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Abstract. In this communication, we consider block-wise evolving data streams.
When a semiparametric regression model involving a common dimension reduction
direction β is assumed for each block, we propose an adaptive SIR (for sliced in-
verse regression) estimator of β. This estimator is faster than usual SIR applied to
the union of all the blocks, both from computational complexity and running time
points of view. We show the consistency of our estimator at the root-n rate. In a
simulation, we illustrate the good numerical behaviour of the estimator. We also
provide a graphical tool in order to detect if there exists a drift of the dimension
reduction direction or some aberrant blocks of data. We illustrate our approach
with various scenarios. Finally, possible extensions of this method are given.
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1 Introduction

In the framework of high dimensional data, we consider the following semi-
parametric dimension reduction single index model proposed by Duan and
Li [3]:

Y = f(X ′β, ε) (1)

where the univariate response variable Y is linked with the p-dimensional
regressor X (with expectation E(X) = µ and covariance matrix V (X) = Σ)
only through the single index X ′β. The error term ε is independent of X.
The link function f and the vector β are unknown. Since β is not totally



identifiable in this model, we are interested in finding the linear subspace
spanned by β, called the Effective Dimension Reduction (EDR) space.

In this paper we focus on data arriving sequentially by block in a stream.
We assume that each data block t is composed of an independent and iden-
tically distributed (i.i.d.) sample {(Xi, Yi), i = 1, . . . , nt} available from
model (1). Our goal is to estimate the EDR direction at each arrival of
a new block of observations. A simple direct approach consists in pooling
all the observed blocks and then estimate the EDR direction by the Sliced
Inverse Regression method introduced by Li [5]. While SIR is a computa-
tionally simple and fast method, the drawback of pooling the data is the
storage of the blocks since the size of the dataset considerably increases with
the number of blocks. To avoid this, we propose an adaptive SIR method
based on the SIR approach for a stratified population developped by Chavent
et al. [2]. The proposed adaptive SIR method will be used to evaluate the
physical properties of surface materials on the planet Mars from hyperspec-
tral images. Our goal is to estimate the function G between some physical
parameters Y and observed spectra X. To this end, a stream of synthetic
spectra is generated by a physical radiative transfer model. The high di-
mension of spectra (p = 184 wavelengths) will be reduced using regularizd
SIR (see Bernard-Michel et al. [1] for details) and the proposed adaptive SIR
method.

2 An adaptive SIR estimator

Recall on SIR in block t. The population version SIR relies on the fol-
lowing linear condition:

(C) : ∀b ∈ <p, E(X ′b|X ′β) is linear in X ′β,

which is fulfilled when X is elliptically distributed. Moreover, in the presence
of high-dimensional data, this condition is often approximately fulfilled, see
Hall and Li [4] for details. Let us consider a monotone transformation T (.)
of Y . Under condition (C) and model (1), Li [5] showed that the centered
inverse regression curve is contained in the one-dimensional linear subspace of
<p spanned by Σβ. As a consequence, the eigenvector bt of Σ−1Γt associated
with the nonnull eigenvalue is an EDR direction (i.e. is collinear with β)
where Γt = V (E(X|T (Y ))).

To obtain an estimator of Γt which can be easily used in practice, Li [5]
proposed for T (.) a slicing into Ht ≥ 2 non-overlapping slices s1, . . . , sHt .
Denoting the hth slice weight (resp. mean) by ph = P (Y ∈ sh) (resp. mh =
E(X|Y ∈ sh)), then the matrix Γt can be written as

Γt =

Ht∑
h=1

ph(mh − µ)(mh − µ)′.



Then it is straightforward to estimate the matrix Γt by substituting theoret-
ical versions of the moments by their empirical counterparts. Let Γ̂t denote
this estimator. One therefore obtains the estimated EDR direction b̂t as the
eigenvector associated with the largest eigenvalue of Σ̂−1Γ̂t where Σ̂ is an
estimator of Σ.

Population version of SIRdatastream. Let us denote by bt the EDR
direction obtained in the block t. We consider the matrix

MT =

T∑
t=1

wtbtb
′
t cos2(bt, bT ),

where the wt’s are positive weights such that
∑T
t=1 wt = 1. Under the as-

sumptions of our model, the term cos2(bt, bT ) is equal to one since bt and
bT are both colinear with β. Under the assumptions of our model, it is also
straightforward to show that the principal eigenvector of MT is colinear with
β and then is an EDR direction.

Let us remark that it is possible to reformulate this approach as the
following optimization problem:

max
v∈<p

T∑
t=1

wt cos2(bt, v) s.t. ||v|| = 1. (2)

Indeed since ||bt|| = 1, we have:

T∑
t=1

wt cos2(bt, v) =

T∑
t=1

wt < bt, v >
2=

T∑
t=1

wtv
′btb
′
tv = v′

(
T∑
t=1

wtbtb
′
t

)
v = v′MT v,

thus maximization problem (2) can be rewritten as

max
v∈<p

v′MT v

v′v
. (3)

The solution of (3) is clearly the normalized principal eigenvector of MT . Let
us denote by vT this eigenvector.

Sample version of SIRdatastream. For t = 1, . . . , T , let us denote by b̂t
the estimator of the EDR direction calculated on each block t. The estimator
v̂T of the EDR direction vT with the SIRdatastream approach is the principal
eigenvector of the p× p matrix defined as

M̂T =

T∑
t=1

wtb̂tb̂
′
t cos2(b̂t, b̂T ) (4)

where wt = nt∑T
j=1 nj

and cos2(b̂t, b̂T ) =
(b̂′tb̂T )2

(b̂′tb̂t)×(b̂′T b̂T )
.



Asymptotics. The following assumptions are necessary to state our asymp-
totic result for a fixed number T of blocks and a sample global size n which
tends to ∞. Let nh,t be the number of observations in the hth slice in the

block t and let nt =
∑Ht

h=1 nh,t be the number of observations in the block t.

• (A1) Each block t is a sample of independent observations from the single
index model (1).
• (A2) For each block t, the support of Y is partitioned into a fixed number
Ht of slices such that ph 6= 0, h = 1, . . . ,Ht.
• (A3) For t = 1, . . . , T and h = 1, . . . ,Ht, nh,t → ∞ (and therefore
nt →∞) as n→∞.

For each block t and under the assumptions (C), (A1)-(A3), from SIR theory

of Li [5] each estimated EDR direction b̂t converges to bt at root n rate: that

is, for t = 1, . . . , T , b̂t = bt + Op(n
−1/2). Since cos2(b̂t, b̂T ) = cos2(bt, bT ) +

Op(n
−1/2) = 1 + Op(n

−1/2), we get M̂T = MT + Op(n
−1/2). Therefore the

principal eigenvector of M̂T converges to the corresponding one of MT at
the same rate: v̂T = vT + Op(n

−1/2). Since vT is colinear with β, then the
estimated EDR direction v̂T converges to an EDR direction at root n rate.

Computational complexity. For sake of simplicity, let us assume that each
block has the same sample size n∗. One can show that the SIRdatastream
approach performs faster than usual SIR based on the union of the first
T blocks (called SIRglobal hereafter) provided that the sample size n∗ is
large enough: n∗ > 2(p + 1). Moreover, when the total number T of blocks
increases, the dataset used for SIR becomes larger and larger, and problem
of data storage may appear. On the contrary, our SIRdatastream approach
only needs the storage of the last block (necessary of the two last ones if a
drift seems to occur) and the previous estimated EDR directions (which are
only p-dimensional vectors).

Running time. We compare the running time (in seconds) of our SIRdatas-
tream approach with SIRglobal (based on the union of the first T blocks).
For various values of the dimension p, the size n∗ of each block and the total
number T of blocks, we generate B = 20 data streams and we evaluate the
computational times for the two methods. Unsurprisingly one can observe in
Figure 1 that the dimension p noticeably favours SIRdatastream versus usual
SIR while the number T of blocks and the block size n∗ hugely penalize the
usual SIR approach in comparison with SIRdatastream.

3 A simulation study

We consider for each block of data the same following semiparametric regres-
sion model:

Y = (X ′β)3 + ε, (5)



Mean of computational times according to T when n∗ = 200 and p = 10

10 20 30 40 50 60

0
1

2
3

4

T

me
an

 of
 co

mp
. ti

me
s

10 20 30 40 50 60

0
1

2
3

4

T

me
an

 of
 co

mp
. ti

me
s

SIRglobal
SIRdatastream

Mean of computational times according to p when n∗ = 200 and T = 20

0
1

2
3

4

p

me
an

 of
 co

mp
. ti

me
s

5 10 20 40 80

0
1

2
3

4

p

me
an

 of
 co

mp
. ti

me
s

5 10 20 40 80

SIRglobal
SIRdatastream

Mean of computational times according to n∗ when T = 20 and p = 10

0
1

2
3

4
5

n*

me
an

 of
 co

mp
. ti

me
s

100 400 800 1600 3200

0
1

2
3

4
5

n*

me
an

 of
 co

mp
. ti

me
s

100 400 800 1600 3200

SIRglobal
SIRdatastream

Fig. 1. Running times (in seconds) for various values of p, n∗ and T .

where X follows the p-dimensional normal distribution Np(0p, Σ) with the
covariance Σ arbitrarily chosen, ε follows the normal distribution N (0, 1)
and is independent of X. For the slope parameter β, we consider various
scenarios. For each scenario, we generate T = 60 blocks of size n∗ = 200
with p = 20.

• Scenario 1: β is constant for all the T blocks. We fix β = β0 with
β0 = (1,−1, 2,−2, 0, . . . , 0)′.

• Scenario 2: β is constant for T − 1 blocks and the 10th block is aberrant.
We fix β = β0 for each block t with t 6= 10 and we set β = β1 for the
10th block with β1 = (1, 1, . . . , 1)′.



• Scenario 3: β = β0 for the first 9 blocks and β = β1 for the remaining 51
ones.

• Scenario 4: β = β0 for the first 9 blocks and β takes different values for
the remaining 51 blocks. The 51 slope parameters β have been randomly
generated as follows: each component βj of β is randomly obtained from
the normal distribution N (0, 1).

We use the following quality measure for any estimator (denoted by β̂) of

the direction β: cos2(β̂, β) = (β̂′β)2

(β̂′β̂)×(β′β)
. The closer to one is this measure,

the better is the estimate.
For each scenario, we generate T = 60 blocks as described above. Then at

each time t (i.e. when the first t blocks are available) we estimate the EDR
direction with SIRdatastream and SIRglobal approaches. We also estimate
the EDR direction with usual SIR based only on the data of this block t.

In the following, for each scenario, we plot the quality measure cos2(β̂, β0)

(resp. cos2(β̂, β1)) on Figure 2 (resp. 3) of the estimator β̂ (obtained with
SIRdatastream, SIRglobal or SIR estimators at each time t). We also repre-

sent with an image the weights cos2(̂bt, b̂T ) used in equation (4). The lighter
is the color, the larger is the weight. This image will provide to the user an
interesting graphic in order to detect if a drift occurs or if aberrant blocks
appear in the data stream.

Some comments on Figures 2 and 3.
• SIRdatastream and SIRglobal perform well for scenario 1 (but keep in
mind that SIRdatastream is an efficient method from running time and data
storage points of view). The image of the weights does not exhibit any drift
or aberrant block.
• For scenario 2, SIRdatastream and SIRglobal perform well except for the
10th block for SIRdatastream. But the image of the weights clearly indi-
cates that this block is aberrant and then the effect of this block on the
SIRdatastream estimator disappears when the new blocks are available.
• For scenario 3, the image of the weights clearly shows that there is a drift
from the 10th block to the last one. The estimation of the true direction β0
is efficient for SIRdatastream and SIRglobal for the first 9 blocks and then
becomes worse for the next blocks. Note that in Figure 3 one can see that
SIRdatastream is efficient to estimate the true direction β1 from the 10th
block to the last one, this is not the case for SIRglobal.
• For scenario 4, the image of the weights clearly indicates that there is no
common structure from the 10th block to the last one. The estimation of
the true direction β0 is efficient for SIRdatastream and SIRglobal for the
first 9 blocks and then becomes worse for the next blocks. One can remark
that SIRglobal always provides estimates close to the direction of β0 after the
10th block even if there is no structure in this case, which may cause troubles
in practical situations. This remark also remains valid for scenario 3 where



Scenario 1: a common direction in all the T = 60 blocks
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Scenario 2: the 10th block is aberrant
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Scenario 3: a drift occurs from the 10th block (β0 to β1)
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Scenario 4: from the 10th block to the last one, there is no common direction β
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Fig. 2. Numerical behaviour of the SIRglobal and SIRdatastream estimators for
various scenarios. On the left: plot of the quality measure cos2(β̂, β0) versus the
number T of blocks (red for SIRdatastream, green for SIRglobal on the first t blocks,

black for SIR on block t only). On the right: image of the weights cos2(̂bt, b̂T ) used
in the computation of v̂T .



SIRglobal provides estimates close to the direction of β0 after the 10th block
even if the new underlying direction is β1. At the end of the 60th block in
scenario 3, SIRglobal is still not able to provide a good estimate for β1, see
Figure 3.
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Fig. 3. Scenario 3: plot of the quality measure cos2(β̂, β1) versus the number T of
blocks (red for SIRdatastream, green for SIRglobal)

4 Concluding remarks

The proposed approach performs well on simulated data. We present in this
paper a single index version of the underlying model. It is possible to extend
this approach to multiple indices model. In this expression of MT , the vector
bt (resp. the squared cosine) will be replaced by a basis Bt of the EDR
space (resp. a proximity measure between two K-dimensional EDR space,
for instance the square trace correlation). It is also possible to use alternative
methods instead of SIR (such as SIR-II, SAVE or SIRα for example). In the
next future, SIRdatastream will be applied on real data dealing with the
estimation of Mars surface physical properties from hyperspectral images.
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