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Abstract

This paper develops a framework for syntac-
tic dependency parse correction. Dependen-
cies in an input parse tree are revised by se-
lecting, for a given dependent, the best gov-
ernor from within a small set of candidates.
We use a discriminative linear ranking model
to select the best governor from a group of
candidates for a dependent, and our model in-
cludes a rich feature set that encodes syntac-
tic structure in the input parse tree. The parse
correction framework is parser-agnostic, and
can correct attachments using either a generic
model or specialized models tailored to dif-
ficult attachment types like coordination and
pp-attachment. Our experiments show that
parse correction, combining a generic model
with specialized models for difficult attach-
ment types, can successfully improve the qual-
ity of predicted parse trees output by sev-
eral representative state-of-the-art dependency
parsers for French.

Introduction

mari e.candito@ i ngui st.jussieu.fr

into account sufficient context when making attach-
ment decisions, due to computational complexity.
Assuming nonetheless that a predicted parse tree is
mostly accurate, parse correction can revise difficult
attachments by using the predicted tree’s syntactic
structure to restrict the set of candidate governors
and extract a rich set of features to help select among
them. Parse correction is also appealing because it
is parser-agnostic it can be trained to correct the
output of any dependency parser.

In Section 2 we discuss work related to parse
correction, pp-attachment and coordination resolu-
tion. In Section 3 we discuss dependency struc-
ture and various statistical dependency parsing ap-
proaches. In Section 4 we introduce the parse cor-
rection framework, and Section 5 describes the fea-
tures and learning model used in our implementa-
tion. In Section 6 we present experiments in which
parse correction revises the predicted parse trees of
four state-of-the-art dependency parsers for French.
We provide concluding remarks in Section 7.

2 Related Work

Previous research directly concerning parse correc-

In syntactic dependency parse correction, attackion includes that of Attardi and Ciaramita (2007),
ments in an input parse tree are revised by selectingprking on English and Swedish, who use an ap-
for a given dependent, the best governor from withiproach that considers a fixed set of revision rules:
a small set of candidates. The motivation behinéach rule describes movements in the parse tree
parse correction is that attachment decisions, esgeading from a dependent’s original governor to a
cially traditionally difficult ones like pp-attachment new governor, and a classifier is trained to select
and coordination, may require substantial contextu#the correct revision rule for a given dependent. One
information in order to be made accurately. Becaus#grawback of this approach is that the classes lack
syntactic dependency parsers predict the parse treemantic coherence: a sequence of movements does
for an entire sentence, they may not be able to taket necessarily have the same meaning across differ-



ent syntactic trees. Hall and Nak (2005), working used with parsers that do not outpubest ranked
on Czech, define a neighborhood of candidate goyarses, it can be easily restricted to specific attach-
ernors centered around the original governor of a deaent types, and its output space of parse trees is not
pendent, and a Maximum Entropy model determindganited to those appearing in an-best list. How-
the probability of each candidate-dependent attackver, parse reranking has the advantage of selecting
ment. We follow primarily from their work in our the globally optimal parse for a sentence fronvan
use of neighborhoods to delimit the set of candidateest list, while parse correction makes only locally
governors. Our main contributions are: specializedptimal revisions in the predicted parse for a sen-
corrective models for difficult attachment types (cotence.
ordination and pp-attachment) in addition to a gen- o
eral corrective model; more sophisticated feature€;1 Difficult Attachment Types
feature combinations, and feature selection; and Research on pp-attachment traditionally formulates
ranking model trained directly to select the true govthe problem in isolation, as in the work of Pantel and
ernor from among a set of candidates. Lin (2000) and of Olteanu and Moldovan (2005).
There has also been other work on techniqudsxamples consist of tuples of the fofm n4, p, no),
similar to parse correction. Attardi and Dell’'Orlettawhere eitherv or ny is the true governor of the
(2009) investigataeverse revision a left-to-right pp comprisingp andn,, and the task is to choose
transition-based model is first used to parse a sehetweenv andn;. Recently, Atterer and Sdkee
tence, then a right-to-left transition-based model i€2007) have criticized this formulation as unrealistic
run with additional features taken from the left-to-because it uses an oracle to select candidate gover-
right model’'s predicted parse. This approach leadsors, and they find that successful approaches for
to improved parsing results on a number of lanthe isolated problem perform no better than state-
guages. While their approach is similar to parse coof-the-art parsers on pp-attachment when evaluated
rection in that it uses a predicted parse to inform an full sentences. With parse correction, candi-
subsequent processing step, this information is useldte governors are identified automatically with no
to improve a second parser rather than a model fgo, n, p, no) restriction, and for several representa-
correcting errors. McDonald and Pereira (2006)ive parsers we find that parse correction improves
consider a method for recovering non-projective ajpp-attachment performance.
tachments from a graph representation of a sentence Research on coordination resolution has also of-
in which an optimal projective parse tree has beeten formulated the problem in isolation. Resnik
identified. The parse tree’s edges are allowed to {8999) uses semantic similarity to resolve noun-
rearranged in ways that introduce non-projectivityphrase coordination of the fornn,,cc, na, n3),
in order to increase its overall score. This rearrangevhere the coordinating conjunctiafe coordinates
ment approach resembles parse correction becawsther the heads; and ny, or the heads:; and
it is a second step that can revise attachments madg. The same criticism as the one made by At-
in the first step, but it differs in a number of ways: itterer and Schitze (2007) for pp-attachment might
is dependent on a graph-based parsing approachbé applied to this approach to coordination reso-
does not model errors made by the parser, and it céution. In another formulation, the input consists
only output non-projective variants of the predictedf a raw sentence, and coordination structure is
parse tree. then detected and disambiguated using discrimina-
As a process that revises the output of a syntative learning models (Shimbo and Hara, 2007) or
tic parser, parse reranking is also similar to parseoordination-specific parsers (Hara et al., 2009). Fi-
correction. A well-studied subject (e.g. the worknally, other work has focused on introducing spe-
of Charniak and Johnson (2005) and of Collins andialized features for coordination into existing syn-
Koo (2005)), parse reranking is concerned with théactic parsing models (Hogan, 2007). Our approach
reordering ofn-best ranked parse trees output bys novel with respect to previous work by directly
a syntactic parser. Parse correction has a numodeling the correction of coordination errors made
ber of advantages compared to reranking: it can ey general-purpose dependency parsers.



ouvrit 3.1 Transition-Based Parsing

In transition-based dependency parsing, whose sem-

Eile porte avec inal works are that of Yamada and Matsumoto
\ \ (2003) and Nivre (2003), the parsing process ap-
la cle plies a sequence of incremental actions, which typ-

L‘a ically manipulate a buffer position in the sentence
and a stack for built sub-structures. Actions are of
Figure 1: An unlabeled dependency tree fitte ouvrit the type ‘fead word from bufféf “build a depen-
la porte avec la @&. (She opened the door with the key dency from node on top of the stack to node that
begins the buffér etc. In a greedy version of this
] process, the action to apply at each step is determin-
3 Dependency Parsing istically chosen to be the best-scoring action accord-
ing to a classifier, which is trained on a dependency
Dependency syntax involves the representation §feehank converted into sequences of actions. The
syntactic information for a sentence in the form ayrengths of this framework arg(n) time complex-
directed graph, whose edges encode word-to-Woff, and a lack of restrictions on the locality of fea-
relationships. An edge from governorto ade- {,res. A major drawback is its greedy behavior: it
pendenindicates, roughly, that the presence of thean potentially make difficult attachment decisions
dependent is syntactically legitimated by the goVelaarly in the processing of a sentence, without being
nor. An important property of dependency syntax igpe to reconsider them when more information be-
that each word, except for the root of the sentenc@omes available. Beamed versions of the algorithm
has exactly one governor; dependency syntax is thysohansson and Nugues, 2006) partially address this
represented by trees. Figure 1 shows an examplgoplem, but still do not provide a global optimiza-

of an unlabeled dependency treeFor languages ton for selecting the output parse tree.
like English or French, most sentences can be rep-

resented with @rojectivedependency tree: for any 3.2 Graph-Based Parsing
edge from word; to wordd, g dominates any inter-

vening word betweep and. In graph-based dependency parsing, whose seminal

) ) work is that of McDonald et al. (2005), the parsing
Dependency trees are appealing syntactic repriocess selects the globally optimal parse tree from

sentations, closer than constituency trees 10 the Seqahh containing attachments (directed edges) be-
mantic representations useful for NLP applications,,een each pair of words (nodes) in a sentence.

This is true even with the projectivity requirement; finds the »-best scoring parse trees, both during

which occasionally creates syntax-semantics Migzaining and at parse time, where the score of a tree
matches. Dependency trees have recently seengane sym of the scores of itactors(consisting of
surge of |_nterest, particularly with the mtrodl_JctlonOne or more linked edges). While large factors are
of supervised models for dependency parsing Ugesiraple for capturing sophisticated linguistic con-
ing linear classifiers. Such parsers fall into t""%traints, they come at the cost of time complexity:

main categories: transition-based parsing and grap{b-r the projective case, adaptations of Eisner's algo-

based parsing. Additionally, an alternative methogk, | (Eisner, 1996) ar®(n®) for 1-edge factors

for obtaining the dependency parse for a Senten?ﬁ/chonald et al., 2005) or sibling 2-edge factors
is to parse the sentence with a constituency-bas%gchonam and Pereira, 2006), ait{n?) for gen-

parser and_ then use an automatic process to convggt, 2-edge factors (Carreras, 2007) or 3-edge fac-
the output into dependency structure. tors (Koo and Collins, 2010),

'Edges are generally labeled with the surface grammatic®.3 Constituency-Based Parsing
function that the dependent bears with respect to its governar. .
In this paper we focus on unlabeled dependency parsing, settiigEYond the two main approaches to dependency

aside labeling as a separate task. parsing, there is also the approach of constituency-



based parsing followed by a conversion step to de-
pendency structure. We use the three-step parsingN\PUT: Predicted parse treg
architecture previously tested for French by Candito L 0OP: For each chosen dependent D
et al. (2010a): (i) A constituency parse tree is out- e Identify candidate€’; from 7’
put by the BerkeleyParser, which has been trained to e Predicté = argmax S(c,d, T)
learn a propabilistic context-free grammar with Ie}- « UpdateT {go;(e di‘:_ &
tent annotations (Petrov et al., 2006) that has parsmq3 _ q ion of .
time complexityO(n?) (Matsuzaki et al., 2005); (ii) uTPUT: Corrected version of parse tr
A functional role labeler using a Maximum Entropy
model adds functional annotations to links between Figure 2: The parse correction algorithm.
a verb and its dependents; (iii) Constituency trees
are automatically converted into projective depen-
dency trees, with remaining unlabeled dependenciéise dependency-native models, features include pre-
assigned labels using a rule-based approach. dicted part-of-speech (POS) tags from the MEIt tag-
ger (Denis and Sagot, 2009), as well as predicted
lemmas and morphological features from thdflLe
In this paper, we use the following baseline parsersexicon (Sagot, 2010). These models constitute the
MaltParser (Nivre et al., 2007) for transition-basedtate-of-the-art for French dependency parsing: un-
parsing; MSTParser (McDonald et al., 2005) (witHabeled attachment scores (UAS) on the FTB test set
sibling 2-edge factors) and BohnetParser (Bohnetre89.78% for MaltParser91.04% for MSTParser,
2010) (with general 2-edge factors) for graph-base@ii.78% for BohnetParser, artil).73% for Berkeley-
parsing; and BerkeleyParser (Petrov et al., 2006) férarser.
constituency-based parsing.

For MaltParser and MSTParser, we use the best )
settings from a benchmarking of parsers for Frencfi Parse Correction
(Candito et al., 2010b), except that we remove un-
supervised word clusters as features. The parsifithe parse correction algorithm is a post-processing
models are thus trained using features including prestep to dependency parsing, where attachments from
dicted part-of-speech tags, lemmas and morpholothe predicted parse tree of a sentence are corrected
ical features. For BohnetParser, we trained a neby considering alternative candidate governors for
model using these same predicted features. Feach dependent. This process can be useful for at-
BerkelyParser, which was included in the benchtachments made too early in transition-based pars-
marking experiments, we trained a model using thimg, or with features that are too local in MST-based
so-called “desinflection” process that addresses dgbarsing.

sparseness due to morphological variation: both The jnput is the predicted pargeof a sentence.

at training and parsing time, terminal symbols argom 7 a setD of dependent nodes are chosen for
word forms in which redundant morphological suf-5¢achment correction. For eadhe D in left-to-

fixes are removed, provided the original part-Ofyjgnt sentence order, a s6} of candidate governors
speech ambiguities are kept (Candito et al., 2010b}om 7 is identified, and then the highest scoring

All models are trained on the French Treebank C,;, using a functionS(c, d, T), is assigned as
(FTB) (Abeille and Barrier, 2004), consisting of ihe new governor of in 7. Pseudo-code for parse
12,351 sentences from the Mondenewspaper, ei- .qrrection is shown in Figure 2.
ther “desinflected” for the BerkeleyParser, or con-
verted to projective dependency trees (Candito et al.,

2010a) for the three dependency-native par%mr 3Contrary to Hall and No&k (2005), our iterative algorithm
(along with the fact thaf’; never includes nodes that are domi-
2The projectivity constraint is linguistically valid for most nated byd) ensures that corrected structures are trees, so it does
French parses: the authors repar2% non-projective edges in not require additional processing to eliminate cycles and pre-
a hand-corrected subset of the converted FTB. serve connectivity.

3.4 Baseline Parsers



4.1 Choosing Dependents parse tred” within graph distancen of d that pass

Various criteria may be used to choose the Bet throughc,. They de that around/3 of the incor-
of dependents to correct. In the work of Hall and€ct attachments in the output of Czech parses can be

Novak (2005) and of Attardi and Ciaramita (2007),correcteq by selepting the best gpvernorfrom within
D contains all nodes in the input parse tree. H0WN3(C_Z)' S|m|IarIy, in oracle experiments re_port_ed n
ever, one advantage of parse correction is its abilit§/ectIon 6, we find that arourity2 of coordination

to focus on specific attachment types, so an add?—nd pp-attachments in th? output of French parses
tional criterion for choosing dependents is to looia" be corrected by selecting the best governor from

separately at those dependents that correspond\’whin Ns(d). We thus use neighborhoods to delimit
difficult attachment types. the set of candidate governors.

Analyzing errors made by the dependency parsersd\é\/hgz_qne (I:an S'_mP'y ast_lgﬁd. < é\fm(d), we
introduced in Section 3 on the development set gdd additional restrictions. First, in orderto preserve

the FTB, we observe that two major sources of el;_)rojectivity within 7', we keep inCy only thosec

ror across different parsers are coordination and pfuc" that the updat&{gov(d) « c} would result

attachment. Coordination accounts for aroung ' & projective tre€. Additionally, we discard candi-

of incorrect attachments and has an error rate ranﬁstes with certain PO.S c:_f;egorles that are yery un-
ing from 30 — 40%, while pp-attachment accounts ely to be governors: clitics and punctuation are

for around30% of incorrect attachments and has arﬁllwzys dlsgar(ik_ed, while de_;tg rminers are discarded if
error rate of around5%. € dependent s a preposition.

In this paper, we pay special attention to coordings 3 Scoring Candidate Governors
tion and pp-attachment. Given the FTB annotation

scheme, coordination can be corrected by changir‘%new_ governo_ré for a depgnderﬂ 'S_ predicted by
the governor (first conjunct) of the coordinating C0n§elegt|ng the hlgh(_ast sconng cand_ldate Ca ac-
junction that governs the second conjunct, and ng_ordlng to a functionS(c, d, T'), which takes into
attachment can be corrected by changing the govégcoun_t features over d, and thg parse tr_éE : We.
nor of the preposition that heads the hpVe thus use a linear model for our scoring function, which

train specialized corrective models for when the dea_\llows for relatively fast training and prediction. Our

pendents are coordinating conjunctions and prepoﬁg_Orlng function uses a weight vectdre F, vyhere
tions, in addition to a generic corrective model that 'S the feature space for dependents we wish to cor-

can be applied to any dependént rect (either generic, or specialized for prepositions
or for coordinating conjunction), as well as the map-
4.2 |dent|fy|ng Candida‘[e Governors plngq) :CxDxT — F from Combil’lationS Of Candi'

) datec € C, dependent € D, and parse tre& € T,
The set of candidate governat for a dependent 1o vectors in the feature spate The scoring func-

d can be chosen in diffe_rent ways. Qne method 'fon returns the inner product af and®(c, d, T'):
to let every other node ifi' be a candidate gover-
nor ford. However, parser error analysis has shown S(e,d, T) = 7 - ®(c,d, T) 1)
that errors often occur in local contexts. Hall and

Novak (2005) define a neighborhood as a set of 4 Algorithm Complexity

nodesN,,(d) around the original predicted gover-

nor ¢, of d, whereN,,(d) includes all nodes in the The time complexity of our algorithm i&)(n) in

the lengthn of the input sentence, which is consis-

“The FTB handles pp-attachment in a typical fashion, butent with past work on parse correction by Hall and
coordination may be handled differently by other schemes (e.Novak (2005) and by Attardi and Ciaramita (2007).
the coordinating conjunction governs both conjuncts).

5In our experiments, we never revise punctuation and clitic  ®We also keep candidates that would lead to a non-projective
dependents. Since punctuation attachments mostly carry lititeee, as long as it would be projective if we ignored punctuation.
meaning, they are often annotated inconsistently and ignorékthis relaxation of the projectivity constraint leads to better or-
in parsing evaluations (including ours). Clitics are not revisedcle scores while retaining the key linguistic properties of pro-
because they have a very low attachment error 28%.( jectivity.



Attachments for up to» dependents in a sentence5.2.1 Primary Feature Classes

are deterministically corrected in one pass. For each The primary feature classes we use are listed be-
such dependent, the algorithm uses a linear modeljow, grouped into categories corresponding to their
to select a new governor after extracting features fQfse in different corrective modeld ,; is the object

a local set of candidate governot§, whose size of the dependent;,,, is the governor of the candi-
does not dependent anin the average caselo-  date, and:;_; andc,., are the closest dependents

cality in candidate governor identification and feapf .. linearly to the left and right, respectively, @j.
ture extraction preserves linear time complexity in
the overall algorithm. Generic features (always included)

— POS, lemma, and number of dependents of

5 Model Learning — POS and dependency labelgf ¢

We now discuss our training setup, features, and_

. . , POS and dependency labelqf
learning approach for obtaining the weight veatbr

— POS ofeyoy

— POS and lemma at
The parse correction training set pairs gold parse
trees with corresponding predicted parse trees out- : .
put by a syntactic parser, and it is obtained us- — Whethercis the predicted governor af
ing a jackknifing procedure to automatically parse — Binned linear distance betweemandd
the gold-annotated training section of a dependency
treebank with a syntactic dependency parser.

We extract separate training sets for each type of — POS sequence for nodes on path froto d
dependent we wish to correct (generic, prepositions,— Graph distance betweerandd
coordinating conjunctions). Givem then for each
tokend we wish to correct in a sentence in the train-
ing section, we note its true governgyin the gold  Feqatires exclusive to coordination
parse tree of the sentence, identify a set of candidate
governorsCy; in the predicted pars€, and get fea-
ture vectors®(c,d, T) : ¢ € Cy}. — Have the same POS

— Have the same word form

5.1 Training Setup

POS ofd,,; and whethetl,,; has a determiner

Linear direction ofc with respect tal

— Whether there is punctuation betweeandd

Whetherd would coordinate two conjuncts that:

5.2 Feature Space

. . . — Have number agreement
In order to learn an effective scoring function, we

use a rich feature spafiehat encodes syntactic con- — Are both nouns with the same cardinality

text surrounding a candidate-dependent pajr/) Are both proper nouns or both common nouns
within a parse tre&. Our primary features are indi-
cator functions for realizations of linguistic or tree-
based feature classédrom these primary features — Are both prepositions with object of same POS
we generate more complex feature combinations of _

length up toP, which are then added 6. Each Features exclusive to pp-attachment

combo represents a set of one or more primary fea-— Whetherd immediately follows a punctuation

tures, and is an indicator function that fires if and _ Whetherd heads a pp likely to be the agent of
only if all of its members do. a passive verb

— Are both prepositions with the same word form

"Degenerate parse trees (e.g. flat trees) could lead to cases- If ¢ is a coordinating conjunction, then whether
where|Cq|=n, but for linguistically coherent parse trefg;| is ¢ would coordinate two prepositions with the

ratherO(k™), wherek is the averagearity of syntactic parse .
trees andn is the neighborhood distance used. same word form, and whether there is at least

8For instance, there is a binary feature that is 1 if feature ~ ON€ open-category word linearly betweeand
class "POS ot takes on the value "verb”, and 0 otherwise. d (in which case: is an unlikely governor)



— If cis linearly afterd, then whether there exists
a plausible rival candidate to the left @f(im-  !NPUT: Aggressiveness’, roundsk.
plemented as whether there is a noun or adjec-INITIALIZE : @ < (0, ..., 0), Wavg < (0, ..., 0)
tive linearly befored, without any intervening  REPEAT R times
finite verb) Loor: Fort =1,2,...,|X]|

. - Get feature vectorz, . : ¢ € Cy, }
5.2.2 Feature Selection . Get true governog, < Cy,

Feature combos allow our models to effectively . Leth, = argmax (@, - .)
sidestep linearity constraints, at the cost of an expo- c€Ca, —{g¢} . .
nential increase in the size of the feature sgackn -Letmy = (W1 - Tog,) — (We-1 - Top,)
order to accommodate combos, we use feature se- IFim; <1
lection to help reduce the resulting space. Letr = min{C , %}

Our first feature selection technique is to apply a 1500 =,
frequency threshold: if a feature or a combo appears
less thank times among instances in our training ~ ELSE
set, we remove it fronf¥. In addition to making the - Setwy ¢~ W1
feature space more tractable, frequency thresholding _ SC Cave <~ Wavg + 0

. . . - Setwy + W x|
makes our scoring function less reliant on rare fea-
tures and combos. OUTPUT: davg/ (R - |X])

Following frequency thresholding, we employ an
additional technique using conditional entropy (CE) Figure 3: Averaged PA-Ranking training algorithm.
that we termCE-reduction Let Y be a random vari-

able for whether or not an attachment is true, and

let A be a random variable for different combos thaft!SO Show that ranking outperforms a binary classifi-
can appear in an attachment. We calculate the CE §flion @pproach to pronoun resolution (using a Max-
a combau with respect td”” as follows, imum Entropy model), where for each pronominal
anaphor the model must select the correct antecedent
H(Y|A=a) = — Zp(y|a) logp(yla) (2) among candidates in a tekt.

yey In our ranking approach to parse correction (PA-
Ranking), the weight vector is trained to select the
true governor from a set of candidat€s for a de-

le balanci d here t of ol endentd. The training setX is defined such that
pie balancing used here o account Tor MOre 1alSe gy, 4th jnsiance is a collection of feature vectors

tachmentsY = 0) than true onesy( = 1) in our train- (#ro = (c,dy,T)) : ¢ € Cy,}, whereCy, is the
H : s ’ ) N t S t

ing set. Having calculated the CE of gach ComboCandidate set for the dependeftwithin the pre-
we remove fromt thosg compos for which a SUbsetdicted parsdy;, and the class is the true govermgr
combo (or feature) exists with equal or lesser CEIhstances in whicly, ¢ C,, are discarded

This eliminates any overly specific comlaowhen ! de '

. PA-Ranking training is carried out using a varia-
the extra features encodeddn compared to some . ) ) ,
) tion of the Passive-Aggressive algorithm (Crammer
subseb, do not helpz explainY” any better thar.

et al., 2006), which has been adapted to the rank-
5.3 Ranking Model ing setting, implemented using the Polka libray.
6Ilzor each training iteratioty the margin is defined as

. Set'u_ft < 'U_}'t,1 + Tt('ft,gt — ft,ht)

where the probability(y|a) is approximated from
the training set agreq(a,y)/freq(a), with exam-

The ranking setting for learning is used when
model needs to discriminate between mutually €x- °we considered a binary training approach to parse correc-
clusive candidates that vary from instance to intioninwhich the model is trained to independently classify can-
stance. This is typically used in parse rerankin idates as true or false governors, as used by Hall andiNov
(Charniak and Johnson, 2005), where for each se 2005). However, we found that this approach performs no bet-

! ! er (and often worse) than the ranking approach, and is less ap-
tence the model must select the correct parse fropfopriate from a modeling standpoint.

within an n-best list. Denis and Baldridge (2007) *°http://polka.gforge.inria.fr/



my = (W1 - Trg,) — (We—1 - T, ), Whereh, is the Neighborhood Sizerf)
highest scoring incorrect candidate. The algorith Base] 2 | 3 | 4
is passivebecause an update to the weight vector is Coords| 67.2 | 76.5 | 828 | 848
made if and only ifin, < 1, either for incorrect pre- | Berkeley Preps | 829 | 88.5 | 92.2 | 93.2
dictions n; < 0) or for correct predictions with in- g\éirg! 32'1 23'2 zg'g 23'?
o 5 13 25 close s possible b 1 subjectto e | BoMet | Preps | 854 | 89.4 | 93.4 | 945
. : ’ : Overall| 91.2 | 94.4 | 96.1 | 96.6
aggressiveonstraint that the new margin be greate Coordsl G600 T 722 782 | 805

than1. We use weight averaging, so the final out: \,-;t Preps | 82.6 | 881 | 92.6 | 93.7

putd,,, is the average over the weight vectors after Overall| 893 | 932 | 951 | 958
each training step. Pseudo-code for the training af- Coords| 636 1 73.7 | 80.7 | 844
gorithm is shown in Figure 3. The rounds parameter msT Preps | 84.7 | 89.4 | 93.4 | 94.4
R determines the number of times to run through th Overall| 90.2 | 93.7 | 95.6 | 96.2

training set, and the aggressiveness paraniesats | MST [ Overall[ Reranking top-100 parses: 95.4
an upper limit on the update magnitude.

Table 1: Parse correction oracle UAS (%) for differ-
ent neighborhood sizes, by dependent type (coordinating
conjunctions, prepositions, or all dependents). Also, a

We present experiments where we applied parse C(S}e_ranking oracle for MSTParser using the top-100 parses.
rection to the output of four state-of-the-art depen-

dency parsers for French. We conducted our eval- We also compared the oracle for parse correc-
uation on the FTB using the standard training, detion with an oracle for parse reranking, in which the
velopment (dev), and test splits (containing 9,88lparse with the highest UAS for a sentence is selected
1,235 and 1,235 sentences, respectively). To traffom the top-100 parses output by MSTParser. We
our parse correction models, we generated specigbund that for MSTParser, the oracle for parse cor-
ized training sets corresponding to each parser B¥ction using neighborhood size=3 (95.6% UAS)
doing 10-fold jackknifing on the FTB training setis comparable to the oracle for parse reranking using
(cf. Section 5.1). Each parser was run on the FTkhe top-100 parses (95.4% UAS). This is an encour-
dev and test sets, providing baseline unlabeled aiging result, showing that parse correction is capable
tachment score (UAS) results and output parse tregsthe same improvement as parse reranking without
to be corrected. needing to process anbest list of parses.

6 Experiments

6.1 Oracles and Neighborhood Size 6.2 Feature Space Parameters

To determine candidate neighborhood size, we cofiror the feature spade we performed a grid search
sidered an oracle scoring function that always see find good values for the parametéts(frequency
lects the true governor of a dependent if it appeattireshold), P (combo length), and CE-reduction.
in the set of candidate governors, and otherwise s&e found thatP=3 with CE-reduction allowed for
lects the predicted governor. Results for this oraclthe most compactness without sacrificing correction
on the dev set are shown in Table 1. The baselingerformance, for all of our corrective models. Ad-
corresponds ton=1, where the oracle just selectsditionally, K=2 worked well for the coordinating
the predicted governor. Incrementimg to 2 and conjunction models, whildg{=10 worked well for

to 3 resulted in substantial gains in oracle UAS, buthe preposition and generic models. CE-reduction
further incrementingn to 4 resulted in a relatively proved useful in greatly reducing the feature space
small additional gain. We found that average canaithout lowering correction performance: it reduced
didate set size increases about linearlyrinso we the size of the coordinating conjunction models from
decided to use:=3 in order to have a high UAS up- 400k to 65k features each, the preposition models
per bound without adding candidates that are verfyom 400k to 75k features each, and the generic
unlikely to be true governors. models from 800k to 200k features each.



Corrective UAS (%) tion performed as well as, and in most cases bet-
COI‘]fIgUI?&tIOﬂ Coords| Preps [ Overall| o than, thegeneric configuration, indicating the
Baseline | 68.3 83-8* 90-73* usefulness of specialized models and features for
Berkeley _Generic 69.4 84.9*| 91.13 difficult attachment types. Interestingly, the lower
Specialized| 71.5*| 85.1* | 91.23* . )
: the baseline parser's UAS, the larger the overall

Baseline | 705 | 86.1 | 9178 | o5 6y ement from parse correction under 8ee-
Bohnet Generic 71.2 86.4 91.88 ialized fi tion: MaltP had the | ¢
Speciaized | 72.7"| 852 | o1gg | Cllized configuration: Maltbarser had the lowes
Saselne 58 832 | 8078 aseline and the highest error re uctlcfhs%),
Malt Generic 630 | 845 | 9039 BerkeleyParger had the second-lpwest baseline and
Specialized| 64.0 | 85.0¢ | 90.47%| the second-highest error reductioh.4(0), MST-
Baseline | 605 | 859 | 91.04 Parser had the thirdflowest baseline and the third-
MST Generic 64.2%* | 862 91.25% highest error reduction3(6%), and BohnetParser
Specialized| 68.0| 86.2 | 91.36*| had the highest baseline and the lowest error re-

Table 2: Coordinati et i g duction (.2%). It may be that the additional er-
able 2: Coordinating conjunction, preposition, and overz o low- line parser. compared t
all UAS (%) by corrective configuration on the test set ors made by a low-baseline parser, compared to a

Significant improvements over the baseline starred. high-baseline parser, mVOIV? relatively simpler at-
tachments that parse correction can better model.

Parse correction achieved significant improve-
6.3 Corrective Configurations ments for coordination resolution under tepe-

For our evaluation of parse correction, we compare@alized configuration for each parser. MaltParser
two different configurations:generic (corrects all and MSTParser had very low baseline coordinat-
dependents using the generic model) spelcialized 1N conjunction UAS (around0%), while Berke-
(corrects coordinating conjunctions and preposition§yParser and BohnetParser had higher baselines
using their respective specialized models, and cotdround70%). The highest error reduction was
rects other dependents using the generic modefjchieved by MSTParset{.0%), followed by Malt-
The PA-Ranking aggressiveness parameétewas Parser 10.4%), BerkeleyParser().1%), and finally

set to 1 for our experiments, while the rounds paBohnetParser‘?(5%). The result for MSTParser was
rameterR was tuned separately for each correctivéUrPrising: although it had the second-highest base-
model using the dev set. For our final tests, we aﬂ'me overall UAS, it shared the lowest baseline coor-
plied each combination of parser + corrective condinating conjunction UAS and had the highest er-
figuration by sequentially revising all dependents ifO reduction with parse correction. An explana-
the output parse that had a relevant POS tag givéi,qn for this result is that the annotation scheme for
the corrective configuration. In the FTB test setcoordination structure in the dependency FTB has
this amounted to an evaluation over 5,706 prepdhe first conjunct governing the coordinating con-
sition tokens, 801 coordinating conjunction tokendunction, which governs the second conjunct. Since

section 3), itis unable to jointly consider a full coor-
6.4 Results dination structure. BohnetParser, which uses general

2:Z—edge factors, can consider full coordination struc-
fures and consequently has a much higher baseline
rgoordinating conjunction UAS than MSTParser.
Parse correction achieved significant but mod-

est improvements in pp-attachment performance un-

ISince the MEIt tagger and BerkeleyParser POS tagging acdler thespecializectonfiguration for MaltParser and
c_ur_acie; were ar_oumi?%, the sets of tokens consi_dered for re-BerkeleyParser. However, parse correction did not
vision differed slightly from the sets of tokens (with gold Possignificantly improve pp-attachment performance
tags) used to calculate UAS scores.

12 used McNemar's Chi-squared test witk 0.05 for all for MSTParser or BohnetParser, the two parsers that
significance tests. had the highest baseline preposition UAS (around

Final results for the test set are shown in Table
The overall UAS of each parser (except Bohne
Parser) was significantly improved under both co
rective configuration$? The specializedconfigura-



Modification Type MaltParser took 45s, and MSTParser took 1000s. A
w—c | cow [w—w]| Mods rough version of parse correction in thpecialized
Coords| 40 | 14 | 33 | 109%| configuration took around 200s (for each parser). An
Berkeley Preps | 118 | 39 | 41 | 35%]| jneresting result is that parse correction improves
Overall| 228 67 | 104 1'3(;/0 MaltParser the most while retaining an overall time
Bohnet CPC;ZLdSS gg 4112 22 1220//;’ complexity of O(n), compared ta0(n?) or r_ligher_
Overall 180 T 121 | 130 | 1.1% for the other parsers. This suggests that linear-time
Coords| 55 51 56 1 165% transition-based parsing and parse correction could
Malt Preps | 149 50 26 | 2489% | Ccombine toform an attractive system that improves
Overalll 390 | 172 | 293 | 2.4 % parsing performance while retaining high speed.
Coords| 80 20 51 | 18.9% .
MST | Preps| 64 | 45 | 26 | 24%]| ¢ Conclusion
Overall | 183 88 117 1.1%

We have developed a parse correction framework for
Table 3: Breakdown of modifications made under th&yntactic dependency parsing that uses specialized
specializedconfiguration for each parser, by dependenmodels for difficult attachment types. Candidate

type. w—c is wrong-to-correct,c—w is correct-to- governors for a given dependent are identified in a
wrong, w—w is wrong-to-wrong, and Mods is the per- neighborhood around the predicted governor, and a
centage of tokens modified. scoring function selects the best governor. We used
discriminative linear ranking models with features

86%). These results are a bit disappointing, but the§nc0ding syntactic context, and we tested parse cor-

suggest that there may be a performance ceiling f6FCtion on coordination, pp-attachment, and generic

pp-attachment beyond which rich lexical informa-dependencies in the outputs of four representative

tion (syntactic and semantic) or full sentence corstatistical dependency parsers for French. Parse cor-
texts are needed. For English, the average hum&gction achieved improvements in unlabeled attach-

performance on pp-attachment for the ny, p, ns) ment score for three out of the four parsers, with
problem formulation is justs.2% when given only MaltParser seeing the greatest improvement. Since

the four head-words, but increases9®2% when ?Oth MaItPar_ser and parse correction runO(_m) _

given the full sentence (Ratnaparkhi et al., 1994fime, & combined system could prove useful in situ-

If similar levels of human performance exist forations where high parsing speed is required.

French, additional sources of information may be Future work on parse correction might focus on

needed to improve pp-attachment performance. developing specialized models for other difficult
In addition to evaluating UAS improvements forattachment types, such as verb-phrase atta(?hment

parse correction, we took a closer look at the bedYrP dependents account for around 15% of incor-

corrective configurationspecialized and analyzed rect attachments across all four parsers). Also, se-

the types of attachment modifications made (TA_ectional preferences and subcategorization frames
ble 3). In most cases there were aro@aeh times (from hand-built resources or extracted using distri-
as many error-correcting modifications--¢) as butional methods) could make for useful features in

error-creating modifications-w), and the overall the pp-attachment corrective model; we suspect that

% of tokens modified was very low overall (arounorICher Ieﬁlcal mforrlnatlor; IS needed in order tﬁ_'n' q
1-2%). Parse correction is thus conservative in thigf®ase the currently modest improvements achieve

number of modifications made, and rather accuraﬁzy parse correction on pp-attachment.

whgn it does decide to modify an qttachment. Acknowledgments
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