
HAL Id: hal-00602087
https://hal.science/hal-00602087v4

Preprint submitted on 12 Jan 2016 (v4), last revised 14 Oct 2016 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploring the polycentric city with multi-worker
households: an agent-based microeconomic model

Rémi Lemoy, Charles Raux, Pablo Jensen

To cite this version:
Rémi Lemoy, Charles Raux, Pablo Jensen. Exploring the polycentric city with multi-worker house-
holds: an agent-based microeconomic model. 2013. �hal-00602087v4�

https://hal.science/hal-00602087v4
https://hal.archives-ouvertes.fr


Exploring the polycentric city with multi-worker households: an agent-based
microeconomic model

Rémi Lemoya,b, Charles Rauxa, Pablo Jensenc,d

aLET (Transport Economics Laboratory), CNRS and University of Lyon, Lyon, France
bUniversity of Luxembourg, Maison des Sciences Humaines, 11 Porte des Sciences, L-4366 Esch-Belval, Luxembourg

cENS Lyon Physics Laboratory, CNRS and University of Lyon, Lyon, France
dRhône-Alpes Complex Systems Institute (IXXI), Lyon, France

Abstract

We propose an agent-based dynamics which leads an urban system to the standard equilibrium of the
Alonso, Muth, Mills (AMM) framework. Starting for instance from a random initialization, agents move
and bid for land, performing a kind of local search and finally leading the system to equilibrium rent,
density and land use. Agreement with continuous analytical results is only limited by the discreteness of
simulations. We then study polycentrism in cities with this tool. Two job centers are introduced, and the
economic, social and environmental outcomes of various polycentric spatial structures are presented. We
also introduce two-worker households whose partners may work in different job centers. When various
two-worker households are mixed, polycentrism is desirable, as long as centers are not moved too far
apart from each other. The environmental outcome is also positive, but housing surfaces increase.

Keywords: urban economics, location choice, polycentric city, two-worker households, agent-based
model
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1. Introduction

The earth population is now predominantly urban, and urban areas are expanding fast (Seto et al.
(2011)). Beside social and economic issues, this process raises environmental concerns regarding biodi-
versity conservation, loss of carbon sinks and energy use. Empirical evidence shows that various urban
development patterns significantly influence carbon dioxide emissions (Glaeser and Kahn (2010)). Low
density brings about increasing vehicle usage while both low density and increased vehicle usage bring
about increasing fuel consumption (Brownstone and Golob (2009)). Compact urban development would
be the natural answer to these issues but the debate regarding welfare, distributive and environmental
aspects is fierce between opponents and promoters of compact cities (see e.g. Gordon and Richardson
(1997); Ewing (1997)). The issue of spatial and social structure and operation of cities has never been so
acute, and there is an obvious need to better understand city spatial development (Anas et al. (1998)).

We present an agent-based simulation model, which answers the need to overcome the issue of
analytical tractability and to consider spatial dynamics and heterogeneity, while being explicitly based
on microeconomic behavior of agents (Irwin (2010)). This model is grounded in the classic urban
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bid-rent framework (hereafter referred to as the AMM model): Alonso (1964)’s monocentric model
of land market, Muth (1969)’s introduction of housing industry and Mills (1967, 1972) model. This
analytical framework has proved its robustness in describing the higher densities, land and housing rents
in city centers (Spivey (2008); Mills (2000)), despite its limitations – among others, the monocentric
assumption.

Polycentrism (that is the clustering of economic activities in subcenters along with the main center)
is indeed a reality, as shown by empirical evidence (for instance Giuliano and Small (1991)). How-
ever, introducing polycentrism in the AMM model proves difficult from the point of view of analytical
tractability. Wheaton (2004) challenges monocentrism, based on empirical evidence on US cities, which
shows that employment is almost as dispersed as residences. However, in this work, simplifying hypothe-
ses are needed for analytical tractability, such as an exogenous density (consumption of land per worker
is fixed and independent of location). In other approaches, centers (and sometimes subcenters) are
given exogenously (Hartwick and Hartwick (1974); White (1976, 1988); Sullivan (1986); Wieand (1987);
Yinger (1992)). In Fujita and Ogawa (1982), no centers are specified a priori and multiple equilibria are
shown (monocentric, multicentric or dispersed patterns). Here again, since the model is not analytically
tractable, simplifying hypotheses are required (e.g. lot size is fixed). Lucas and Rossi-Hansberg (2002)
go further into endogenous polycentrism. A well shared conclusion of these papers is that numerical
simulations are needed.

Regarding income heterogeneity of residents, Straszheim (1987) points out that with multiple classes
of bidders it is difficult to find realistic specifications of income distribution functions which yield
tractable results and, again, this requires numerical solutions. Fujita (1989) describes a principle of
numerical resolution when the population is divided into several income groups.

Different agent-based models are used in urban economics to study complex models with heteroge-
nous agents and space, and sometimes applied to real data. Benenson (1998) introduces an (economic)
agent-based model of population dynamics in a city but without bid-rent mechanism. Caruso et al.
(2007) integrate urban economics with cellular automata in order to simulate peri-urbanization. Huang
et al. (2013) use a similar model, with constant density, no relocation and complete market informa-
tion, to simulate the effects of agent heterogeneity in interaction with the land market. The way land
price formation is modeled is crucial as pointed by Chen et al. (2011). Parker and Filatova (2008)
design a bilateral landmarket, where the gains of trade are shared between buyers and sellers, which
is implemented by Filatova et al. (2009). However in their model lot size is fixed. Ettema (2011) pro-
poses an endogenous modelling of demand, supply and price setting in housing market, but his model
is not yet spatially explicit regarding housing location. Huang et al. (2014) propose a classification of
agent-based models in urban economics, according to which our model implements agent heterogeneity,
explicit land-market representation with bidding and budget constraint, and socioeconomic outcomes.
Moreover, compared with previous agent-based models, our own model includes variable endogenous
density, agent relocation and imperfect information.

The main methodological innovation of this work is the way we find the equilibrium of urban eco-
nomic models. Departing from previous agent-based systems in urban economics, we use a method
inspired by local search optimization algorithms in computer science (Lenstra (2003)). Starting from a
random configuration, the system is led towards the optimum with local moves. Local search algorithms
can usually be defined simply in a few words, but proved very efficient in solving complex optimisation
problems. They are used in combinatorial optimization, and linked more generally with asynchronous
dynamics in game theory or statistical physics, but we adapt the method here to the framework of ur-
ban economics. There is already some analytical and simulation work in the literature on simple urban
models, close to game theory, like Schelling’s spatial segregation model (see for instance Zhang (2011);

2



Grauwin et al. (2012)). However, to our knowledge, it is the first time that such ideas are used with
agent-based systems in urban economics. They allow us to obtain a robust method for solving urban
economic problems.

Two research questions are explored in this work. The first one consists in finding what kind of
simple agent-based dynamics can lead to the equilibrium of the standard urban economic model. By
adapting local search methods to urban economics, we find such dynamics, and we use it to tackle our
second research question: what are the socio-economic and environmental outcomes of the polycentric
city?

Regarding the first research question, we use here an agent-based model to find which kind of simple
dynamics could be hidden behind the standard equilibrium urban economic model. Indeed, cities are
dynamic systems, in constant evolution. So that the urban economic equilibrium can be seen as the
result of some dynamics. It is clear that this dynamics corresponds to a bidding process, as land goes
to the highest bidder in the AMM model. Another feature is that agents move between locations in
order to increase their utility: at equilibrium, no move can allow an agent to increase his utility. Based
on these points, we propose a simple asynchronous dynamics inspired by local search methods, which
we also try to keep as realistic as possible, that leads the urban system from any configuration to the
standard AMM equilibrium.

To answer the second question, we introduce more complexity by adding various ingredients, in keep-
ing with a parsimony principle. The first ingredient is agent heterogeneity through income groups, in
order to test the agreement between agent-based and analytical results. The second ingredient is exoge-
nous multiple centers, illustrated with two job centers at various distances from each other, interacting
through competition of agents for housing. These exogenous centers may happen "naturally" when dis-
persive forces such as congestion or other costs of concentration overcome agglomeration economies or
may come from a government assisting subcenter formation, such as "new towns" (Anas et al. (1998)).
The third ingredient is another kind of agent heterogeneity, with two-worker households whose partners
may work in different job centers.

The economic outcome of the introduction of two centers is shown to be positive, as agents’ utility
increases when the distance between centers increases. However, pollution linked to commuting distances
decreases first when centers are taken away from each other but then increases again. At the same
time, the decreasing competition for land results in increasing housing surfaces and thus city size.
Moreover, the existence and uniqueness of equilibria in these polycentric models are discussed and
various arguments are elaborated upon to support these features.

The remainder of the paper is structured as follows. Section 2 describes the agent-based implemen-
tation with the microeconomic behavior of agents. Section 3 compares the simulations results with the
analytical ones of the AMM model and illustrates the dynamic feature of the model. Section 4 presents
the polycentric urban forms with two-worker households and their economic, social and environmental
outcomes. Appendix D discusses the existence and uniqueness of the equilibrium in these models.

2. Description of the framework

2.1. Urban economic model
The AMM model was developed to study the location choices of economic agents in an urban space,

with agents competing for housing (identified with land in the simplest version of the model). Agents
have a transport cost to commute for work. Their workplace is located in a central business district
(CBD), which is represented by a point in the urban space. Agents usually represent single workers, but
they can also be used to describe households, which can be made more complex in further versions of
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the model. Housing is rented by absentee landowners who rent to the highest bidder, which introduces
a competition for housing between agents. They also compete with an agricultural use of land, which
is represented by an agricultural rent Ra.

Agents have a utility function expressing their trade-off between housing surface and other goods
(Fujita (1989)), taken here as a Cobb-Douglas function

U = zαsβ, (1)

where z is a composite good representing all consumer goods except housing and transport (whose price
is the same everywhere in the city), s is the surface of housing, α and β are parameters describing
agents’ preferences for composite good and housing surface, with α+ β = 1. Agents also have a budget
constraint

Y = z + tx+ ps, (2)

where Y is their income, t the transport cost per unit distance, x the distance of their housing location
to the CBD and p the price of a unit surface of land at location x. See Fujita (1989) for a detailed
presentation of the general model.

The analytical model reproduced in this work with agent-based simulations is a closed city model,
where the population size N is chosen exogenously and remains constant during a simulation1. This
model can be solved analytically in a two-dimensional space if Ra = 0. For Ra > 0, a simple numerical
resolution can be performed with one income group (Fujita (1989)). With a population divided into
several income groups, a specific algorithm is needed for the resolution of the model.

2.2. Agent-based implementation
Let us now describe our agent-based implementation of the standard monocentric AMM model. The

simulation space is a two-dimensional grid where each cell can be inhabited by one or several agents,
or used for agriculture. These cells correspond to our fixed discretization of the two-dimensional space.
Cells have a fixed exogenous land surface stot and the unit of distance in the model is taken as the side
length of a cell. The CBD is a point at the center of the grid. Prices and distances to the center are only
defined with respect to each cell. However, since several agents may reside in a cell and the housing lot
size is endogenous, so is the density.

At the initialization, a population of N agents placed at random locations is created. The initial
land price in each cell p0 is equal to the agricultural rent Ra. At a given location x, agents occupy an
endogenous quantity of land which is the optimal consumption of land conditional on price p (Fujita
(1989)):

s = β
Y − tx
p

. (3)

This allows us to determine the quantity of composite good they consume, and their utility, using
equations (1) and (2).

2.2.1. Dynamics of moves and bids for rent
The main feature of the model consists in agent-based dynamics of moves and bids in the urban

space. The rules defining agents’ moves are inspired by local search methods and asynchronous dynamics
of Schelling segregation models, but such models do not have price formation mechanisms. So we

1We depart in this from Wu and Plantinga (2003) and Tajibaeva et al. (2008).
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introduce price formation in the spirit of tâtonnement processes of Walrasian auctions with successive
price adjustments: prices are lowered for goods with excess supply, and raised for goods with excess
demand. However, there is no auctioneer as the dynamics is defined at agent level and the information
is very limited. By construction, demand and supply of land are always matched, at anytime. The main
aim of the dynamics is that it finds the standard urban economic equilibrium (equilibrium rent, density,
utility), even though only the utility function and the demand function for land (optimal consumption
of land conditional on price and distance to the center) are inputs of the model. In order to keep the
behaviour rules as parsimonious as possible, and in line with local search methods where variables are
often updated considering only neighbourhood information, we suppose that agents have a very limited
knowledge of the market: when deciding to move or not, the only information available to them is their
current utility, and the utility they would have in the new location they consider. We show in section
3 that this is enough to reach the standard equilibrium: (spatially) myopic agents moving based on
local information manage to find the optimum, which can also be linked to self-organization and swarm
intelligence ideas (Dorigo et al. (2008)).

Let us describe an iteration n of the algorithm, changing the variables from their value at step n to
their value at step n+ 1. An agent, which will be candidate to a move, and a cell are chosen randomly.
The price per unit of surface in this cell, located at a distance x of the center, is pn at step n (p0 = Ra at
initialization). The optimal housing surface that the agent can choose in the candidate cell is given by
equation (3) sn = β Y−tx

pn
, which allows us to compute her composite good consumption and the utility

that she would get thanks to the move, using equations (1) and (2). Agents move with no cost, as in
the AMM model (see Fujita (1989)).

The bidding process for renting by the agent is chosen as follows. If the candidate agent can have a
utility gain ∆U > 0 by moving into the candidate cell, then she bids for renting at the price

pn+1 = pn(1 + ε
soccn

stot
∆U

U
), (4)

where ε is a parameter that we introduce to control the magnitude of this bid. Since landowners rent
to the highest bidder, the price of the candidate cell is raised. The higher parameter ε is, the faster
cell prices evolve. soccn is the surface of land occupied by other agents in the cell at step n, and stot the
total land surface of the cell. The factor soccn /stot, smaller than 1, is the occupancy ratio of the cell, and
makes the bid lower if the cell is less occupied, that is to say, less attractive. Because of this factor, the
first agent to move in an empty cell does not raise the price. This factor can however be removed, at
the cost of a slowing down in the convergence to equilibrium.

The price is a price per unit surface, linked to a cell. When an agent bids higher, we assume that the
price is immediately changed for all agents in the target cell. Their consumption of land is also changed
(decreased) according to equation (3) sn+1 = β Y−tx

pn+1
, and their utility is computed again. This feature

of the model defines a competition for land between agents and a market price, as in the standard
analytical model.

If there is enough space for the candidate agent in the target cell (that is, if sn+1 ≤ stot − soccn+1),
then the agent moves in and occupies a share sn+1 of the cell surface. In case the cell is already full
(sn+1 > stot − soccn+1), the candidate agent does not move in, but the price is still raised, and housing
surfaces and utility of agents updated.

2.2.2. Surface constraint, time decrease of price
We described how prices increase in the model for locations with high demand. Conversely, locations

with low demand should have a decreasing price. Indeed, due to the stochastic choice of agents and
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Parameters Description Default value
α, β Preferences for composite good and housing 0.75; 0.25
Yp, Yr Incomes of poor and rich agents 300, 450
t Transport cost (unit distance) 10
N Total population size 10000
Ra Agricultural rent 10
stot Surface of a cell 30
ε Bidding parameter 0.5
Tp Time decrease of the price of non-full cells 30

Table 1: Parameters of the simulations

cells, prices can rise above their equilibrium level at some locations, making the corresponding cells
unattractive. For instance, the price of a cell where several agents move in successively can increase so
much that it provides agents with a low utility. In this case, agents living there will progressively leave
the cell for more attractive locations (through the dynamics described in section 2.2.1).

In order to reflect the behavior of landlords who may have to decrease the price of their property in
order to attract tenants again, we assume that the price of cells where there is free place to accommodate
one or more agents decreases exponentially. This is done according to

pn+1 = pn −
(pn −Ra × 0.9)

Tp
.
savn
stot

, (5)

where Tp is a parameter determining the speed of decrease of prices and savn = stot−soccn is the available
(non occupied) surface at step n in the cell. If no agent moves in, the price decreases according to
equation (5) until it reaches the agricultural rent, which occurs after a finite time because of the form
used. The factor savn /stot, smaller than 1, makes this time decrease slower when the cell is closer to be
full, and thus more attractive. This factor can also be removed at the cost of a slower convergence to
equilibrium.

The whole agent-based mechanism leading the system to the standard equilibrium is actually con-
tained in equations (4) and (5), which introduce one additional parameter each (ε and Tp) to the
standard model.

2.2.3. Parameters
The different parameters of the model are listed in table 1. Most parameters belong to the AMM

model itself: α, β, Y , t, N , Ra, stot. Their values are chosen arbitrarily, as the model is not calibrated
on real data for the moment. However, it can be noted that a high population N could have improved
the agreement between the analytical and the agent-based model, but it would have been costly in terms
of computation time. Parameters ε and Tp are specific to the agent-based model. They determine the
scales of price increases and decreases respectively. They may also be seen as reflecting the relative
market power of landlords and tenants. Their values have been chosen such that the competition
between agents on the housing market is efficient and the system reaches the equilibrium in the whole
city, as this is our primary goal. This will be discussed in more detail in section 3.3.

The present study focuses on the equilibrium of the agent-based model, which is shown to correspond
to the equilibrium of the analytical AMM model, so that the agent-based dynamics is mainly presented
in this work as a resolution method. Comparison with the dynamics of real urban housing markets is
left for further work.
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2.3. Socioeconomic outcomes
To study the urban social structure and the socioeconomic outcomes of the various models developed

here, we focus on some variables of the model, which characterize these outcomes. Our benchmark is a
reference simulation of a monocentric city.

Three kinds of outcomes are studied. The utility of individuals is associated to their welfare and
gives an economic outcome of the models. The cumulated distances of agents’ commuting to work
Dtot, associated with cumulated housing surfaces Stot, give their environmental outcome, which could
be conveyed for instance in terms of greenhouse gases emissions associated to transport, land use and
housing (heating and cooling). The evolution of social inequalities can be given by the difference in the
utility of individuals belonging to different income groups. The agent-based framework gives an easy
access to any other individual or global variable of the model, such as land rents for instance.

3. Comparison with the analytical model and temporal evolution

3.1. Results with two income groups: model 1
The simulations allow us to reach the equilibrium of the AMM model (or more precisely the Muth-

Mills equilibrium, see Brueckner (1987)), as can be seen on figure 1. This equilibrium corresponds to a

Figure 1: Top left panel, shape of the city. Poor agents are represented by squares, rich agents by circles. Other panels:
comparison between the results of the agent-based model (ABM) and the analytical results. Density (number of agents
per cell), land rents and housing surfaces as functions of the distance to the center. The lines represent the analytical
results, whereas the symbols indicate the results of the agent-based model. Parameter values are given in table 1.
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configuration where no agent can raise her utility by moving. In each income group, individuals have
an identical utility across the city. With two income groups, the utility of "rich" agents is still higher
than that of "poor" agents, because they do not have the same income. A gap can be observed on the
density and housing surface curves, because of this discrete difference in income, and equation (3). As
in the analytical equilibrium, rich agents are located at the periphery of the city, where they pay lower
land prices and have higher housing surfaces, but also with higher transport costs. This is the standard
result of the AMM model and it reproduces the socio-spatial pattern observed in new North-American
cities (Glaeser et al. (2008)). The equilibrium of the agent-based model is described in more detail in
the following sections. Let us first depict rapidly the temporal evolution of the simulation.

3.2. Dynamics
The evolution of the agent-based model shows how a "city" emerges from the interactions between

individuals during a simulation. Initially agents are located at random and all prices are equal to the
agricultural rent. Density is quite low as agents are dispersed over the simulation space. Clearly, cells
are far from being full, space is not optimally used, and utility is not uniform (see figure A.7). Then
agents move mainly towards the CBD as shown on figure 2 and bid higher, so that the rent curve evolves
from a flat rent to the equilibrium rent. At the beginning of the simulation (figures 2(a) and 2(b)),

(a) n = 0 (b) n = 1 (c) n = 4 (d) n = 22 (e) n = 91

Figure 2: Evolution of the shape of the city (first row) and of the price of land as a function of the distance to the center
(second row) during a simulation. Same symbols as figure 1. On the first row, cells whose background is grey indicate
that poor and rich agents live there; these cells are displayed as triangular symbols on the second row. At the equilibrium,
the city is completely segregated and there are no more such cells. n indicates here the mean number of moves per agent
since the beginning of the simulation.

agents gather at the city center without competing much for land, because many cells close to the center
are still not full. But when all agents are concentrated around the center (from figure 2(d) on), most
bids do not result in an agent moving, for few cells have a sufficient available surface to allow an agent
to move in with an interesting utility.

The main variable which indicates the proximity to the equilibrium is the homogeneity of the utility
of agents. To describe this homogeneity, we use the relative inhomogeneity of the utility defined as
∆Umax = (Umax − Umin)/Umax, where Umax (resp. Umin) is the highest (resp. lowest) utility among
agents. With two income groups, we compute this variable within each income group and keep the
highest of both values. During a simulation, ∆Umax has a decreasing value. We choose to stop the
simulations when the relative variations of utility within income groups are smaller than 10−6, which
means that ∆Umax has decreased by approximately five orders of magnitude, as shown on figure A.7.
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3.3. Analytical and agent-based equilibria
In section 4 we will present our simple polycentric models and their results, and in Appendix D we

argue that the analytical equilibrium of each of these models exists and is unique. Assuming for the
moment this existence and uniqueness, it should still be argued that the agent-based model is able to
reach a discrete version of this equilibrium.

Figure 1 shows that it is the case for the standard monocentric AMM model with two income groups.
The main difference with the analytical AMM model then lies in the discreteness of the simulated
model, as opposed to the continuous analytical model. This provides an illustration of a discrete
model converging to the continuous AMM model for large population sizes, which can be related to a
discussion in the literature (Asami et al. (1991); Berliant and Sabarwal (2008)). Let us now describe
more precisely the hypotheses ensuring that the agent-based model reaches an equilibrium which is
similar to the analytical one. Section 3.2 defines the equilibrium of the agent-based model as a situation
in which utility is homogeneous within each group, ensuring that no agent has an incentive to move.
But this condition alone does not guarantee that the equilibrium is reached, as shown in Appendix C.
Indeed, a supplementary condition is needed: that every cell is optimally used, either for agriculture or
for housing.

From the comparison with the analytical equilibrium, it follows that only two situations should be
observed at equilibrium for the cells of the agent-based model. The first is the case of an agricultural
cell, whose price should be equal to the agricultural rent, and where no agent should reside. The second
case is a residential cell, where no space should be left for another agent to move in. Indeed, if the
cell can accommodate (at least) one more agent, it indicates that equilibrium is not reached as the city
could be made more compact, providing a higher utility for agents.

In order to monitor the share of urban land which is not optimally used, we use the ratio of a surface
we call "empty" Sempty to the total housing surface of agents Stot (i.e. the total surface of the city). Let
us now describe how this "empty" surface is computed. Each cell of the simulation space is visited. If
the cell has inhabitants, the smallest housing surface of inhabitants, smin, is stored. If the surface still
available in the cell sav is greater than smin, then a part of the cell is considered "empty". To determine
how much exactly, it is computed how many agents with housing surface smin could still fit in the cell.
The corresponding surface is considered "empty". The values of parameters ε and Tp are chosen so as
to minimize the quotient Sempty/Stot within an acceptable simulation time. This quotient is checked to
be smaller than 0.5% at the equilibrium of the simulations presented in this paper. We also check that
every cell without inhabitants has a price which is equal to the agricultural rent.

With these conditions, the system converges to a unique equilibrium, as described in Appendix B.
Appendix C presents as an illustration a simulation using values of parameters ε and Tp which do not
allow the system to reach a state where Sempty/Stot < 0.5%.

4. Polycentric city and two-worker households: model 2

The agent-based mechanism introduced in this work is robust enough for us to study phenomena
which are difficult to treat analytically, like polycentrism. This agent-based dynamics is surely not the
only way to simulate the following simple polycentric models. It is robust enough to deal with more
complex models, with more heterogeneity and more endogenous mechanisms, like building construction
or the location of firms. However, with the goal of a methodical and parsimonious approach to urban
modelling, some comparatively simple results about the polycentric city should be established first, to
serve as benchmarks to build on for further work. This is what we aim to do with the simple exogenous
polycentric models presented here.
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4.1. Introducing two job centers
The simplest way to study a polycentric city consists in defining two employment centers, separated

by a distance d. Agents work at the center which is the closest to their housing, and as a consequence,
can change jobs as they move. This last feature seems unrealistic but prevents market frictions, in order
to reach the equilibrium more rapidly. The results of such a model are presented on the first row of
figure 3, keeping only one income group for simplicity.

Figure 3: Shape of the city with households (model 2), with m = 0 (first row – all agents work in the closest center),
m = 0.2 (second row) and m = 1 (third row – all households have one worker in each center). The different columns
correspond to different values of the distance d between centers: d = 4, 10, 20, 30 from left to right. Agents of the "common"
group have a darker color than agents of the "split" group. Parameters values are given by table 1.

Figure 4 shows the evolution of different variables characterizing the outcomes of this polycentric
model, such as agents’ utility Umean, the total commuting distance of agents Dtot, the total rent Rtot
paid in the city, the mean price Pmean and the total surface of the city Stot, compared with the reference
monocentric configuration given by the case d = 0. The evolution of the mean density is given by the
inverse of the total surface, as the population is fixed.

Raising the number of centers and the distance between them amounts to raising the surface available
at a given commuting distance in the city, thus simultaneously reducing competition for land and
transport costs. Agents have greater housing surfaces (Stot), which spreads the city, smaller commuting
distances (Dtot) and a higher utility (Umean). The total rent Rtot increases, which seems surprising but
is explained by the fact that housing surfaces are greater, which offsets the decrease in prices (Pmean).

The economic outcome of the introduction of two centers in this model is positive, as agents’ utility
increases when the distance between centers increases. However, the environmental outcome is more
difficult to assess. Indeed, as figure 4 shows, commuting distances Dtot decrease first when centers are
taken away from each other, which means a reduction of pollution linked to commuting, but then they
increase again. At the same time, the decreasing competition for land results in increasing housing
surfaces, and thus city size. Bigger housing surfaces result in greater heating (and cooling) needs, which
are a major source of energy needs and greenhouse gases emissions.

In this simple model, both halves of the city stop interacting if the centers are far away from each
other. This can be seen on figure 4, where all curves are flat for distances greater than 25.
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Figure 4: Evolution of the variables characterizing the simplest polycentric model (corresponding to the first row of figure
3, m = 0) as a function of the distance between centers. Variables: agents’ utility Umean, total commuting distance of
agents Dtot, total rent Rtot, mean price Pmean and total surface of the city Stot. Parameters values are given by table 1.

4.2. Introducing two-worker households
The situation where two close-by cities are not interacting seems unrealistic. One of the reasons why

this does not happen in reality is that some households have two workers working in different locations,
for instance in two employment centers close to each other. Keeping the same framework, we study
this phenomenon and add more realism to the city as a whole by introducing two-worker households.
This is also a research question in the literature – see for instance Madden and White (1980); Kohlhase
(1986); Hotchkiss and White (1993). Each agent of the previous section (4.1) represents now a household
composed of two workers. The transport cost per unit distance for one worker is now t̃ = t/2, so that
agents of section 4.1 can be seen as such households with both workers going to the same job center. For
simplicity, we consider only a city with two centers. Households are divided in two groups. In the first
group, which we denote by "common", both persons in the household work at the same employment
center, which corresponds to the first row of figure 3. In the second group, which we denote by "split",
they work in different centers. This is imposed exogenously and does not change during a simulation.

We study the outcome of this model depending on two variables: the distance d between centers,
and the share m ∈ [0, 1] of households of the "split" group. Let us label employment centers by "East"
and "West", and note dE and dW the distances between a given household’s location and centers East
and West. Then if both persons in this household work at the same employment center ("common"
group), the East center for instance, the transport cost associated with the commuting of the household
is 2 × t̃ × dE = t × dE . If they work at different centers ("split" group), their transport cost is
t̃× (dE + dW ) = t× (dE + dW )/2.

It is impossible for households to be located at the same time in both employment centers. One
important consequence of the new ingredient added here is then that a minimal commuting distance of
d (or equivalently, a minimal transport cost of t̃d) is imposed for all households of the "split" group. It is
their overall commuting distance if they are located on the segment linking both employment centers. So
that the minimal total commuting distance Dtot

min of agents in the city is Dtot
min = d×m×N . This minimal

distance is exogenously imposed, and is a special feature of this model 2. It is a factor among others of
discrepancy between actual commuting patterns and the ones predicted by the standard monocentric
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model. This discrepancy is better known as "wasteful commuting" as referred to by Hamilton and Röell
(1982).

To begin with, let us study what happens in the case m = 1, where all households belong to the
"split" group. To minimize their transport cost, agents choose their location by minimizing dE + dW .
As a result, the shape of the city is elliptic with both employment centers as focal points, as can be seen
on the third row of figure 3. Indeed, the figure defined by the set of points verifying dE + dW = k, with
k a constant, is an ellipse. The effect of increasing d on the transport cost of agents can be described
as follows. Because of the increasing minimal commuting distance described previously, the transport
cost is increased – everywhere, except at both employment centers themselves, where it does not change
when compared with the monocentric (d = 0) case. At the same time, the center of the city, seen as
the place where transport cost is minimal, is spread on a segment linking both employment centers.

Figure 5: Outcomes of model 2 with m = 1 as functions of the distance d between centers. Left panel: evolution of
the total commuting distance Dtot, the minimal total commuting distance Dtot

min and their difference Ddiff. Right panel:
evolution of agents’ utility Umean, of the total rent Rtot, of the mean price Pmean and of the total surface of the city Stot.
Parameters values are given by table 1.

As a consequence, the total commuting distance Dtot of agents increases when centers are moved
apart, mainly because of the contribution of the minimal commuting distance Dtot

min, as can be seen on
the left panel of figure 5. Ddiff = Dtot − Dtot

min is also indicated: its decrease when d increases shows
that agents are gathering around the segment linking both centers. The variables are given on the basis
of their value in a reference simulation with d = 0 (corresponding to model 1 with only one income
group), to have an easy comparison. The utility of agents Umean decreases when d increases, very slowly
when centers are close to each other and then more rapidly. The total surface of the city Stot is always
bigger than in the reference (monocentric) simulation, but it decreases when d is high. The mean price
of housing Pmean and the total rent Rtot decrease when d increases, as the share of income used for
transport increases.

In this model with "split" population, polycentrism is undesirable. It has both a negative economic
outcome with the decreasing utility of agents, and a negative environmental outcome, as housing surfaces
increase and commuting distances increase. However, it has to be remembered that commuting distances
increase mainly because of the minimal commuting distance shown on the left panel of figure 5. This
effect could be seen as the worst case scenario of the thought experiment in which a monocentric city is
transformed into a polycentric one: all households increase their travel distances accordingly. A more
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realistic scenario is given by the case where only a part of the households increase their travel distances,
which we study now.

4.3. Mixing various two-worker households
When 0 < m < 1, simulations show that the utility of agents of the "common" group is always

higher than that of agents of the "split" group. This is expected, as households of the "split" group
have more constraints: they want to live close to two centers instead of one. The outcomes of this model
with 0 < m < 1 are intermediate between the two previous cases. The second row of figure 3 gives the
shape of the city with m = 0.2 for different values of d, and figure 6 gives the corresponding outcomes
of model 2. These results obtained with m = 0.2 are representative of the general case of m strictly
between 0 and 1, so that we present only this value. The city shape is intermediate between m = 0 and
m = 1, that is to say, between two disks and an ellipse. Agents of the "split" group (in a paler shade)
are located between both centers, separating agents of the "common" group into two parts.

As shown on figure 6, the total commuting distance Dtot decreases at first when d increases, and
then increases again, mainly because of the contribution of the minimal commuting distance imposed on
agents of the "split" group. The utility U0 of "common" agents increases with d, as their competition for
land with "split" agents decreases. The utility U1 of "split" agents increases at first when d increases,
and then decreases again, below its value at d = 0. The total surface of the city Stot increases with d,
while the mean price of land Pmean decreases. The total rent Rtot increases at first when d increases,
and then decreases below its value at d = 0.

Figure 6: Outcomes of model 2 with m = 0.2 as functions of the distance d between centers. Same variables as on figure
5. On the left panel, the total commuting distances D0

tot and D1
tot of agents of both groups are presented. On the right

panel, the mean utility of agents Umean, the utility U0 of "common" agents and U1 of "split" agents are given. Parameters
values are given by table 1.

In this case, which seems more realistic than the same model with m = 0 or m = 1, polycentrism is
desirable, as long as centers are not moved too far apart from each other. Indeed, the utility of agents
of both groups (U0 and U1) increases when d increases for small values of d, which gives a positive
economic outcome of this model. The environmental outcome is also positive for small values of d, as
the total commuting distanceDtot decreases when d increases. But this positive effect is mitigated by the
fact that housing surfaces increase, which tends to increase emissions of greenhouse gases for heating
and cooling. Thus this more realistic model confirms the conclusions reached with only "common"
households, as long as centers are kept not too far away from each other.
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5. Conclusion and perspectives

Building on the standard urban economic theory, we run simulations of a microeconomic model with
agents interacting in an urban area. The dynamics of the model is inspired by local search methods
and asynchronous dynamics in game theory and statistical physics. It consist mainly in agents moving
and bidding on the urban housing market. This defines price formation in the model, insures matching
of supply and demand for land and pushes the system in the direction of the spatial equilibrium. This
equilibrium corresponds to a discrete version of the analytical equilibrium of the AMM model. A
comparison shows the very good agreement of the analytical and the agent-based monocentric models
with two income groups.

Then we study the evolution of this equilibrium when the monocentric hypothesis is abandoned
to explore polycentric cities. Our results present economic and environmental outcomes of simple
polycentric forms within the agent-based model. Note that this is a partial welfare analysis, since our
model ignores economies of agglomeration, especially for firms.

The introduction of several centers, when compared to the monocentric city model, has a positive
impact on agents’ welfare, as transport expenses and competition on the housing market decrease.
Commuting distances are reduced, which gives a positive environmental outcome of the polycentric city
in this model. However, the increase of housing surfaces may counterbalance this decrease of greenhouse
gases emissions. Although the global effect of a reduction of competition for land between agents is
clear, its impact on the different variables of this simple urban model and on different income groups is
not obvious, as the results show.

Then we introduce two-worker households in the polycentric setting. If the whole population is
"split" (that is, the two partners work in different job centers) polycentrism is shown to be undesirable.
More realistically, when mixing various two-worker households (including households where both part-
ners work in the same job center), polycentrism is again desirable as long as centers are not moved too
far apart from each other, rejoining partly the previous conclusions reached with one-worker households.

Three long-term perspectives of work can be considered: first, a research perspective is to study
dynamic urban models, which are difficult to treat analytically. For instance, once the models presented
here have reached an equilibrium, a parameter value is changed (e.g. a raise in transport cost) and
the consecutive dynamic changes on the urban systems can be studied, until another equilibrium is
reached. A second research perspective is to introduce along with two-worker households, other factors of
heterogeneity such as job specialization or preferences for social neighborhoods, factors which altogether,
as suggested by Anas et al. (1998), might explain the discrepancy between actual residential locations
and locations predicted by the standard monocentric model. Third, a more applied perspective is to
design simulation models which could be used by city planners to help decision-making. Using the
robustness of the agent-based dynamics presented here, and applying it to real-world data, for instance
various employment centers with transport networks, simulation models could indeed be designed to
study economic, environmental and social consequences of different urban planning policies.
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Appendix A. Evolution of the utility

Figure A.7 shows how the utility becomes homogeneous during a simulation. The relative inhomoge-
meity of utility ∆Umax defined in section 3.2 decreases with time. The standard deviation of the utility

Figure A.7: Evolution of the decimal logarithms of the relative inhomogeneity ∆Up (respectively ∆Ur) and of the relative
standard deviation σUp (resp. σUr) of poor (resp. rich) agents’ utility during a simulation. One unit of the abscissa
represents 50000 iterations.

can also be computed. It gives a more accurate idea of the variations of utility in the model. On figure
A.7 are displayed the evolution of the relative inhomogeneity of utility in each income group, and the
corresponding evolution of the standard deviation of utility in each income group (also divided by the
maximal utility) during a simulation. The latter is always smaller than the former, as should be. This
evolution is given as an illustration: because of the stochastic dynamics of the model, it varies across
simulations.

Appendix B. Reproducibility of the results

In order to confirm that the equilibrium reached by the agent-based model is unique, we perform the
same simulation 15 times. In spite of the stochasticity of the dynamics of the model, each run converges
to the same equilibrium, in a sense which is defined more precisely here.

The simulations are stopped only once the two conditions ensuring that the equilibrium is reached,
described in section 3, are verified : the relative inhomogeneity of utility ∆Umax is smaller than 10−6

(section 3.2) and the share of "empty" surface Sempty/Stot is smaller than 0.5% (section 3.3).
The results of these simulations are given in table B.2 for two models presented in this work: the

first part corresponds to model 1, the reference monocentric model with two income groups. The
second corresponds to model 2 with d = 9 and m = 0.2. The equilibrium values of the variables
characterizing the models have only very small variations across different simulations. The maximal
variation observed, computed for variable X as (Xmax −Xmin)/Xmin, is of approximately 0.1% under
the two previous conditions.
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Model 1 Ur Up Ur − Up Dr
mean Dp

mean Dtot Rtot pmean Stot

Variations (in %) 0.009 0.001 0.02 0.09 0.06 0.08 0.02 0.11 0.08
Model 2 Up U0 U1 D0

mean D1
mean Dtot Rtot pmean Stot

Variations (in %) 0.008 0.01 0.02 0.09 0.05 0.06 0.02 0.09 0.08

Table B.2: Reproducibility of the results: maximal relative variations of the variables characterizing the models across 15
runs of the same simulation.

Appendix C. Parameters of the agent-based model

In this section, we give an example of stationary configuration2 of the agent-based model when
the parameters specific to the agent-based model, ε and Tp, are not chosen so as to minimize the
inhomogeneity of utility ∆Umax and the share of "empty" surface Sempty/Stot. As a consequence, the
system does not reach an equilibrium which corresponds to the analytical one.

We keep the values of parameters given in table 1, except Tp, which we take as Tp = 3000. The
results of this simulation are shown on figure C.8. They should be compared with the results of figure 1.
Because of this much higher value of Tp the price of vacant cells decreases very slowly. It even decreases

Figure C.8: Monocentric city with two income groups, with Tp = 3000. Left panel: shape of the city. Right panel: density
as a function of the distance to the center. Same symbols as figure 1.

too slowly to manage to compensate price increases due to agents’ bids, which prevents the system from
reaching an equilibrium corresponding to the analytical one. Indeed, as can be seen on the left panel of
figure C.8, as the price of cells decreases too slowly, some cells, even close to the CBD, are left vacant
after their price has increased too much. The bid mechanism still manages to bring the system to a
state with homogeneous utility, where ∆Umax < 10−6. However, a large part of the urban space is "not
optimally used", which is indicated by the value of the share of "empty" surface Sempty/Stot ' 130%
(in the other simulations presented in this work, this variable is smaller than 0.5% – see section 3.3).
Numerous cells where no agents live have a price which is higher than the agricultural rent, a situation

2This configuration corresponds actually to a state of the system where the evolution is very slow, so that the con-
figuration seems stationary. We do not push this study further here and present it as an illustration of a simulation not
converging to an equilibrium corresponding to the analytical one.
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which cannot be observed if space is "optimally used".

Appendix D. Existence and uniqueness of the analytical equilibrium

In this section we use Fujita (1985) to extend their results to some polycentric models, like the ones
studied in this paper. It is shown in Fujita (1985) that there exists one unique equilibrium for the
standard monocentric AMM model with one or more income groups. The proof of this result is based
on boundary rent curves between income groups and between agricultural and residential land uses.
Although this result seems difficult to extend to any polycentric city, we show how this result can be
extended to some of the models which are studied in this paper.

The existence of (at least) one equilibrium for the polycentric models studied here is proved in
Fujita and Smith (1987) using fixed-point methods. Hence, it remains to be argued that with the
polycentric changes added here to the standard monocentric model, there is no apparition of multiple
equilibria, contrary to what can happen with more complicated models, for instance Brueckner et al.
(1999) or Fujita and Ogawa (1982). It can be observed that these works add important changes to
the standard model by adding variables to the utility function, while our work only considers a more
complex transport cost function. Indeed, introducing several employment centers breaks the circular
symmetry of the transport cost function compared to the monocentric city model.

Let us first consider the simplest polycentric model we study (model 2 with m = 0), a model with
two centers separated by a distance d, where agents work at the employment center which is closest
to their housing location. When centers are sufficiently far apart, two cities are present and do not
interact, with an equal share of the whole population residing in each city. In this case, the result of
Fujita (1985) ensuring existence and uniqueness of the equilibrium is clearly still valid. When centers
are brought closer and cities begin to interact, the situation is a bit more complicated.

Our approach then consists in mapping this simple polycentric model onto a fictitious monocentric
model verifying the assumptions required in Fujita (1985)3 to ensure existence and uniqueness of the
equilibrium. This mapping allows us to prove the existence and uniqueness of the equilibrium for the
polycentric model, because of the corresponding result for the fictitious monocentric model. Indeed, in
the urban models studied in Fujita (1985), as well as in our model 2 with m = 0, a given location is
completely characterized by the distance of commuting for an agent residing in this place. Equivalently,
space is characterized by the amount of land available at each commuting distance x. Let us note
L(x)dx the amount of land available between commuting distances x and x+dx. A monocentric model
with a distribution of land equivalent to that of our simple duocentric model would have

L(x) =

{
4πx for 0 ≤ x ≤ d/2
4x(π − arccos( d

2x)) for x ≥ d/2. (D.1)

This fictitious monocentric model verifies all assumptions ensuring that it has one unique equilibrium,
and a bijection between this monocentric space and our polycentric one conserving the amount of land
L(x)dx available between x and x+dx is easy to define. As a consequence, our simple duocentric model
has also one unique equilibrium. This result could be extended to models with 3 or more centers, as this

3The first assumption is that L(x) is a piecewise continuous non-negative function on R+, srictly positive on [0, x1] with
x1 a positive number, and L(x) ≤ L0(x) on R+, where L0(x) is any continuous function on R+. The second assumption
is that the bid rent and housing surface functions are "well behaved", and that Ra > 0. And the third assumption
corresponds for instance to the case of several income groups, whose bid rent functions can be ordered by their steepness.
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would only make the function L(x) (and the bijection) more complicated. With several income groups,
the result still holds.

The case of model 2 with m = 1 is almost similar. In this model two employment centers (East and
West) separated by a distance d are considered, and each agent represents a two-worker household, with
each worker of the household working at a different center from the "mate" (see section 4). Thus the
total commuting distance of the household is the sum dE + dW of distances between the household’s
housing location and both centers. The function L(x) of the corresponding monocentric model is now

L(x) =

{
0 for 0 ≤ x ≤ d
2xE(d/x) for x ≥ d, (D.2)

with E(e) the complete elliptic integral of the second kind. This last formula corresponds to the
circumference of an ellipse of major axis x, distance between focal points d, and eccentricity e = d/x.
A similar argument of correspondence proves the uniqueness of the equilibrium in this case, and is still
valid with several income groups. Defining such a model with more than two employment centers is not
obvious, and outside the scope of the present work.

In the case of model 2 with 0 < m < 1, the previous arguments supporting the uniqueness of
the analytical equilibrium seem difficult to reproduce, and we leave this proof to further work. But
it remains true that no important change is brought to the utility function when compared with the
standard monocentric model. Only the transport cost (seen as a function defined on the two-dimensional
space of the model, for each group of agents) is changed. In addition, an important argument in favor
of this uniqueness is the fact that for all models presented here, the agent-based model converges to the
same equilibrium situation for every run of a simulation, as shown in Appendix B.
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