∈ A.
5: ComputeSi ← Ci,• − X̄⊤

•,iX̄β−i.
6: Updateβi,• according to (9).
7: until convergence
8: Remove inactive groups:A ← A\{i ∈ A : βi,• = 0}.
9: Check KKT:S ← C − X̄⊤X̄β.

10: û← argmax i/∈A ‖Si,• ‖
2 , M = ‖Sû,• ‖

2.
11: if M > λ2 then
12: Add a new group:A ← A∪ {û}.
13: else
14: return β.
15: end if
16: end loop

to efficiently run the fast group LARS method. ComputingX̄⊤Ȳ in line 1 can be done inO(np) using
Lemma 5. To compute the descent direction (line 6), we first computew in O(|A|p) using Lemma
8, thena in O(np) using Lemma 7. To find the descent step (line 7), we need to solve n polynomial
equations of degree 2, the coefficients of which are computedin O(p), resulting in aO(np) complexity.
Overall the main loop for each new change-point (lines 2–10)takesO(np) in computation and memory,
resulting inO(npk) complexity in time andO(np) in memory to find the firstk change-points. We
provide in Section 6 empirical results that confirm this theoretical complexity.

Algorithm 2 Group fused LARS algorithm

Require: centered datāY , number of breakpointsk.
1: InitializeA ← ∅, ĉ← X̄⊤Ȳ .
2: for i = 1 to k do
3: if i=1 then
4: First change-point :̂u← argmin j∈[1,n−1] ‖ ĉj,• ‖,A← {û}.
5: end if
6: Descent direction: computew ←

(

X̄⊤
•,AX̄•,A

)−1
ĉA,• , thena = X̄⊤X̄Aw.

7: Descent step: for eachu ∈ [1, n− 1] \A, find if it exists the smallest positive solutionαu of the
second-order polynomial inα:

‖ ĉu,• − αau,• ‖
2 = ‖ ĉv,• − αav,• ‖

2 ,

wherev is any element ofA.
8: Next change-point:̂u← argmin j∈[1,n−1] ‖ ĉj,• ‖,A← A∪ {û}.
9: Updateĉ← ĉ− αûa.

10: end for

5 Theoretical analysis

In this section, we study theoretically to what extent the estimator (4) recovers correct change-points.
The vast majority of existing theoretical results for offline segmentation and change-point detection con-
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sider the setting wherep is fixed (usuallyp = 1), andn increases (e.g., [2]). This typically corresponds
to cases where we can sample a continuous signal with increasing density, and wish to locate more
precisely the underlying change-points as the density increases.

We propose a radically different analysis, motivated notably by applications in genomics. Here, the
length of profilesn is fixed for a given technology, but the number of profilesp can increase when more
samples or patients are collected. The property we would like to study is then, for a given change-point
detection method, to what extent increasingp for fixedn allows us to locate more precisely the change-
points. While this simply translates our intuition that increasing the number of profiles should increase
the statistical power of change-point detection, and whilethis property was empirically observed in [7],
we are not aware of previous theoretical results in this setting. In particular we are interested in the
consistency of our method, in the sense that it should correctly detect the true change-points if enough
samples are available.

5.1 Consistent estimation of a single change-point

As a first step towards the analysis of this “fixedn increasingp” setting, let us assume that the observed
centered profiles̄Y are obtained by adding noise to a set of profiles with asingleshared change-point
between positionsu andu+ 1, for someu ∈ [1, n − 1]. In other words, we assume that

Ȳ = X̄β∗ +W ,

whereβ∗ is an(n− 1)× p matrix of zeros except for theu-th rowβ∗
u,•, andW is a noise matrix whose

entries are assumed to be independent and identically distributed with respect to a centered Gaussian
distribution with varianceσ2. In this section we study the probability that the first change-point found
by our procedure is the correct one, whenp increases. We therefore consider an infinite sequence of

jumps
(

β∗
u,i

)

i≥1
, and lettingβ̄2

p = 1
p

∑p
i=1(β

∗
u,i)

2, we assume that̄β2 = limp→∞ β̄2
p exists and is finite.

We first characterize the first selected change-point asp increases.

Lemma 1. Assume, without loss of generality, thatu ≥ n/2, and let, fori ∈ [1, n − 1],

Gi = d2i
i(n − i)

n
σ2 +

β̄2d2i d
2
u

n2
×

{

i2 (n− u)2 if i ≤ u ,

u2 (n− i)2 otherwise.
(11)

Whenp → +∞, the first change-point selected by the group fused Lasso (4)is in argmax i∈[1,n−1]Gi

with probability tending to1.

Proof of this result is given in Annex B. From it we easily deduce conditions under which the first
change-point is correctly found with increasing probability as p increases. Let us first focus on the
unweighted group fused Lasso (3), corresponding to the setting di = 1 for i = 1, . . . , n− 1.

Theorem 2. Letα = u/n be the position of the change-point scaled in the interval[0, 1], and

σ̃2
α = nβ̄2 (1− α)2(α− 1

2n)

α− 1
2 −

1
2n

. (12)

If σ2 < σ̃2
α, the probability that the first change-point selected by theunweighted group fused Lasso (3)

is the correct one tends to1 as p → +∞. Whenσ2 > σ̃2
α, it is not the correct one with probability

tending to1.

This theorem, the proof of which can be found in Annex C, deserves several comments.

• To detect a change-point at positionu = αn, the noise levelσ2 must not be larger than the critical
valueσ̃2

α given by (12), hence the method is not consistent for all positions. σ̃2
α decreases mono-

tonically fromα = 1/2 to 1, meaning that change-points near the boundary are more difficult to
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detect correctly than change-points near the center. The most difficult change-point is the last one
(u = n− 1) which can only be detected consistently ifσ2 is smaller than

σ̄2
1−1/n =

2β̄2

n
+ o(n−1).

• For a given level of noiseσ2, change-point detection is asymptotically correct for anyα ∈
[ǫ, 1− ǫ], whereǫ satisfiesσ2 = σ̃2

1−ǫ, i.e.,

ǫ =

√

σ2

2nβ̄2
+ o(n−1/2) .

This shows in particular that increasing the profile lengthn increases the relative interval (as a
fraction ofn) where change-points are correctly identified, and that we can get as close as we
want to the boundary forn large enough.

• Whenσ2 < σ̃2
α, the correct change-point is found consistently whenp increases, showing the

benefit of the accumulation of many profiles.

Theorem 2 shows that the unweighted group fused Lasso (3) suffers from boundary effects, since
it may not correctly identify a single change-points near the boundary is the noise is too large. In fact,
Lemma 1 tells us that if we miss the correct change-point position, it is because we estimate it more
towards the middle of the interval (see proof of Theorem 2 fordetails). The larger the noise, the more
biased the procedure is. We now show that this issue can be fixed when we consider the weighted group
fused Lasso (4) with well-chosen weights.

Theorem 3. The weighted group fused Lasso (4) with weights given by (5) correctly finds the first
change-point at any position with probability tending to1 asp→ +∞.

The proof of Theorem 3 is postponed to Annex D. It shows that the weighting scheme (5) cancels the
effect of the noise and allows us to consistently estimate any change-point, independently of its position
in the signal, as the number of signals increases.

5.2 Consistent estimation of a single change-point with fluctuating position

An interesting variant of the problem of detecting a change-point common to many profiles is that of
detecting a change-point with similar location in many profiles, allowing fluctuations in the precise
location of the change-point. This can be modeled by assuming that the profiles are random, and that the
i-th profile has a single change-point of valueβi at positionUi, where(βi, Ui)i=1,...,p are independent
and identically distributed according to a distributionP = Pβ ⊗ PU (i.e., we assumeβi independent
from Ui). We denotēβ2 = EPβ

β2 andpi = PU (U = i) for i ∈ [1, n − 1]. Assuming that the support
of PU is [a, b] with 1 ≤ a ≤ b ≤ n − 1, the following result extends Theorem 2 by showing that the
first change-point discovered by the unweighted group fusedLasso is in the support ofPU under some
condition on the noise level, while the weighted group fusedLasso correctly identifies a change-point in
the support ofPU asymptotically without conditions on the noise.

Theorem 4. 1. Letα = U/n be the random position of the change-point on[0, 1] andαm = a/n
andαM = b/n the position of the left and right boundaries of the support of PU scaled to[0, 1].
If 1/2 ∈ (αm, αM ), then for any noise levelσ2, the probability that the first change-point selected
by the unweighted group fused Lasso (3) is in the support ofPU tends to1 as p → +∞. If
1/2 < αm or αM < 1/2, let

σ̃2
PU

= nβ̄2
[
(1− Eα)2 + var(α)2

]
×







αm− 1
2n

αm− 1
2
− 1

2n

if αm > 1
2 ,

1− 1
2n

−αM

1
2
−αM− 1

2n

if αM < 1
2 .

(13)
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The probability that the first selected change-point is in the support ofPU tends to1 whenσ2 <
σ̃2
PU

. Whenσ2 > σ̃2
PU

, it is outside of the support ofPU with probability tending to1.

2. The weighted group fused Lasso (4) with weights given by (5) finds the first change-point in the
support ofPU with probability tending to1 asp → +∞, independently ofσ2 and of the support
of PU .

This theorem, the proof of which is postponed to Annex E, illustrates the robustness of the method to
fluctuations in the precise position of the change-point shared between profiles. Although this situation
rarely occurs when we are considering classical multidimensional signals such as financial time series
or video signals, it is likely to be the rule when we consider profiles coming from different biological
samples, where for example we can expect frequent genomic alterations at the vicinity of important
oncogenes or tumor suppressor genes. Although the theorem only gives a condition on the noise level
to ensure that the selected change-point lies in the supportof the distribution of change-point locations,
a precise estimate of the location of the selected change-point as a function ofPU , which generalizes
Lemma 1, is given in the proof.

5.3 The case of multiple change-points

While the theoretical results presented above focus on the detection of a single change-point, the real
interest of the method is to estimate multiple change-points. The extension of Theorem 2 to this setting
is, however, not straightforward and we postpone it for future efforts. We conjecture that the group
fused Lasso estimator can, under certain conditions, consistently estimate multiple change-points. More
precisely, in order to generalize the proof of Theorem 2, we must analyze the path of the vectors(ĉi,•),
and check that, for someλ in (3) or (4), they reach their maximum norm precisely at the true change-
points. The situation is more complicated than in the singlechange-point case since, in order to fulfill
the KKT optimality conditions, the vectors(ĉi,•) must hit a hypersphere at each correct change-point,
and must remain strictly within the hypersphere between consecutive change-points. This can probably
be ensured if the noise level is not too high (like in the single change-point case), and if the positions
corresponding to successive change-points on the hypersphere are far enough from each other, which
could be ensured if two successive change-points are not tooclose to each other, and are in sufficiently
different directions. Although the weighting scheme (5) ensures consistent estimation of the first change-
point independently of the noise level, it may however not besufficient to ensure consistent estimation
of subsequent change-points.

Although we propose no theoretical results besides these conjectures for the case of multiple change-
points, we provide experimental results below that confirm that, when the noise is not too large, we can
indeed correctly identify several change-points, with probability of success increasing to1 asp increases.

5.4 Estimating the number of change-points

The number of change-points detected by the group fused Lasso in the multidimensional signal depends
on the choice ofλ in (3) and (4). In practice, we propose the following scheme in order to estimate
a segmentation and the number of change-points. We try to select aλ that over-segments the multidi-
mensional signal, that is, finds more change-points that we would normally expect for the given type of
signal or application. Then, on the set ofk change-points found, we perform post-processing using a
simple least-squares criteria. Briefly, for each given subset of k′ ≤ k change-points, we approximate
each signal between successive change-points with the meanvalue of the points in that interval; then,
we calculate the total sum of squared errors (SSE) between the set of real signals and these piecewise-
constant approximations to them. Though it may appear computationally intensive or even impossible
to do this for all subsets ofk′ ≤ k change-points, a dynamic programming strategy (e.g., [6])means that
the best subset ofk′ ≤ k change-points can be calculated for allk′ ∈ {1, . . . , k} in O(k3).

It then remains to choose the “best”k′ ∈ {1, . . . , k} using, for example, a model-selection strategy.
The optimal SSE fork′ + 1 (which we may callSSE(k′ + 1) to ease notation), will be smaller than
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SSE(k′) but at a certain point, adding a further change-point will have no physical reality, it only
improves the SSE due to random noise. Here, we implemented a method proposed in [26, 6] where we
first normalize the SSE fork′ = 1, . . . , k into a scoreJ(k′) such thatJ(1) = k andJ(k) = 1, in such a
way theJ(k′) has an average slope of−1 between1 andk; we then try to detect a kink in the curve by
calculating the discrete second derivative ofJ(k′), and selecting thek′ after which this second derivative
no longer rises above a fixed threshold (typically0.5).

6 Experiments

In this section we test the group fused Lasso on several simulated and real data sets. All experiments
were run under Linux on a machine with two 4-core Intel Xeon 3.16GHz processors and a total of 16Gb
of RAM. We have implemented the group fused Lasso in MATLAB; the packageGFLseg is available
for download1.

6.1 Speed trials

In a first series of experiments, we tested the behavior of thegroup fused Lasso in terms of computa-
tional efficiency. We simulated multidimensional profiles with various lengthsn between24 and223,
various dimensionsp between1 and215, and various number of shared change-pointsk between1 and
27. In each case, we first ran the iterative weighted group fusedLARS (Section 4.2) to detect succes-
sive change-points, and recorded the correspondingλ values. We then ran the exact group fused Lasso
implementation by block coordinate descent (Section 4.1) on the sameλ values. Figure 2 shows speed
with respect to increasing one ofp, n andk while keeping the other two variables fixed, for both im-
plementations. The axes arelog-log, so the slope gives the exponent of the complexity (resp.n, p and
k). For the weighted group fused LARS, linearity is clearest for k, whereas forn andp, the curves are
initially sub-linear, then slightly super-linear for extremely large values ofn andp. As these time trials
reach out to the practical limits of current technology, we see that this is not critical - on average, even
the longest trials here took less than 200 seconds. The weighted fused group Lasso results are perhaps
more interesting, as it is harder to predict in advance the practical time performance of the algorithm.
Surprisingly, when increasingn (p andk fixed) or increasingp (n andk fixed), the group fused Lasso
eventually becomes as fast the iterative, deterministic group fused LARS. This suggests that at the lim-
its of current technology, ifk is small (say, less than 10), the potentially superior performance of the
Lasso version (see later) may not even be punished by a slowerrun-time with respect to the LARS ver-
sion. We suggest that this may be due to the Lasso optimization problem becoming relatively “easier”
to solve whenn or p increases, as we observed that the Lasso algorithm converged quickly to its final
set of change-points. The main difference between the Lassoand LARS performance appears when
the number of change-points increases: with respective empirical complexities cubic and linear ink, as
predicted by the theoretical analysis, Lasso is already 1,000 times slower than LARS when we seek 100
change-points.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fused Lasso for detecting a single change-point. We
first generated multidimensional profiles of dimensionp, with a single jump of height1 at a position
u, for different values ofp andu. We added to the signals an i.i.d. Gaussian noise with variance
σ̃2
α = 10.78, the critical value corresponding toα = 0.8 in Theorem 2. We ran 1000 trials for each value

of u andp, and recorded how often the group fused Lasso with or withoutweights correctly identified
the change-point. According to Theorem 2, we expect that, for the unweighted group fused Lasso, for
50 ≤ u < 80 there is convergence in accuracy to1 whenp increases, and foru > 80, convergence in
accuracy to zero. This is indeed what is seen in Figure 3 (leftpanel), withu = 80 the limit case between

1Available athttp://cbio.ensmp.fr/GFLseg
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottomrow). Left column:
varyingn, with fixedp = 10 andk = 10; center column:varyingp, with fixedn = 1000 andk = 10;
right column:varyingk, with fixedn = 1000 andp = 10. Figure axes arelog-log. Results are averaged
over 100 trials.

the two different modes of convergence. The center panel of Figure 3 shows that when the default
weights (5) are added, convergence in accuracy to 1 occurs across allu, as predicted by Theorem 3. In

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

A
cc

ur
ac

y:
 u

nw
ei

gh
te

d

 

 

u=50
u=60
u=70
u=80
u=90

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

A
cc

ur
ac

y:
 w

ei
gh

te
d

 

 

u=50
u=60
u=70
u=80
u=90

0 200 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

A
cc

ur
ac

y:
 w

ei
gh

te
d+

va
ry

 

 

u=50±2
u=60±2
u=70±2
u=80±2
u=90±2

Figure 3: Single change-point accuracy for the group fused Lasso.Accuracy as a function of the
number of profilesp when the change-point is placed in a variety of positionsu = 50 to u = 90 (left
and centre plots, resp. unweighted and weighted group fusedLasso), or:u = 50 ± 2 to u = 90 ± 2
(right plot, weighted with varying change-point location), for a signal of length 100.

addition, the right-hand-side panel of Figure 3 shows results for the same trials except that change-point
locations can vary uniformly in the intervalu± 2. We see that, as predicted by Theorem 4, the accuracy
of the weighted group fused Lasso remains robust against fluctuations in the exact change-point location.

6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results to the case of many shared change-points, we fur-
ther simulated profiles of lengthn = 100 with a change-point atall of positions10, 20, . . . , 90. We
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consider dimensionsp between1 and500. Jumps at each change-point of each profile were drawn from
a Gaussian with mean 0 and variance 1; we then added centered Gaussian noise withσ2 ∈ {0.05, 0.2, 1}
to each position in each profile. For each value ofp andσ2, we ran one hundred trials of both implemen-
tations, with or without weights, and recorded the accuracyof each method, defined as the percentage
of trials where the first9 change-points detected by the method are exactly the9 true change-points.
Results are presented in Figure 4 (from left to right, resp.σ2 = 0.05, 0.2, 1). Clearly, the group fused
Lasso outperforms the group fused LARS, and the weighted version of each algorithm outperforms the
unweighted version. Although the group LARS is usually considered a reliable alternative to the exact
group Lasso [21], this experiment shows that the exact optimization by block coordinate descent may be
worth the computational burden if one is interested in accurate group selection. It also demonstrates that,
as we conjectured in Section 5.3, the group fused Lasso can consistently estimate multiple change-points
as the number of profiles increases.
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Figure 4:Multiple change-point accuracy. Accuracy as a function of the number of profilesp when
change-points are placed at the nine positions{10, 20, . . . , 90} and the varianceσ2 of the centered
Gaussian noise is either0.05 (left), 0.2 (center) and1 (right). The profile length is 100.

6.4 Application to gain and loss detection

We now consider a possible application of our method for the detection of regions with frequent gains
(positive values) and losses (negative values) among a set of DNA copy number profiles, measured by
array comparative genomic hybridization (aCGH) technology [27]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentation of the signals; then, check the presence of gain
or loss on each interval of the segmentation by summarizing each profile by its average value on the
interval. Note that we do not assume that all profiles share exactly the same change-points, but merely
see the joint segmentation as an adaptive way to reduce the dimension and remove noise from data.

In practice, we used group fused LARS on each chromosome to identify a set of100 candidate
change-points, and selected a subset of them by post-processing as described in Section 5.4. Then, in
each piecewise-constant interval between successive shared change-points, we calculate the mean of
the positive segments (shown in green in Figures 5(a) and 6(c)) and the mean of the negative segments
(shown in red). The larger the mean of the positive segments,the more likely we are to believe that a
region harbors an important common gain; the reasoning is analogous for important common losses and

13



the mean of the negative segments. Obviously, many other statistical tests could be carried out to detect
frequent gains and losses on each segment, once the joint segmentation is performed.

We compare this method for detecting regions of gain and losswith the state-of-the-art H-HMM
method [27], which has been shown to outperform several other methods in this setting. As [27] have
provided their algorithm online with several of their data sets tested in their article, we implemented our
method and theirs (H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regions– one amplified, one deleted, that are
shared in 8 short profiles, though only 6 of the profiles exhibit each of the amplified or deleted regions.
Performance is measured by area under ROC curve (AUC), following [27]. Running H-HMM with the
default parameters, we obtained an AUC (averaged over 10 trials) of0.96± .01, taking on average 60.20
seconds. The weighted group fused LARS, asked to select 100 breakpoints and followed by dynamic
programming, took 0.06 seconds and had an AUC of0.97. Thus, the performance of both methods was
similar, though weighted group fused LARS was around 1000 times faster.

The second data set was a cohort of lung cancer cell lines originally published in [28, 29]. As in [27],
we concentrated on the 18 NSCLC adenocarcinoma (NA) cell lines. Figure 5 shows the score statistics
obtained on Chromosome 8 when using either weighted group fused LARS or H-HMM. Weighted group
fused LARS first selected100 candidate change-points per chromosome, then followed optimization of
the number of change-points by dynamic programming, took intotal 4.7 seconds and finally selected
260 change-points. In contrast, H-HMM took 38 minutes (100 iterations, as given in the code provided
by the authors). The H-HMM scores should look like those shown in Figure 4 (top panel) of [27]; the
difference is either due to the stochastic nature of the algorithm or using a different number of iterations
than given in the sample code by the authors. In any case, at the MYC locus (near13 × 107 bp), both
methods strongly suggest a common gained region. However, the supposed advantage of H-HMM to
very sparsely predict common gains and losses is not clear here; for example, it gives high common gain
confidence to several fairly large genomic regions between 9and 14×107 bp.
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Figure 5:Joint scores for a set of 18 NSCLC adenocarcinoma cell lines.5(a) using weighted group
fused LARS; 5(b) using H-HMM with the actual code provided by[27].
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6.5 Application to bladder tumor aCGH profiles

We further considered a publicly available aCGH data set of 57 bladder tumor samples [30]. Each aCGH
profile gave the relative quantity of DNA for 2215 probes. We removed the probes corresponding to sex
chromosomes because the sex mismatch between some patientsand the reference made the computation
of copy number less reliable, giving us a final list of 2143 probes.

Results are shown in Figure 6. 97 change-points were selected by the weighted group fused LARS;
this took 1.1 seconds (Figure 6(c)). The H-HMM method (Figure 6(d)) took 13 minutes for 200 iterations
(after 100 iterations convergence had not occured). We usedthe comprehensive catalogue of common
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Figure 6: Bladder cancer profiles. 6(a) shows one of the original 57 profiles and its associated
smoothed version. 6(b) shows the result of superimposing the smoothed versions of the57 bladder tu-
mor aCGH profiles obtained using weighted group fused LARS followed by dimension-selection. 6(c)
shows the result of transforming the set of smoothed outputsinto “scores” for amplification/deletion
(see Section 6.4) and 6(d) the corresponding output for the H-HMM method [27]. Vertical black lines
indicate chromosome boundaries.

genomic alterations in bladder cancer provided in Table 2 in[31] to validate the method and compare
with H-HMM. Our method (Figure 6(c)) concurred with the known frequently-amplified chromosome
arms 20q, 8q, 19q, 1q, 20p, 17q, 19p, 5p, 2p, 10p, 3q and 7p, andfrequently-lost 9p, 9q, 11p, 10q,
13q, 8p, 17p, 18q, 2q, 5q, 18p, 14q and 16q. The only known commonly-lost region which showed
unconvincing common loss here was 6q. As for the H-HMM method(Figure 6(d)), it selects a small
number of very small regions of gain and loss, which are difficult to verify with respect to the well-
known frequently amplified arms in [31]. As is suggested, themethod may therefore be useful for
selecting the precise location of important genes. However, as can be seen in Figure 6(a)-(b), many,
but not all, alterations are much larger than those found with H-HMM, and where for example there
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are clearly several localized gains and losses in chromosome 8, H-HMM finds nothing at all. Perhaps
the complexity of rearrangements in chromosome 8 is not easily taken into account by the H-HMM
algorithm. Note finally that the weighted group fused LARS was more than 700 times faster than H-
HMM.

7 Conclusion

We have proposed a framework that extends total-variation based approximation to the multidimen-
sional setting, and developed two algorithms to solve the resulting convex optimization problem either
exactly or approximately. We have shown theoretically and empirically that the group fused Lasso can
consistently estimate a single change-points, and observed experimentally that this property is likely
to hold also when several change-points are present. In particular, we observed both theoretically and
empirically that increasing the number of profiles is highlybeneficial to detect approximatively shared
change-points, an encouraging property for biological applications where the accumulation of data mea-
sured on cohorts of patients promises to help in the detection of common genomic alterations.

Although we do not assume that all profiles have the same change-points, we estimate only shared
change-points. In other words, we try to estimate the union of the change-points present in the profiles.
This can be useful by itself, eg, for dimension reduction. Ifwe wanted to detect change-points of
individual profiles, we may either post-process the resultsof the group fused Lasso, or modify the
formulation by, e.g., adding a TV penalty to each profile in addition to the group lasso penalty. Similarly,
for some applications, we may want to add aℓ1/ℓ2 norm to the group fused Lasso objective function
in order to constrain some or all signals to be frequently null. Finally, from a computational point of
view, we have proposed efficient algorithms to solve an optimization problem (4) which is the proximal
operator of more general optimization problems where a smooth convex functional ofU is minimized
with a constraint on the multidimensional TV penalty; this paves the way to the efficient minimization
of such functionals using, e.g., accelerated gradient methods [32].

Annex A: Computational lemmas

In this Annex we collect a few results useful to carry out the fast implementations claimed in Section 4.
Remember that then× (n− 1) matrixX defined in (6) is defined byXi,j = dj for i > j, 0 otherwise.
Since the design matrix̄X of the group Lasso problem (8) is obtained by centering each column ofX
to zero mean, its columns are given by:

∀i = 1, . . . , n− 1, X̄•,i =







(
i

n
− 1

)

di, . . . ,

(
i

n
− 1

)

di
︸ ︷︷ ︸

i

,
i

n
di, . . . ,

i

n
di

︸ ︷︷ ︸

n−i







⊤

. (14)

We first show how to compute efficientlȳX⊤R for any matrixR:

Lemma 5. For any R ∈ R
n×p, we can computeC = X̄⊤R in O(np) operations and memory as

follows:

1. Compute then× p matrix r of cumulative sumsri,• =
∑i

j=1Rj• by the induction:

• r1,• = R1,• .

• For i = 2, . . . , n, ri,• = ri−1,• +Ri,• .

2. For i = 1, . . . , n − 1, computeCi,• = di (irn,•/n− ri,•) .
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Proof. Using (14) we obtain thei-th row ofC = X̄⊤R, for i = 1, . . . , n− 1, as follows:

Ci,• = X̄⊤
•,iR

=

(
i

n
− 1

)

di





i∑

j=1

Rj,•



+
i

n
di





n∑

j=i+1

Rj,•





= di

(
i

n
rn,• − ri,•

)

.

Next, we show how to compute efficiently submatrices of the(n− 1)× (n− 1) matrix X̄⊤X̄.

Lemma 6. For any two subsets of indicesA =
(
a1, . . . , a|A|

)
andB =

(
b1, . . . , b|B|

)
in [1, n − 1], the

matrix X̄⊤
•,AX̄•,B can be computed inO (|A||B|) in time and memory with the formula:

∀(i, j) ∈ [1, |A|] × [1, |B|] ,
[

X̄⊤
•,AX̄•,B

]

i,j
= daidbj

min(ai, bj) [n−max(ai, bj)]

n
. (15)

Proof. Let us denoteV = X̄⊤
•,AX̄•,B . For any(i, j) ∈ [1, |A|] × [1, |B|], denotingu = min(ai, bj) and

v = max(ai, bj), we easily get from (14) an explicit formula forVi,j, namely,

Vi,j = X̄⊤
•,aiX̄•,bj

= dudv

[

u
(u

n
− 1
)( v

n
− 1
)

+ (v − u)
v

n

(u

n
− 1
)

+ (n− v)
u

n

v

n

]

= dudv
u(n− v)

n
.

The next lemma provides another useful computational trickto compute efficientlyX̄⊤X̄R for any
matrixR:

Lemma 7. For anyR ∈ R
(n−1)×p, we can computeC = X̄⊤X̄R in O(np) by

1. Compute, fori = 1, . . . , n− 1, R̃i,• = diRi,•.

2. Compute the1× p vectorS =
(
∑n−1

i=1 iR̃i,•

)

/n.

3. Compute the(n− 1)× p matrixT defined byTi,• =
∑n−1

j=i R̃j,• by the induction:

• Tn−1,• = R̃n−1,•.

• for i = n− 2, . . . , 1, Ti,• = Ti+1,• + R̃i,•.

4. Compute the(n− 1)× p matrixU defined byUi,• =
∑i

j=1 (S − Tj,•) by the induction:

• U1,• = S − T1,•.

• for i = 2, . . . , n− 1, Ui,• = Ui−1,• + S − Ti,•.

5. Compute, fori = 1, . . . , n− 1, Ci,• = diUi,•

Each step in Lemma 7 has complexityO(np) in memory and time, leading to an overall complexity
in O(np) to computeX̄⊤X̄R. We note that ifR is row-sparse, i.e., is several rows ofR are null, then the
first two steps have complexityO(sp), wheres is the number of non-zero rows inR. Although this does
not change the overall complexity to computēX⊤X̄R, this leads to a significant speed-up in practice
whens≪ n.
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Proof. Let us denoteD the(n− 1)× (n− 1) diagonal matrix with entriesDi,i = di. By Lemma 6, we
know thatX̄⊤X̄ = DVD, with Vi,j = min(i, j) [n−max(i, j)] /n, for 1 ≤ i, j ≤ n − 1. Since step
1 computesR̃ = DR and step 5 computesC = DU , we just need to show that theU computed in step
4 satisfiesU = V R̃ to conclude thatC = DV R̃ = DVDR = X̄⊤X̄R. By step 4,U is defined by the
relationUi,•−Ui−1,• = S − Ti,• for i = 1, . . . , n− 1 (with the conventionU0,• = 0), therefore we just
need to show that(Vi,• − Vi−1,•) R̃ = S−Ti,• for i = 1, . . . , n−1 to conclude. For0 ≤ j < i ≤ n−1,
we note thatVi,j = j(n−i)/n (with the conventionV0,• = 0) andVi−1,j = j(n−i+1)/n, and therefore
Vi,j−Vi−1,j = −j/n. For1 ≤ i ≤ j ≤ n−1, we haveVi,j = i(n−j)/n andVi−1,j = (i−1)(n−j)/n
and thereforeVi,j − Vi−1,j = 1− j/n. Combining these expressions we get, fori = 1, . . . , n − 1:

(Vi,• − Vi−1,•) R̃ = −
n−1∑

j=1

jR̃j,•

n
+

n−1∑

j=i

R̃j,• = S − Ti,• ,

whereS andT are defined in steps 2 and 3. This concludes the proof thatC = X̄⊤X̄R.

Next we show that
(
X̄⊤X̄

)−1
has a tridiagonal structure, resulting in fast matrix multiplication.

Lemma 8. For any setA =
(
a1, . . . , a|A|

)
of distinct indices with1 ≤ a1 < . . . < a|A| ≤ n − 1, the

matrix
(

X̄⊤
•,AX̄•,A

)

is invertible, and for any|A| × p matrixR, the matrix

C =
(

X̄⊤
•,AX̄•,A

)−1
R

can be computed inO(|A|p) in time and memory by

1. For i = 1, . . . , |A| − 1, compute

∆i =
d−1
ai+1

Ri+1,• − d−1
ai Ri,•

ai+1 − ai
.

2. Compute the successive rows ofC according to:

C1,• = d−1
a1

(
R1,•

a1
−∆1

)

,

Ci,• = d−1
ai (∆i−1 −∆i) for i = 2, . . . , |A| − 1 ,

C|A|,• = d−1
a|A|

(

∆|A|−1 +
R|A|,•

n− a|A|

)

.

(16)

Proof. Let us denoteV = X̄⊤
•,AX̄•,A. By Lemma 6 we know that, for1 ≤ i ≤ j ≤ |A|,

Vi,j = daidaj
ai(n− aj)

n
.

V being symmetric semi-separable, one can easily check thatV is invertible and admits as inverse a
tridiagonal matrix with the following entries [33]:

V −1
i,i = d−2

ai

(
1

ai − ai−1
+

1

ai+1 − ai

)

for i = 1, . . . , |A|,

V −1
i,i+1 = V −1

i+1,i = −
d−1
ai d

−1
ai+1

ai+1 − ai
for i = 1, . . . , |A| − 1,

(17)
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where by convention we definea0 = 0 anda|A|+1 = n. This tri-diagonal structure allows successive
rows ofC to be expressed as a sum of just a few terms. More precisely, for 1 < i < |A|, we obtain:

Ci,• = −
d−1
ai−1

d−1
ai Ri−1,•

ai − ai−1
+ d−2

ai Ri,•

(
1

ai − ai−1
+

1

ai+1 − ai

)

−
d−1
ai d

−1
ai+1

Ri+1,•

ai+1 − ai

= d−1
ai

(

d−1
ai Ri,• − d−1

ai−1
Ri−1,•

ai − ai−1
+

d−1
ai Ri,• − d−1

ai+1
Ri+1,•

ai+1 − ai

)

= d−1
ai (∆i−1 −∆i) .

Similarly, for i = 1 andi = |A| we easily recover (16).

Annex B: Proof of Lemma 1

The solution of (4) is constant, i.e., corresponds toβ = 0 (no change-point), as long as the KKT
conditions (10) are satisfied forβ = 0. This translates to‖ X̄⊤

•,iȲ ‖ ≤ λ for all i. The first change-point
occurs whenλ = maxi ‖ X̄

⊤
•,iȲ ‖, and the change-point is precisely located in the positioni that reaches

the maximum. Therefore the first change-point is the row withthe largest Euclidean norm of the matrix:

ĉ = X̄⊤Ȳ = X̄⊤X̄β∗ + X̄⊤W .

The entries of the matrix̂c are therefore jointly Gaussian. Since only theu-th rowβu,• of β is non-zero,
we get

E(ĉ) = X̄⊤X̄β∗ = X̄⊤X̄•,uβ
∗
u,• .

Using Lemma 6 we compute:

E(ĉi,•) =
[

X̄⊤X̄β∗
]

i,•
=

{

didu
i(n−u)

n β∗
u,• for 1 ≤ i ≤ u ,

didu
u(n−i)

n β∗
u,• for u ≤ i ≤ n− 1 .

(18)

On the other hand, by (14) we have for anyi ∈ [1, n − 1],

[

X̄⊤W
]

i,•
= di





i∑

j=1

(
i

n
− 1

)

Wj,• +

n∑

j=i+1

i

n
Wj,•



 .

Since
E
(

W⊤
i,•Wj,•

)

= δi,jσ
2
Ip ,

whereδi,j is the Dirac function, we have for1 ≤ i ≤ j ≤ n− 1:

E

([

X̄⊤W
]⊤

i,•

[

X̄⊤W
]

j,•

)

= didj

[

i

(
i

n
− 1

)(
j

n
− 1

)

+ (j − i)
i

n

(
j

n
− 1

)

+ (n− j)
i

n

j

n

]

σ2
Ip

= didj
i (n− j)

n
σ2

Ip .

(19)

In summary, we have shown thatĉ is jointly Gaussian withE (ĉi,•) given by (18) and covariance between
ĉi,• andĉj,• given by (19).

In particular, if we denoteFi = ‖ ĉi,• ‖
2 , then, fori ≤ u, Fin/

(
d2i i(n − i)σ2

)
follows a non-central

χ2 distribution withp degrees of freedom and non-centrality parameterpβ̄2
pd

2
ui(n− u)2/

[
n(n− i)σ2

]
.

In particular,

EFi = pβ̄p
2
d2i d

2
u

i2 (n− u)2

n2
+ pd2i

i(n− i)

n
σ2 ,

19



and sincelimp→+∞ β̄p
2
= β̄2, we get thatFi/p converges in probability to

Gi =
EFi

p
= β̄2d2i d

2
u

i2 (n− u)2

n2
+ d2i

i(n− i)

n
σ2 . (20)

A similar computation shows that fori ≥ u, Fi/p converges in probability to

Gi = β̄2d2i d
2
u

u2 (n− i)2

n2
+ d2i

i(n− i)

n
σ2 . (21)

Note that (20) and (21) are equivalently defined in (11). Now,let V = argmax i∈[1,n−1]Gi. For any
v ∈ V andj /∈ V , the probability of the eventFv > Fj tends to1, becauseGv > Gj . By the union
bound the probability of the eventmaxj /∈V Fi < maxv∈V Fv also converges to1, showing that the
probability to select a change-point inV converges to1 asp→ +∞.

Annex C: Proof of Theorem 2

By Lemma 1, we know that the first change-point selected by (4)is in argmax i∈[1,n]Gi with probability
tending to1 asp increases, whereGi is defined in (11). We will therefore asymptotically select the
correct change-pointu if and only if Gu = maxi∈[1,n−1]Gi. Remember we assume, without lack of
generality, thatu ≥ n/2. Foru ≤ i ≤ n− 1, we observe thatGi given by (21) is a decreasing function
of i as a sum of two decreasing functions. Therefore, it always holds thatGu = maxi∈[u,n−1]Gi, and
we just need to check whether or notGu = maxi∈[1,u]Gi holds.

For i ∈ [1, u], Gi given by (20) is a second-order polynomial ofi, which is equal to0 at i = 0 and
strictly positive fori = u. ThereforeGu = maxi∈[1,u]Gi if and only if Gu > Gu−1. Let us therefore
compute:

Gu −Gu−1 = β̄2 (n− u)2

n2

[
u2 − (u− 1)2

]
+

σ2

n
[u(n − u)− (u− 1)(n − u+ 1)]

=
β̄2(2u− 1)(n − u)2

n2
+

σ2(n− 2u+ 1)

n

= 2

[

β̄2n (1− α)2
(

α−
1

2n

)

+ σ2

(
1

2
− α+

1

2n

)]

= 2
(
σ̃2 − σ2

)
(

α−
1

2
−

1

2n

)

,

(22)

whereα = u/n and

σ̃2 = nβ̄2 (1− α)2(α− 1
2n)

α− 1
2 −

1
2n

.

This shows that, whenα > 1/2 + 1/(2n), Gu > Gu−1 if and only if σ < σ̃. On the other hand, when
α = 1/2 or 1/2 + 1/(2n), we have always thatGu > Gu−1.

Annex D: Proof of Theorem 3

As for the proof of Theorem 2, we need to check whether or notGu = maxi∈[1,n−1]Gi, whereGi is
defined in (11), to deduce whether the method selects the correct change-pointu or a different position
with probability tending to1 whenp increases. Substituting weightsdi defined in (5) intoGi, we obtain:

Gi = σ2 + β̄2 ×

{

i (n− u) /u (n− i) if i ≤ u ,

u (n− i) /i (n− u) otherwise.
(23)

It is then easy to see that (23) is increasing on[1, u], and decreasing on[u, n − 1], showing that we
always haveargmax i∈[1,n−1]Gi = u. The result then follows from Lemma 1.
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Annex E: Proof of Theorem 4

Following the proof of Lemma 1, let us estimateFi = ‖ ĉi,• ‖
2 for i ∈ [1, n − 1]. For anyj ∈ [1, p], we

first observe by (18) that

[

X̄⊤X̄β
]

i,j
=

{

didUj

i(n−Uj)
n βj if i ≤ Uj ,

didUj

Uj(n−i)
n βj otherwise.

(24)

Therefore,

p
∑

j=1

[

X̄⊤X̄β
]2

i,j
=

d2i
n2

p
∑

j=1

d2Uj
β2
j

[

i2 (n− Uj)
2
1(i ≤ Uj) + (n− i)2 U2

j 1(i > Uj)
]

, (25)

and by independence ofβi andUi:

1

p
E

p
∑

j=1

[

X̄⊤X̄β
]2

i,j
= β̄2 d

2
i

n2

[
i∑

u=1

pud
2
uu

2(n− i)2 +
n−1∑

u=i+1

pud
2
u (n− u)2 i2

]

.

Since(βi, Ui)i=1,...,p are independent of the noise, we obtain thatFi/p converges in probability to

Gi = β̄2 d
2
i

n2

[
i∑

u=1

pud
2
uu

2(n− i)2 +

n−1∑

u=i+1

pud
2
u (n− u)2 i2

]

+ d2i
i(n − i)

n
σ2 . (26)

As in Lemma 1 we can conclude that the method will select the position

û = argmax
u∈[1,n−1]

Gi

with probability tending to 1 asp increases.
Let us now assume that the support ofPU is an interval[a, b] (corresponding to a possible range of

fluctuation of a change-point). Then, we observe that fori ≤ a, Gi in (26) reduces to

Gi = β̄2 d
2
i

n2

[

0 +

b∑

u=a

pud
2
u (n− u)2 i2

]

+ d2i
i(n− i)

n
σ2

= β̄2 i
2d2i
n2

E [dU (n− U)]2 + d2i
i(n − i)

n
σ2 .

(27)

Let us now consider the two possible weighting schemes.

• In the unweighted casedi = 1 for i = 1, . . . , n− 1, we obtain from (27) that fori ≤ a:

Gi = β̄2 i
2E(n− U)2

n2
+

i(n − i)

n
σ2 . (28)

While the first term in (28) is strictly increasing on[0, a], the second term moves the maximum
of Gi towardsn/2. This shows that the maximum ofGi is always at leasta whena ≤ n/2.
By symmetry, it is also always smaller or equal tob when b ≥ n/2. Whenn/2 ∈ [a, b], we
deduce that for anyσ2 > 0, û ∈ [a, b]. Otherwise, let us suppose without lack of generality that
n/2 < a ≤ b. Then,Gi being quadratic on[0, a] and equal to0 at 0, the maximum ofGi will
not occur beforea if and only if Ga−1 < Ga. A computation similar to the one in the proof of
Theorem 2 shows that

Ga −Ga−1 = 2
(
σ̃2
m − σ2

)
(

αm −
1

2
+

1

2n

)

,
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where

σ̃2
m = nβ̄2E(1− α)2(αm −

1
2n)

αm −
1
2 −

1
2n

.

This shows thatGa > Ga−1 if and only if σ2 < σ̃2
m. Sinceb > n/2, we also know that̂u ≤ b,

i.e., û ∈ [a, b] in that case. The case1 ≤ a ≤ b < n/2 can be treated similarly. To conclude the
proof it suffices to observe that

E(1− α)2 = (1− Eα)2 + var(α) .

• In the weighted casedi =
√

n
i(n−i) for i = 1, . . . , n − 1, we obtain from (26) and (27) that for

i ≤ a:

Gi = β̄2 i

n− i
E

[
n− U

U

]

+ σ2 . (29)

This is always an increasing function ofi on [1, a], showing that the maximum ofGi can not be
strictly smaller thana. By symmetry, it can also never be larger thanb, from which we conclude
that it is always betweena andb, i.e., in the support ofPU .
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