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Abstract

We present the group fused Lasso for detection of multipengk-points shared by a set of
co-occurring one-dimensional signals. Change-pointdatected by approximating the original
signals with a constraint on the multidimensional totaiiaton, leading to piecewise-constant ap-
proximations. Fast algorithms are proposed to solve theltheg optimization problems, either
exactly or approximately. Conditions are given for corgsisly of both algorithms as the number of
signals increases, and empirical evidence is providedppat the results on simulated and array
comparative genomic hybridization data.

1 Introduction

Finding the place (or time) where most or all of a set of omaaltisional signals (gorofile9 jointly
change in some specific way is an important question in sefields. A common situation is when
we want to find change-points in a multidimensional signaj,,én audio and image processing [1, 2],
to detect intrusion in computer networks [3, 4], or in finah@nd economics time series analysis [5].
Another important situation is when we are confronted wekesal 1-dimensional signals which we
believe share common change-points, e.g., genomic profieset of patients. The latter application is
increasingly important in biology and medicine, in parkégufor the detection of copy-number variation
along the genome [6], or the analysis of microarray and gefiekage studies [7]. The common
thread in biological applications is the search for dataepas shared by a set of individuals, such as
cancer patients, at precise places on the genome; in parfisudden changes in measured values. As
opposed to the segmentation of multidimensional signatk a8 speech, where the dimension is fixed
and collecting more data means having longer profiles, thgteof signals in genomic studies (i.e.,
the number of probes measured along the genome) is fixed fgea gchnology while the number of
signals (i.e., the number of individuals) can increase whertollect data about more patients. From a
statistical point of view, it is therefore of interest to ééyp methods that identify multiple change-points
shared by several signals that can benefit from increasegumber of signals.

There exists a vast literature on the change-point deteptioblem [8, 9]. Here we focus on compu-
tationally efficient methods to segment a multidimensi@igihal by approximating it with a piecewise-
constant one, using quadratic error criteria. It is welbln that, in this case, the optimal segmentation
of a p-dimensional signal of length into k¥ segments can be obtained @(n?pk) by dynamic pro-
gramming [10, 11, 12]. However, the quadratic complexity:irs prohibitive in applications such as
genomics, where, can be in the order of0° to 107 with current technology. An alternative to such
global procedures, which estimate change-points as solutionglobal optimization problem, are fast
local procedures such as binary segmentation [13], which deteekpoints by iteratively applying a
method for single change-point detection to the segmerttsrma after the previous change-point is
detected. While such recursive methods can be extremalyiriethe order ofO(nplog(k)) when the
single change-point detector @3(np), quality of segmentation is questionable when comparet wit
global procedures [14].



Forp = 1 (a single signal), an interesting alternative to these ajl@md local procedures is to
express the optimal segmentation as the solution of a compemization problem, using the (convex)
total variation instead of the (non-convex) number of jurtgppenalize a piecewise-constant function
in order to approximate the original signal [15, 16]. Theulesg piecewise-constant approximation of
the signal, defined as the global minimum of the objectivetion, benefits from theoretical guaranties
in terms of correctly detecting change-points [17, 18], ead be implemented efficiently if(nk) or
O(nlog(n)) [19, 17, 20].

In this paper we propose an extension of total-variatioretéawethods for single signals to the
multidimensional setting, in order to approximate a mintiensional signal with a piecewise-constant
signal with multiple change-points. We define the approxiomsas the solution of a convex optimization
problem which involves a quadratic approximation errorgdeed by the sum of the Euclidean norms
of the multidimensional increments of the function. Thelgpeon can be reformulated as a group Lasso
[21], which we show how to solve exactly and efficiently. Aftatively, we provide an approximate yet
often computationally faster solution to the problem usangroup LARS procedure [21]. In the latter
case, using the particular structure of the design matexcan find the firsk change-points i® (npk),
thus extending the method of [17] to the multidimension#irsg.

Unlike most previous theoretical investigations of chapgat methods (e.g., [17, 18]), we are not
interested in the case where the dimengidn fixed and the length of the profilesincreases, but in
the opposite situation whereis fixed andp increases. Indeed, this corresponds to the case in genomics
where, for examplep would be the fixed number of probes used to measure a sigmagj #ie genome,
and p the number of samples or patients analyzed. We want to desigiethod that benefits from
increasingp in order to identify shared change-points, even thoughitiratto-noise ratio may be very
low within each signal. As a first step towards this questieagive conditions under which our method
is able to consistently identify a single change-poinpascreases. We also show by simulation that
the method is able to correctly identify multiple changérpmasp — +oo, validating its relevance in
practical settings.

The paper is organized as follows. After fixing notation irct8m 2, we present the group fused
Lasso method in Section 3. We propose two efficient algosthmsolve it in Section 4, and discuss
its theoretical properties in Section 5. Lastly, we provadeempirical evaluation of the method and
a comparison with other methods in the study of copy numbgatians in cancer in Section 6. A
preliminary version of this paper was published in [22].

2 Notation

For any two integers < v, we denote byu, v] the interval{u,u + 1,...,v}. For anyu x v matrix
M we notelM; ; its (i, j)-th entry, and| M || = \/Z;‘:1 > i1 ij its Frobenius norm (or Euclidean
norm in the case of vectors). For any subsets of indides- (al, . ,a‘A|) € [l,u]‘A| and B =

(b1,...,byp) € [1,0]1B], we denote byM4 g the |A| x |B| matrix with entriesM,, ,, for (i, ) €
[1,|A|] x [1,|B|]. For simplicity we will uses instead of 1, u] or [1,v], i.e., 4; o is thei-th row of A and
A, j is thej-th column ofA. We notel,,, theu x v matrix of ones, and, thep x p identity matrix.

3 Formulation

We considerp real-valued profiles of length, stored in am x p matrix Y. Thei-th profileY,; =
(Y1,4,...,Y,,) is thei-th column ofY". We model each profile as a piecewise-constant signal dedup
by noise, and assume that change-point locations tend tlodsedsacross profiles. Our goal is to detect
these shared change-points, and benefit from the possiiglg flumberp of profiles to increase the
statistical power of change-point detection.



3.1 Segmentation with a total variation penalty

Whenp = 1 (a single profile), a popular method to find change-pointssigaal is to approximate it by
a piecewise-constant function using a quadratic errogrioit, i.e., to solve

n—1

in |Y —U|? subjectto (Ui —U;) <k, 1
Join || Y —U|* subj ;wﬂ Ui) < (1)

where) is the Dirac function, equal Wif its argument is nulll otherwise. In other words, (1) expresses
the best approximation &f by a piecewise-constant profilé with at mostk jumps. It is well-known
that (1) can be solved i®(n2k) by dynamic programming [10, 11, 12]. Although very fast when
is of moderate size, the quadratic dependency renders it impractical in current computers when
reaches millions or more, which is often the case in manyiegmn such as segmentation of genomic
profiles.

An alternative to the combinatorial optimization probleh) i to relax it to a convex optimization
problem, by replacing the number of jumps by the convex teehtion (TV) [15], i.e., to consider:

n—1
1 )
UI%}R%@”Y_UH +)\Z_Zl|Uz'+1—Uz'|o (2)

For a given\ > 0, the solution/ € R™ of (2) is again piecewise-constant. Recent work has shoain th
(2) can be solved much more efficiently than (1): [19] progloadast coordinate descent-like method,
[17] showed how to find the firgt change-points iteratively i®(nk), and [20] proposed @ (n In(n))
method to find all change-points. Adding penalties propagl to thel; or £5 norm of U to (2) does not
change the position of the change-points detected [16aR8]the capacity of TV denoising to correctly
identify change-points when increases has been investigated in [17, 18].

Here, we propose to generalize TV denoising to multiple f@®tby considering the following con-
vex optimization problem, fo¥ € R™*P:

. 1 ) n—1
min SV =U]| H;”UZ“" ~Uie - (3)
The second term in (3) can be considered a multidimensioWaltTpenalizes the sum of Euclidean
norms of the increments df, seen as a time-dependent multidimensional vector, anetesdto the
classical 1-dimensional TV when= 1. Intuitively, when\ increases, this penalty will enforce many
increment vectord/; 1« — U; o t0 collapse ta0, just like the total variation in (2) in the case of
dimensional signals. This implies that the positions of-aero increments will be the same for all
profiles. As a result, the solution to (3) provides an appration of the profile§” by ann x p matrix
of piecewise-constant profilés which share change-points.

While (3) is a natural multidimensional generalization leé tlassical TV denoising method (2), we
more generally investigate the following variant:

n—1
. 1 ||Uz'+1o—Uio||
Y =UJ?+A : : 4
Jmin Y —U|*+ ZI T : ©)
Where(di)i:lwnf1 are position-dependant weights which affect the pen&zatf the jump differently

at different positions. While (4) boils down to (3) for unifo weightsd; = 1,i = 1,...,n — 1, we

will see that the unweighted version suffers from boundd#figces and that position-dependent schemes

such as:
n

Vi € [l,n—l], d; = m, (5)

are both theoretically and empirically better choices.
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To illustrate the grouping effect of the penalty in (4), Figu compares the segmentation of three
simulated profiles obtained with and without enforced sitgaaf change-points across profiles. We sim-
ulated three piecewise-constant signals corrupted bypem#ent additive Gaussian noise. All profiles
have length 500 and share the safr@hange-points, though with different amplitudes, at posit 38,
139, 268, 320 and 397. On the left-hand side, we show thesfalsange-points captured by TV denois-
ing with weights (5) applied to each signal independently.ti@ right, we show the fir§tchange-points
captured by formulation (4). We see that the latter formattefinds the correct change-points, whereas
treating each profile independently leads to errors. Fangke, the first two change-points have a small
amplitude in the second profile and are therefore very difftoudetect from the profile only, while they
are very apparent in the first and third profiles.

Figure 1: First5 change-points detected on three simulated profiles by T\bidieny of each profile
(left) and by joint TV denoising (right).

3.2 Reformulation as a group Lasso problem

Itis well-known that the 1-dimensional TV denoising prahl€?) can be reformulated as a Lasso regres-
sion problem by an appropriate change of variable [17]. We sltow that our generalization (4) can be
reformulated as a group Lasso regression problem, whidtbe/itonvenient for theoretical analysis and
implementation [21]. To this end, we make the change of ate&( 3, v) € R(*~1)*P x R1*P given by:

Bi,.:w fori=1,...,n—1.
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In other wordsd; 3; ; is the jump between theth and the(i + 1)-th positions of thej-th profile. We
immediately get an expression foras a function ofs and~:

Ul,' =7,
i—1

Uie=7+Y diBje fori=2,...,n.
j=1

This can be rewritten in matrix form as
U= 1n,1’7‘|‘Xﬁa (6)

whereX is then x (n— 1) matrix with entriesX; ; = d; for i > j, and0 otherwise. Making this change
of variable, we can re-express (4) as follows:

1 n—1
i “lY —XB-1 240 Wl 7
BeR(nfl)HngeRwQII B—1pavI” + ;Hﬁz, | (7)

For any$ € R("=1*P the minimum iny is attained withy = 1, ,,(Y — X 3)/n. Plugging this into (7),
we get that the matrix of jumps$ is solution of

1 - B n—1
i —lY = X8>+ A ol 8
s SIY = XB 1+ ;Hﬁz, || ®)

whereY and X are obtained fronY” and X by centering each column.

Equation (8) is now a classical group Lasso regression enolp21], with a specific design matrix
X and groups of features corresponding to the rows of the xnétriThe solution3 of (8) is related to
the solutionU of our initial problem (4) by equation (6).

4 Implementation

Although (4) and (8) are convex optimization problems tha @ principle be solved by general-
purpose solvers [24], we want to be able to work in dimensibas reach millions or more, making
this computationally difficult. In particular, the desigratrix X in (8) is a non-sparse matrix of size
n x (n — 1), and cannot even fit in a computer's memory wheis large. Moreover, we would ideally
like to obtain solutions for various values &f corresponding to various humbers of change-points, in
order to be able to select the optimal number of change-aiging statistical criteria. In the single
profile case § = 1), fast implementations i®(nk) or O(nInn) have been proposed [19, 17, 20].
However, none of these methods is applicable directly tgthel setting since they all rely on specific
properties of the = 1 case, such as the fact that the solution is piecewise-affineaind that the set of
change-points is monotically decreasing with

In this section we propose two algorithms to respectivedgictly or approximatelysolve (4) effi-
ciently. We adopt the algorithms suggested by [21] to sdieegroup Lasso problem (8) and show how
they can be implemented very efficiently in our case due toptmticular structure of the regression
problem. We have placed in Annex A several technical lemmntasiwshow how to efficiently perform
several operations with the given design mafXixhat will be used repeatedly in the implementations
proposed below.

4.1 Exact solution by block coordinate descent

A first possibility to solve the group Lasso problem (8) isatidw a block coordinate descent approach,
where each group is optimized in turn with all other groupedix It can be shown that this strategy



converges to the global optimum, and is reported to be staideefficient [21, 25]. As shown by [21],

it amounts to iteratively applying the following equatiamdach block = 1,...,n — 1 in turn, until
convergence:
1 A
Biw s — 1=+ Si, 9)
i 1S/ 4+

wherey; = || X, ; ||* = i(n—i)d? /nandS; = X/, (Y — X37"), and whergs~* denotes thén—1) xp
matrix equal to3 except for the-th row B, f = 0. The convergence of the procedure can be monitored
by the Karush-Kuhn-Tucker (KKT) conditions:

Aﬁio
T =0 VBi«e#0,
| Bie |l Pos 7 (10)

| =X (Y =XB) | <A VBia=0.

-X, (Y -XB) +

Since the number of blocks can be very large and we expect only a fraction of non-zerokislat the
optimum (corresponding to the change-points), we impldgatkthis block coordinate descent with an
active set strategy. In brief, a set of active groupsorresponding to non-zero groups is maintained, and
the algorithm alternates between optimizifigover the active groups il and updating4 by adding

or removing groups based on violation of the KKT conditiorihe resulting pseudo-code is shown
in Algorithm 1. The inner loop (lines 3-7) corresponds to tmimization of 3 on the current active
groups, using iteratively block coordinate descent (9)eAtonvergence, groups that have been shrunk
to 0 are removed from the active set (line 8), and the KKT condgiare checked outside of the active set
(lines 9-10). If they are not fulfilled, the group that mosilaies the conditions is added to the active set
(line 11), otherwise the current solution satisfies all KKohditions and is therefore the global optimum
(line 13).

Although it is difficult to estimate the number of iteratiomseded to reach convergence for a certain
level of precision, we note that by Lemma 5 (Annex A), compataof X Y in line 1 can be done in
O(np), and each group optimization iteration (lines 3-7) reqytremputingXIiX.,A (line 5), done in
O(|A|) (see Lemma 6 in Annex A), then computifg(line 5) inO(|.A|p) and soft-thresholding (line 6)
in O(p). The overall complexity of each group optimization itevatis thereforeD(|.4|p). Since each
group in. A must typically be optimized several times, we expect corifyldhat is at least quadratic
in |.A] and linear inp for each optimization over an active sét(lines 3-7). To check optimality of a
solution after optimization over an active sétwe need to comput& " X 3 (line 9) which takes) (np)
(see Lemma 7, Annex A). Although it is difficult to upper bouthe number of iterations needed to
optimize overA, this shows that a best-case complexity to findhange-points, if we correctly add
groups one by one to the active set, would®epk) to checkk times the KKT conditions and find
the next group to add, and(pk?) in total if each optimization over an active sétis in O(p|.A|?). In
Section 6, we provide some empirical results on the behaf¥ititis block coordinate descent strategy.

4.2 Group fused LARS implementation

Since exactly solving the group Lasso with the method deedrin Section 4.1 can be computationally
intensive, it may be of interest to find fast, approximatausohs to (8). We propose to implement a
strategy based on the group LARS, proposed in [21] as a gogdavapproximately find the regular-
ization path of the group Lasso. More precisely, the groufRBrapproximates the solution path of (8)
with a piecewise-affine set of solutions and iteratively $irthange-points. The resulting algorithm is
presented here as Algorithm 2, and is intended to approgignablve (8). Change-points are added one
by one (lines 4 and 8), and for a given set of change-pointsdhdgion moves straight along a descent
direction (line 6) with a given step (line 7) until a new chargpint is added (line 8). We refer to [21]
for more details and justification for this algorithm.

While the original group LARS method requires storage andimadation of the design matrix [21],
implausible for largen here, we can again benefit from the computational tricksigealin Annex A



Algorithm 1 Block coordinate descent algorithm

Require: centered datd’, regularization parametex.
1: Initialize A« 0,3=0,C «+ X Y.

2: loop

3:  repeat

4: Picki € A.

5: ComputeS; « Cjo — X, X537

6: Updateg; , according to (9).

7: until convergence

8:  Remove inactive groupsd « A\ {i € A : §;+ = 0}.
9:  Check KKT:S + C — XTX5.

10: 4 < argmax ;g4 || Siell®, M =] Saell?
11:  if M > A% then
12: Add a new group:A < AU {u}.

13:  else

14: return g.
15:  end if

16: end loop

to efficiently run the fast group LARS method. Computilid Y in line 1 can be done i®(np) using
Lemma 5. To compute the descent direction (line 6), we firstpatew in O(].A|p) using Lemma
8, thena in O(np) using Lemma 7. To find the descent step (line 7), we need t@ sopolynomial
equations of degree 2, the coefficients of which are compuatélp), resulting in a0 (np) complexity.
Overall the main loop for each new change-point (lines 2+akBsO(np) in computation and memory,
resulting inO(npk) complexity in time andD(np) in memory to find the firsk change-points. We
provide in Section 6 empirical results that confirm this tle¢iocal complexity.

Algorithm 2 Group fused LARS algorithm
Require: centered dat&, number of breakpoints.
1: Initialize A < 0, ¢ < X Y.
2: fori =1tok do

3: if i=1then

4: First change-point & <— argmin jc(y 17 | &0 ||, A < {@}.

5. endif .

6: Descent direction: compute « <X0T,AX°~4> éae,thena = X T X qw.

7. Descent step: for eaahe [1,n — 1]\ A4, find if it exists the smallest positive solutien, of the

second-order polynomial ia:
H éu,o — QG0 H2 = H év,o — QQy,e H2 )

wherev is any element of4.
8:  Next change-pointi «— argmin ;¢ 1) | o [, A = AU {a}.
9: Updateé < ¢ — a;a.
10: end for

5 Theoretical analysis

In this section, we study theoretically to what extent thiénestor (4) recovers correct change-points.
The vast majority of existing theoretical results for oflisegmentation and change-point detection con-



sider the setting whergis fixed (usuallyp = 1), andn increases (e.g., [2]). This typically corresponds
to cases where we can sample a continuous signal with inegedensity, and wish to locate more
precisely the underlying change-points as the densityases.

We propose a radically different analysis, motivated nigtalg applications in genomics. Here, the
length of profilesn is fixed for a given technology, but the number of profilesan increase when more
samples or patients are collected. The property we wouddttikstudy is then, for a given change-point
detection method, to what extent increasinigr fixed n allows us to locate more precisely the change-
points. While this simply translates our intuition thatrieasing the number of profiles should increase
the statistical power of change-point detection, and wthile property was empirically observed in [7],
we are not aware of previous theoretical results in thisnggettin particular we are interested in the
consistency of our method, in the sense that it should ciyrdetect the true change-points if enough
samples are available.

5.1 Consistent estimation of a single change-point

As a first step towards the analysis of this “fixedhcreasingp” setting, let us assume that the observed
centered profiled” are obtained by adding noise to a set of profiles wilingle shared change-point
between positions andu + 1, for someu € [1,n — 1]. In other words, we assume that

Y =XB"+W,

wheres* is an(n — 1) x p matrix of zeros except for the-th row 3; ,, andW is a noise matrix whose
entries are assumed to be independent and identicallybditstd with respect to a centered Gaussian
distribution with variancer2. In this section we study the probability that the first cheupgint found

by our procedure is the correct one, wheincreases. We therefore consider an infinite sequence of
jumps (ﬁ;j,i>i>1, and letting3; = £ 37, (8; ;)?, we assume that® = lim,, . §; exists and is finite.

We first characterize the first selected change-poiptinsreases.

Lemma 1. Assume, without loss of generality, that- n/2, and let, fori € [1,n — 1],

Gi - dgwoj +
n n

72 2 2 .9 _ 2 . <
pedzds, y {z (n—u)” ifi<u, (11)

2 u?(n—1i)?> otherwise.

Whenp — +o0, the first change-point selected by the group fused Lassis (#)argmax ;c[; ,—1) Gi
with probability tending tal.

Proof of this result is given in Annex B. From it we easily dedwconditions under which the first
change-point is correctly found with increasing prob#pis p increases. Let us first focus on the
unweighted group fused Lasso (3), corresponding to thimgetf = 1fori=1,...,n — 1.

Theorem 2. Leta = u/n be the position of the change-point scaled in the inteftval], and

— ) 2(n — L
&i _ ngz(l ai)l(i LQn) . (12)
2 2n

If 02 < &2, the probability that the first change-point selected byuhaeighted group fused Lasso (3)
is the correct one tends tbasp — +o0o. Wheno? > &2, it is not the correct one with probability
tending tol.

This theorem, the proof of which can be found in Annex C, de=eseveral comments.

¢ To detect a change-point at positian= an, the noise levet? must not be larger than the critical
values?2 given by (12), hence the method is not consistent for alltjgrs. 52 decreases mono-
tonically froma = 1/2 to 1, meaning that change-points near the boundary are moreuttiffo
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detect correctly than change-points near the center. Ts¢ dificult change-point is the last one
(u = n — 1) which can only be detected consistentlyfis smaller than

_ 2[3? _
Uffl/n = T + O(?’L 1).

e For a given level of noise&?, change-point detection is asymptotically correct for anyc
[e,1 — €], wheree satisfiess? = 52__, i.e.,

1—er

= |- 4o 12
2n32 '

This shows in particular that increasing the profile lengtmcreases the relative interval (as a
fraction of n) where change-points are correctly identified, and that areget as close as we
want to the boundary for large enough.

e Wheno? < &2, the correct change-point is found consistently wheincreases, showing the
benefit of the accumulation of many profiles.

Theorem 2 shows that the unweighted group fused Lasso (8rsudfom boundary effects, since
it may not correctly identify a single change-points near loundary is the noise is too large. In fact,
Lemma 1 tells us that if we miss the correct change-pointtioosiit is because we estimate it more
towards the middle of the interval (see proof of Theorem Zfetails). The larger the noise, the more
biased the procedure is. We now show that this issue can lwbviilxen we consider the weighted group
fused Lasso (4) with well-chosen weights.

Theorem 3. The weighted group fused Lasso (4) with weights given by ¢&gctly finds the first
change-point at any position with probability tendingltasp — +occ.

The proof of Theorem 3 is postponed to Annex D. It shows thattbighting scheme (5) cancels the
effect of the noise and allows us to consistently estimayecaange-point, independently of its position
in the signal, as the number of signals increases.

5.2 Consistent estimation of a single change-point with flugating position

An interesting variant of the problem of detecting a chapget common to many profiles is that of
detecting a change-point with similar location in many pesfi allowing fluctuations in the precise
location of the change-point. This can be modeled by asgyuthit the profiles are random, and that the
i-th profile has a single change-point of val@ieat positionU;, where(g;, Ui);—1 ..., are independent
and identically distributed according to a distributibh= Pz ® Py (i.e., we assumg,; independent
from U;). We denote5* = Ep,3* andp; = Py(U = i) fori € [1,n — 1]. Assuming that the support
of Py is [a,b] with 1 < a < b < n — 1, the following result extends Theorem 2 by showing that the
first change-point discovered by the unweighted group fllsesdo is in the support dP; under some
condition on the noise level, while the weighted group fulsasiso correctly identifies a change-point in
the support ofP;; asymptotically without conditions on the noise.

Theorem 4. 1. Leta = U/n be the random position of the change-point[onl| and ov,, = a/n
andajs = b/n the position of the left and right boundaries of the suppdérPp scaled to[0, 1].
If 1/2 € (aum, aar), then for any noise level?, the probability that the first change-point selected
by the unweighted group fused Lasso (3) is in the suppofotends tol asp — +oo. |If
1/2 < apy, OF apr < 1/2, let

_ o fam > g,

&3, =nB? [(1 - Ba)? +var(a)?] x { 9" 2 2 (13)
v 1oy mom if apy < 5
2 M7, 2



The probability that the first selected change-point is & sapport of?; tends tol wheno? <
G%,- Wheno? > 5% , itis outside of the support d?; with probability tending tal.

2. The weighted group fused Lasso (4) with weights given Yofin@s the first change-point in the
support of Py with probability tending tal asp — +oo, independently of? and of the support
of Py.

This theorem, the proof of which is postponed to Annex Estllates the robustness of the method to
fluctuations in the precise position of the change-pointeshhaetween profiles. Although this situation
rarely occurs when we are considering classical multidsiweral signals such as financial time series
or video signals, it is likely to be the rule when we considafiles coming from different biological
samples, where for example we can expect frequent genotei@tbns at the vicinity of important
oncogenes or tumor suppressor genes. Although the theargngiges a condition on the noise level
to ensure that the selected change-point lies in the suppthe distribution of change-point locations,
a precise estimate of the location of the selected chanme-ge a function ofP;;, which generalizes
Lemma 1, is given in the proof.

5.3 The case of multiple change-points

While the theoretical results presented above focus oneghection of a single change-point, the real
interest of the method is to estimate multiple change-poihhe extension of Theorem 2 to this setting
is, however, not straightforward and we postpone it for rieitafforts. We conjecture that the group
fused Lasso estimator can, under certain conditions, stamly estimate multiple change-points. More
precisely, in order to generalize the proof of Theorem 2, wistranalyze the path of the vectdrs, ),
and check that, for somgin (3) or (4), they reach their maximum norm precisely at the tthange-
points. The situation is more complicated than in the simhl@nge-point case since, in order to fulfill
the KKT optimality conditions, the vectorg; ) must hit a hypersphere at each correct change-point,
and must remain strictly within the hypersphere betweerseautive change-points. This can probably
be ensured if the noise level is not too high (like in the gnghange-point case), and if the positions
corresponding to successive change-points on the hypesgine far enough from each other, which
could be ensured if two successive change-points are naidse to each other, and are in sufficiently
different directions. Although the weighting scheme (5umes consistent estimation of the first change-
point independently of the noise level, it may however nosbi#icient to ensure consistent estimation
of subsequent change-points.

Although we propose no theoretical results besides thegeaares for the case of multiple change-
points, we provide experimental results below that conflrat,twhen the noise is not too large, we can
indeed correctly identify several change-points, withyadaility of success increasing t@asp increases.

5.4 Estimating the number of change-points

The number of change-points detected by the group fusedliasise multidimensional signal depends
on the choice of\ in (3) and (4). In practice, we propose the following schemerder to estimate
a segmentation and the number of change-points. We try ¢éotseh that over-segments the multidi-
mensional signal, that is, finds more change-points that addwormally expect for the given type of
signal or application. Then, on the set/othange-points found, we perform post-processing using a
simple least-squares criteria. Briefly, for each given stlb$k’ < k change-points, we approximate
each signal between successive change-points with the wadae of the points in that interval; then,
we calculate the total sum of squared errors (SSE) betweesethof real signals and these piecewise-
constant approximations to them. Though it may appear ctatipoally intensive or even impossible
to do this for all subsets df < k change-points, a dynamic programming strategy (e.g.niépns that
the best subset &f < k change-points can be calculated foridlie {1,...,k} in O(k?).

It then remains to choose the “bedt’c {1, ..., k} using, for example, a model-selection strategy.
The optimal SSE fok’ + 1 (which we may callSSE(k’ + 1) to ease notation), will be smaller than
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SSE(K') but at a certain point, adding a further change-point wilkehao physical reality, it only
improves the SSE due to random noise. Here, we implementeatteothproposed in [26, 6] where we
first normalize the SSE fa¥' = 1,..., k into a score/ (k) such that/(1) = k andJ(k) = 1, in such a
way theJ (k') has an average slope ofl betweenl andk; we then try to detect a kink in the curve by
calculating the discrete second derivative/¢k’), and selecting th&’ after which this second derivative
no longer rises above a fixed threshold (typically).

6 Experiments

In this section we test the group fused Lasso on several ateuiland real data sets. All experiments
were run under Linux on a machine with two 4-core Intel Xedr6&Hz processors and a total of 16Gb
of RAM. We have implemented the group fused Lasso in MATLAB: packagé€FLseg is available
for download.

6.1 Speed trials

In a first series of experiments, we tested the behavior ofjtbep fused Lasso in terms of computa-
tional efficiency. We simulated multidimensional profileghwarious lengths: between2* and223,
various dimensiong betweenl and2'®, and various number of shared change-poinkstweenl and

27. In each case, we first ran the iterative weighted group flieRIS (Section 4.2) to detect succes-
sive change-points, and recorded the correspondlimglues. We then ran the exact group fused Lasso
implementation by block coordinate descent (Section 4nlthe same\ values. Figure 2 shows speed
with respect to increasing one pf n and k while keeping the other two variables fixed, for both im-
plementations. The axes drg-log, so the slope gives the exponent of the complexity (resp. and

k). For the weighted group fused LARS, linearity is clearest, whereas forn andp, the curves are
initially sub-linear, then slightly super-linear for ezinely large values af andp. As these time trials
reach out to the practical limits of current technology, we that this is not critical - on average, even
the longest trials here took less than 200 seconds. The te€idhsed group Lasso results are perhaps
more interesting, as it is harder to predict in advance thetmal time performance of the algorithm.
Surprisingly, when increasing (p andk fixed) or increasing (n andk fixed), the group fused Lasso
eventually becomes as fast the iterative, determinisbagifused LARS. This suggests that at the lim-
its of current technology, ik is small (say, less than 10), the potentially superior perémce of the
Lasso version (see later) may not even be punished by a stowdime with respect to the LARS ver-
sion. We suggest that this may be due to the Lasso optimizatioblem becoming relatively “easier”
to solve whem or p increases, as we observed that the Lasso algorithm covgrgekly to its final
set of change-points. The main difference between the Lasdd_ARS performance appears when
the number of change-points increases: with respectivaérigapcomplexities cubic and linear ik, as
predicted by the theoretical analysis, Lasso is alreadyQltiines slower than LARS when we seek 100
change-points.

6.2 Accuracy for detection of a single change-point

Next, we tested empirically the accuracy the group fusedd éar detecting a single change-point. We
first generated multidimensional profiles of dimensjgrwith a single jump of height at a position

u, for different values ofp andu. We added to the signals an i.i.d. Gaussian noise with vagian
&2 = 10.78, the critical value corresponding to= 0.8 in Theorem 2. We ran 1000 trials for each value
of w andp, and recorded how often the group fused Lasso with or withaights correctly identified
the change-point. According to Theorem 2, we expect thath® unweighted group fused Lasso, for
50 < u < 80 there is convergence in accuracyltevhenp increases, and far > 80, convergence in
accuracy to zero. This is indeed what is seen in Figure 3befel), withu = 80 the limit case between

Available atht t p: / / cbi 0. ensnp. fr/ GFLseg
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time (s)

— GFlLars — GFlars D —— GFlLars |
& — GFLasso & — GFlLasso & = GFLasso
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Figure 2: Speed trials for group fused LARS (top row) and Lasso (bottomrow). Left column:
varyingn, with fixedp = 10 andk = 10; center columnyvarying p, with fixedn = 1000 andk = 10;
right column:varying k, with fixedn = 1000 andp = 10. Figure axes arlg-log. Results are averaged
over 100 trials.

the two different modes of convergence. The center paneligafr& 3 shows that when the default
weights (5) are added, convergence in accuracy to 1 occtossaallu, as predicted by Theorem 3. In
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Figure 3: Single change-point accuracy for the group fused LassoAccuracy as a function of the
number of profilee when the change-point is placed in a variety of positians 50 to u = 90 (left
and centre plots, resp. unweighted and weighted group fuassb), or:u = 50 =2 tou = 90 + 2
(right plot, weighted with varying change-point locatipfgr a signal of length 100.

addition, the right-hand-side panel of Figure 3 shows tedal the same trials except that change-point
locations can vary uniformly in the interval+ 2. We see that, as predicted by Theorem 4, the accuracy
of the weighted group fused Lasso remains robust againstifitions in the exact change-point location.
6.3 Accuracy for detecting multiple change-points

To investigate the potential for extending the results todhse of many shared change-points, we fur-
ther simulated profiles of length = 100 with a change-point aall of positions10, 20,...,90. We

12



consider dimensiong betweenl and500. Jumps at each change-point of each profile were drawn from
a Gaussian with mean 0 and variance 1; we then added centatssi&n noise with? € {0.05,0.2, 1}

to each position in each profile. For each valug ahdo?, we ran one hundred trials of both implemen-
tations, with or without weights, and recorded the accukgoyach method, defined as the percentage
of trials where the firsP change-points detected by the method are exacthyd tttee change-points.
Results are presented in Figure 4 (from left to right, resp= 0.05,0.2,1). Clearly, the group fused
Lasso outperforms the group fused LARS, and the weightesloreof each algorithm outperforms the
unweighted version. Although the group LARS is usually édesed a reliable alternative to the exact
group Lasso [21], this experiment shows that the exact opdition by block coordinate descent may be
worth the computational burden if one is interested in aateugroup selection. It also demonstrates that,
as we conjectured in Section 5.3, the group fused Lasso cesistently estimate multiple change-points
as the number of profiles increases.

1 1 1
0.9 0.9 0.9r¢
0.8 0.8 0.8t
0.7 0.7 0.7¢
0.6 0.6 0.6

Accuracy
o
a
Accuracy
o
al
Accuracy
o
(&)

o
~
o
~
o
~

0.3 0.3 0.3}

0.2 U-LARS | 0.2 0.2}
——— W-LARS

0.1 U-Lasso |{ 0.1 0.1}
—— W-Lasso

0 : : 0 0 ‘ :
200 400 0 200 400
p p p

Figure 4: Multiple change-point accuracy. Accuracy as a function of the number of profilesvhen
change-points are placed at the nine positiéh@, 20, ...,90} and the variance? of the centered
Gaussian noise is eithér0s (left), 0.2 (center) and (right). The profile length is 100.

6.4 Application to gain and loss detection

We now consider a possible application of our method for #tection of regions with frequent gains
(positive values) and losses (negative values) among & §81A copy number profiles, measured by
array comparative genomic hybridization (aCGH) technplfy]. We propose a two-step strategy for
this purpose: first, find an adequate joint segmentationesifnals; then, check the presence of gain
or loss on each interval of the segmentation by summarizaul @rofile by its average value on the
interval. Note that we do not assume that all profiles shaaethxthe same change-points, but merely
see the joint segmentation as an adaptive way to reducerttendion and remove noise from data.

In practice, we used group fused LARS on each chromosomeettifgd a set of100 candidate
change-points, and selected a subset of them by post-gingess described in Section 5.4. Then, in
each piecewise-constant interval between successivedslitchange-points, we calculate the mean of
the positive segments (shown in green in Figures 5(a) andl &fd the mean of the negative segments
(shown in red). The larger the mean of the positive segmémtsmore likely we are to believe that a
region harbors an important common gain; the reasoningagaus for important common losses and
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the mean of the negative segments. Obviously, many othtistital tests could be carried out to detect
frequent gains and losses on each segment, once the jomestgion is performed.

We compare this method for detecting regions of gain andwisthe state-of-the-art H-HMM
method [27], which has been shown to outperform severak ottghods in this setting. As [27] have
provided their algorithm online with several of their dag¢dsstested in their article, we implemented our
method and theirs (H-HMM) on their benchmark data sets.

In the first data set in [27], the goal is to recover two regierane amplified, one deleted, that are
shared in 8 short profiles, though only 6 of the profiles extgbch of the amplified or deleted regions.
Performance is measured by area under ROC curve (AUC)wioitp[27]. Running H-HMM with the
default parameters, we obtained an AUC (averaged overd)taf0.96 + .01, taking on average 60.20
seconds. The weighted group fused LARS, asked to select riamints and followed by dynamic
programming, took 0.06 seconds and had an AUQ.@f. Thus, the performance of both methods was
similar, though weighted group fused LARS was around 100@difaster.

The second data set was a cohort of lung cancer cell lineimallig published in [28, 29]. Asin [27],
we concentrated on the 18 NSCLC adenocarcinoma (NA) cellifrigure 5 shows the score statistics
obtained on Chromosome 8 when using either weighted graenfuUARS or H-HMM. Weighted group
fused LARS first selectetll0 candidate change-points per chromosome, then followéthizattion of
the number of change-points by dynamic programming, todiotial 4.7 seconds and finally selected
260 change-points. In contrast, H-HMM took 38 minutes (t@€ations, as given in the code provided
by the authors). The H-HMM scores should look like those ghawrigure 4 (top panel) of [27]; the
difference is either due to the stochastic nature of theritkgo or using a different number of iterations
than given in the sample code by the authors. In any caseg &fh¥C locus (neai3 x 107 bp), both
methods strongly suggest a common gained region. Howdwesupposed advantage of H-HMM to
very sparsely predict common gains and losses is not cleay toe example, it gives high common gain
confidence to several fairly large genomic regions betweandd14x 107 bp.

0.5
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Figure 5:Jaoint scores for a set of 18 NSCLC adenocarcinoma cell line&(a) using weighted group
fused LARS; 5(b) using H-HMM with the actual code provided[By].
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6.5 Application to bladder tumor aCGH profiles

We further considered a publicly available aCGH data sedfladder tumor samples [30]. Each aCGH
profile gave the relative quantity of DNA for 2215 probes. \Wmoved the probes corresponding to sex
chromosomes because the sex mismatch between some patiétite reference made the computation
of copy number less reliable, giving us a final list of 2143h@s.

Results are shown in Figure 6. 97 change-points were sdlbgtéhe weighted group fused LARS;
this took 1.1 seconds (Figure 6(c)). The H-HMM method (Fégbifd)) took 13 minutes for 200 iterations
(after 100 iterations convergence had not occured). We tedomprehensive catalogue of common
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Figure 6: Bladder cancer profiles. 6(a) shows one of the original 57 profiles and its associated
smoothed version. 6(b) shows the result of superimposiegthoothed versions of tH& bladder tu-
mor aCGH profiles obtained using weighted group fused LARIBvVi@d by dimension-selection. 6(c)
shows the result of transforming the set of smoothed outimbs“scores” for amplification/deletion
(see Section 6.4) and 6(d) the corresponding output for &M method [27]. Vertical black lines
indicate chromosome boundaries.

genomic alterations in bladder cancer provided in Table [314 to validate the method and compare
with H-HMM. Our method (Figure 6(c)) concurred with the knofvequently-amplified chromosome
arms 20q, 8q, 199, 1q, 20p, 17q, 19p, 5p, 2p, 10p, 3q and 7pfreqdently-lost 9p, 9q, 11p, 10q,
13q, 8p, 17p, 18q, 2q, 59, 18p, 14g and 16g. The only known camhyviost region which showed
unconvincing common loss here was 6q. As for the H-HMM mettiidure 6(d)), it selects a small
number of very small regions of gain and loss, which are diffito verify with respect to the well-
known frequently amplified arms in [31]. As is suggested, miiethod may therefore be useful for
selecting the precise location of important genes. Howeican be seen in Figure 6(a)-(b), many,
but not all, alterations are much larger than those fountt WitHMM, and where for example there
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are clearly several localized gains and losses in chromestril-HMM finds nothing at all. Perhaps
the complexity of rearrangements in chromosome 8 is notyetsien into account by the H-HMM
algorithm. Note finally that the weighted group fused LARSsvmore than 700 times faster than H-
HMM.

7 Conclusion

We have proposed a framework that extends total-variatesed approximation to the multidimen-
sional setting, and developed two algorithms to solve thaltiag convex optimization problem either
exactly or approximately. We have shown theoretically amghieically that the group fused Lasso can
consistently estimate a single change-points, and obdemxperimentally that this property is likely
to hold also when several change-points are present. licylart we observed both theoretically and
empirically that increasing the number of profiles is highgneficial to detect approximatively shared
change-points, an encouraging property for biologicaliegfions where the accumulation of data mea-
sured on cohorts of patients promises to help in the detecficommon genomic alterations.

Although we do not assume that all profiles have the same ehpoigts, we estimate only shared
change-points. In other words, we try to estimate the unfadhechange-points present in the profiles.
This can be useful by itself, eg, for dimension reduction.w# wanted to detect change-points of
individual profiles, we may either post-process the resoftthe group fused Lasso, or modify the
formulation by, e.g., adding a TV penalty to each profile idiidn to the group lasso penalty. Similarly,
for some applications, we may want to add;&¢> norm to the group fused Lasso objective function
in order to constrain some or all signals to be frequently. neinally, from a computational point of
view, we have proposed efficient algorithms to solve an dgttion problem (4) which is the proximal
operator of more general optimization problems where a gmoanvex functional of/ is minimized
with a constraint on the multidimensional TV penalty; th&/es the way to the efficient minimization
of such functionals using, e.g., accelerated gradient oaistf32].

Annex A: Computational lemmas

In this Annex we collect a few results useful to carry out thst implementations claimed in Section 4.
Remember that the x (n — 1) matrix X defined in (6) is defined by; ; = d; for i > j, 0 otherwise.
Since the design matriX of the group Lasso problem (8) is obtained by centering eatimm of X

to zero mean, its columns are given by:

.
Vi=1,...,n—1, X = <i—1>di,...,<1—1>di,ldi,...,ldi : (14)
n n n n
—_————
by n—i

We first show how to compute efficiently " R for any matrixR:

Lemma 5. For any R € R"*?, we can comput€’ = X 'R in O(np) operations and memory as
follows:

1. Compute the x p matrixr of cumulative sums; , = Z;:l Rjq by the induction:

® Tle = Rl’. .

e FOri=2,...,n, Tie :Ti—l,o‘i‘Ri,o .

2. Fori=1,...,n—1, computeC; s = d; (irne/n — Tia) -
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Proof. Using (14) we obtain théth row of C = X TR, fori =1,...,n — 1, as follows:

Cio=X, R
(n > dz ;R',o + Edz Z R',o

j=it1
)
d; <_Tn,o - Tz‘,o> .
n

Next, we show how to compute efficiently submatrices of(the- 1) x (n — 1) matrix X " X.

Il

|

|
—_

Lemma 6. For any two subsets of indices = (ay,...,a4)) andB = (b1,...,byp) in [1,n — 1], the
matrix X.T’AX.,B can be computed i@ (] A|| B|) in time and memory with the formula:

min(a;, bj) [n — max(a;, b;)] .

v(i,9) € LA x [LIBI],  [X]aXep] = dud,

1,5 n

(15)
Proof. Let us denotd” = X, X, 5. Forany(i,j) € [1,]A]] x [1,|B][], denotingu = min(a;, b;) and
v = max(a;, bj), we easily get from (14) an explicit formula fof ;, namely,

‘/;7]' = XT 'X.7bj

O

The next lemma provides another useful computational taaompute efficientlyX " X R for any
matrix R:

Lemma 7. For any R € R("~D*? we can comput€’ = X X R in O(np) by

1. Compute, foi = 1,...,n — 1, R; e = d;R; .

2. Compute the x p vectorS = (Z?:_f z‘Ri,.) /n.

3. Compute thén — 1) x p matrix 7" defined byl; , = Z}Z—l Rj, by the induction:
¢ Ty 1e=Ry 1.
efori=n—2,...,1,Te="Tii1e+ Rie.

4. Compute thén — 1) x p matrixU defined byU; = Z;Zl (S —1Tj}.) by the induction:
e Uie=5—-"Ti,.
efori=2,....n—1,Uie=Ui—10+ 5 —Tja.

5. Compute, foi =1,...,n —1,Cj e = d;iU; e

Each step in Lemma 7 has complexit(np) in memory and time, leading to an overall complexity
in O(np) to computeXTXR. We note that ifR is row-sparse, i.e., is several rowsfare null, then the
first two steps have complexity(sp), wheres is the number of non-zero rows . Although this does

not change the overall complexity to computed X R, this leads to a significant speed-up in practice

whens < n.
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Proof. Let us denoteD the (n — 1) x (n — 1) diagonal matrix with entrie®); ; = d;. By Lemma 6, we
know thatX " X = DV D, with V; ; = min(i, j) [n — max(4, j)] /n, for 1 < i,j < n — 1. Since step
1 computesk = DR and step 5 computes = DU, we just need to show that tfié computed in step
4 satisfied/ = VR to conclude thal' = DVR = DVDR = X" X R. By step 4U is defined by the
relationU; e —U;j—1,6 =S —T; e fori =1,...,n — 1 (with the conventiorU/y , = 0), therefore we just
need to show thatV; ¢ — Vi_1.4) R= S—T;efori=1,...,n—1toconclude. Fob < j <i<n-—1,
we note thal/; ; = j(n—1)/n (with the conventiorl , = 0) andV;_; ; = j(n—i+1)/n, and therefore
Vij—Vic1j=—j/n.Forl <i<j<n-—1,wehaveV; ; =i(n—j)/nandV,_y; = (i—1)(n—j)/n
and thereford/; ; — Vi_1 ; = 1 — j/n. Combining these expressions we get,ifef 1,...,n — 1:

(‘/i,o_v 1,0 R: i +ZR]0—S E,ov

whereS andT are defined in steps 2 and 3. This concludes the proofthatX " X R. O

Next we show thaf X " X) ~! has a tridiagonal structure, resulting in fast matrix nplitation.

Lemma 8. For any setd = (a1,...,q)4)) of distinct indices with. < a; < ... < aj4 < n—1,the
matrix <X.TAX.,A) is invertible, and for anyA| x p matrix R, the matrix

_ _ -1
C=(Xia%es) R
can be computed i@(|A|p) in time and memory by

1. Fori=1,...,|A| — 1, compute

- -1

dgt Ritie —d ' Rie

A; = .
Qi1 — a4

2. Compute the successive rowg baccording to:

Ri.
o= ().

Ci,o = d;il (Aifl — Al) fori=2,..., |A| -1, (16)
Ciae=dt (A Blae
Ale = oy Bl T ]
4]

Proof. Let us denotd/ = X AX 4. By Lemma 6 we know that, for < ¢ < j < |A|,

Vij = daidajw-

),

n

V' being symmetric semi-separable, one can easily checKithatinvertible and admits as inverse a
tridiagonal matrix with the following entries [33]:

1 1
‘6;12%2( + > fori=1,...,|4|,

Qi — Qj—1 Qi1 — a4

17
. - d(;ild(;i}ﬂ . o ) ( )
Viin = Ve = = ori=1,..., |4 -1,
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where by convention we defing) = 0 anda 41, = n. This tri-diagonal structure allows successive
rows of C to be expressed as a sum of just a few terms. More precisely,oi < | A|, we obtain:

o dg! dg Rioae R ( 1 1 ) dy'dg) Riie
o a; — a1 @ e —aim1 0 aip —a Air1 — O
—d-! d;ilRiv. B dgil—lRi_lv' n d;ile‘,o - d;ilRHl,.
“ ai = Gi—1 Qi1 — G
=d;' (Ao — D)
Similarly, fori = 1 andi = | A| we easily recover (16). O

Annex B: Proof of Lemma 1

The solution of (4) is constant, i.e., correspondsste= 0 (no change-point), as long as the KKT
conditions (10) are satisfied fgr= 0. This translates t§ XY || < A for all i. The first change-point

occurs whem = max; || XI Y|, and the change-point is precisely located in the positibat reaches
the maximum. Therefore the first change-point is the row Withlargest Euclidean norm of the matrix:

=Xy =X"Xpg+X"W.

The entries of the matrix are therefore jointly Gaussian. Since only théh row 3, , of 5 is non-zero,
we get
E@)=X"Xp"=X"X.ub},.

Using Lemma 6 we compute:

did, =M L for1 < i <,

n

_ 18
did, 0 foru<i<n—1. (18)

i,0

Blee) = |[XTX57] = {

On the other hand, by (14) we have for any [1,n — 1],

W], = 3 () oo 3 e

7,0 - =
Jj=1 Jj=i+1

Since
E (WZ—T.W]',.) = 5i,j0211>’

whered; ; is the Dirac function, we have fdr<i < j <n — 1:
1T [
E([X w| [xTw]| >
1,0 7,®
gl (E_ Y (7 _ (T PN 19
d;d; {z(n 1> <n 1>+(j Z)n<n 1>—|—(n j)nn}alp (19)

= dyd; "L ("n_ Doy

In summary, we have shown thait jointly Gaussian wittE (¢; o) given by (18) and covariance between
¢i.e @Nd¢; o given by (19).

In particular, if we denoté; = || ¢ ||, then, fori < u, Fyn/ (d?i(n — i)o?) follows a non-central
x? distribution withp degrees of freedom and non-centrality paramgtelz.i(n — u)?/ [n(n — i)o?].
In particular,

—222i2(n—u)2 24(n —1) o
EF; =pB, diduT +pdiTJ ,
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and sincdim,_, | 3, = (2, We get thatF; /p converges in probability to

EF 3 .9 - 2 . o
a=h _ppptnmw) pin =) o (20)
P n
A similar computation shows that for> u, F; /p converges in probability to
2 . 2 . .
G = P (22 £ +d§72(”n 2. (21)

Note that (20) and (21) are equivalently defined in (11). Nie&) = argmax ;¢ ,_) Gi. For any
v € Vandj ¢ V, the probability of the evenk;,, > Fj tends tol, becauses, > G;. By the union
bound the probability of the evemhax ;¢ F; < max,cy F), also converges ta, showing that the
probability to select a change-pointinconverges td asp — +oo. O

Annex C: Proof of Theorem 2

By Lemma 1, we know that the first change-point selected bis)argmax ;c(; ,,) Gi with probability
tending tol asp increases, wheré&; is defined in (11). We will therefore asymptotically seleue t
correct change-point if and only if G, = max;c; ,—1) Gi. Remember we assume, without lack of
generality, that: > n/2. Foru < i < n — 1, we observe that?; given by (21) is a decreasing function
of i as a sum of two decreasing functions. Therefore, it alwaydshthatG', = max;ecy,, ,—1) Gi, and
we just need to check whether or 1@}, = max;¢[; ) G; holds.

Fori € [1,u], G; given by (20) is a second-order polynomialipfvhich is equal t® ati = 0 and
strictly positive fori = u. ThereforeG;, = max;cp; ) G; if and only if G, > G,—1. Let us therefore
compute:

G =T e 12 T i — ) — (u— D —
Gy—Gy1=p [u® — (u 1)]+n[u(n u)— (u—1)(n —u+1)]

n2

B L e ™ R R T
:2(&2—02) (a—l—i> ,
2 2n
wherea = u/n and
-2 o (1—a)*(a —5)
o“=np —1 LQ
2 2n
This shows that, whea > 1/2 +1/(2n), G, > G,—1 ifand only if o < . On the other hand, when
a=1/20r1/2+1/(2n), we have always that,, > G,_1. O

Annex D: Proof of Theorem 3

As for the proof of Theorem 2, we need to check whether or(ipt= max;c1 ,—1) Gi, WhereG; is
defined in (11), to deduce whether the method selects theatarhange-point. or a different position
with probability tending ta whenp increases. Substituting weighisdefined in (5) inta&;, we obtain:

iln—w)/u(n—1i) ifi<u,

u(n—1)/i(n—u) otherwise. 23)

Gi:Jz—{—BQX{

It is then easy to see that (23) is increasing[bn:|, and decreasing ofu,n — 1], showing that we
always havenrgmax [y ,,—1) Gi = u. The result then follows from Lemma 1. O
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Annex E: Proof of Theorem 4

Following the proof of Lemma 1, let us estimafe= || ¢; . ||* for i € [1,n — 1]. For anyj € [1,p], we
first observe by (18) that

o i(n—Uj if <
|:X—|—X/8} dd (n Z 5] IT 2 U]7 (24)
irj d;dy; p; otherwise
Therefore,
—T‘2d12p22-2 21 N2 7729 (2
>0 XTXS| =D dn 6 | (n - U)*AG < U + (0= )P URG > U] (25)
j=1 ’ j=1
and by independence ¢f andU;:

% n—1
E Z [XTXﬁ} jj = 522—2 [Zpud3u2(n —i)? + Z pud? (n — u)? z'2] .
j ’ u=1

j=1 u=1+1

[ =

Since(s;, U;)i=1,...p are independent of the noise, we obtain thglp converges in probability to

L d? [ ,
_ﬁ?ﬁ [Zpud%ﬂﬁ(n Z pud2 2 2
u=1

+ d2u02 . (26)
u=1+1 n

As in Lemma 1 we can conclude that the method will select ttsitipo

4 = argmax G;
u€[l,n—1]

with probability tending to 1 ag increases.

Let us now assume that the support/f is an interval[a, b] (corresponding to a possible range of

fluctuation of a change-point). Then, we observe that féra, G; in (26) reduces to

G, = 0+Zpud2 _ 22 +d22( 2)02
n

(27)

-2 12 o

522 LBl
Let us now consider the two possible weighting schemes.
e In the unweighted cas¢ = 1fori =1,...,n — 1, we obtain from (27) that foi < a:
_ .2E o 2 . o

G; = 2 ("2 U [ iln=i) 2 (28)

n n

While the first term in (28) is strictly increasing ¢, |, the second term moves the maximum

of G; towardsn/2. This shows that the maximum @#; is always at least whena < n/2.
By symmetry, it is also always smaller or equalbtovhenb > n/2. Whenn/2 € [a,b], we

deduce that for any? > 0, 4 € [a, b]. Otherwise, let us suppose without lack of generality that

n/2 < a < b. Then,G; being quadratic off0, a] and equal td at 0, the maximum ofG; will
not occur before: if and only if G,_1 < G,. A computation similar to the one in the proof of
Theorem 2 shows that

- 1 1
Ga—Ga71:2(0—72n_0'2) <am_§+%> s
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where

This shows thatz, > G, if and only if o? < &2,. Sinceb > n/2, we also know thati < b,
i.e.,u € [a,b] in that case. The case< a < b < n/2 can be treated similarly. To conclude the
proof it suffices to observe that

E(1—a)?=(1-Ea)*+var(a).

¢ In the weighted casé; = Fc=n] fori = 1,...,n — 1, we obtain from (26) and (27) that for

n
i(n—i
1 < a.

n—1 U

This is always an increasing function ©6n [1, a], showing that the maximum a¥; can not be
strictly smaller tharu. By symmetry, it can also never be larger thafrom which we conclude
that it is always betweem andb, i.e., in the support of;;.

G = " _E{n_U]—kaQ. (29)

O
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