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Local behaviour of evaporating stars and black

holes around the total evaporation event.

F. Fayos‡ and R. Torres

Department of Applied Physics, UPC, Barcelona, Spain.

Abstract. Many models in which the object under study loses all its mass have

appeared in the literature. One can find from evaporating stars to incipient black

holes, all the way to evaporating black holes. In this article we try a semiclassical

study of these evaporating models centered on the evaporating event itself. We

analyze their common properties, behaviours and possibilities. Specifically, we pay

special attention to the evaporating models as a means of avoiding singularities

during the collapse. In case of any pre-existing non-spacelike curvature singularity,

we show that these models tend to evaporate it. Finally, we introduce a new class

of evaporating black holes.

PACS numbers: 04.20.Cv, 04.40.-b, 04.90.+e, 98.10.+z

1. Introduction

The pioneering work on evaporating models (1968) was an article by Demianski

and Lasota [1]. In this work they found an exact solution of Einstein’s equations

representing a star endowed with a perfect fluid interior with a flux of unpolarized

radiation travelling radially outwards. This interior was matched through the

evolving stellar surface to a Vaidya solution which modelled the radiating exterior

of the star. The proper radius of the model had the particular property of becoming

zero in a finite time. Thus, the star evaporated and a flat space-time appeared

in the future of the evaporating event. Later [2] it was shown that this model

could be used as a counterexample of Penrose’s cosmic censorship conjecture [3]

since an instantaneous naked curvature singularity appeared at the evaporating
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event. Likewise, an evaporating radiating star with a Robertson-Walker interior

was proposed in [4] by Lake and Hellaby. This model generates a naked singularity

that the authors argue is not instantaneous. However, this is questioned in [5]. The

generation of naked singularities by particular models of evaporating stars avoiding

the formation of horizons is also treated in [6] where the subject is treated in four

and higher dimensions.

Contrary to the use of evaporating models as a means of getting naked

singularities, the ejection of matter until reaching a complete evaporation can also

provide a method of avoiding the formation of closed trapped surfaces, singularities

(naked or not) and black holes. Thus, for example, in reference [7], by studying the

general procedure for getting spherically symmetric matched models, we obtained a

particular analytical example of a regular collapsing toy-star satisfying all the energy

conditions which manages to avoid the formation of singularities by radiating away

enough mass while the radius of the stellar surface keeps decreasing until becoming

zero. In [8] we extended this case to a wide class of models sharing the same

properties. Therefore, these models do not need to be in a stationary equilibrium

configuration nor to bounce to avoid the formation of a singularity. Along this line,

other authors have proposed new evaporating models with different matter fields [9],

different exact solutions of Einstein’s equations for non-perfect fluids with heat flow

[10] or different equations of state [11]. Recently [12] a new mechanism for ejecting

matter (based on the mini-super-space loop quantum gravity formalism) has been

proposed with the aim of creating this kind of evaporating singularity-free models.

This is interesting since it indicates that quantum effects could even favour the total

evaporation§.

Another possibility for evaporating stellar models is that of the incipient black

holes. In these models an about-to-be-formed black hole emits radiation until it

evaporates without forming neither a black hole nor a singularity. For example, in

[13] the blackbody radiation coming from the collapsing star continuously drains

away the irreducible mass of the incipient black hole at an ever increasing rate. The

lifetime of the about-to-be-formed black hole is therefore finite and it can never

§ However, some geometrical and physical problems are present. See [8] for details.
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pass through its instantaneous R=2 M surface. Other recent models for incipient

black holes can be found in [14], [15] and [16], where usually the evaporation of

the collapsing object is due to nonthermal pre-Hawking radiation, thus avoiding the

information loss problem. Likewise, a treatment of non-singular evaporating black

holes in the framework of quantum gravity can also be found in [17] and [18].

Our goal in this article is to study the evaporating models as a whole, but paying

special attention to the evaporating event itself. We will try to obtain the general

conditions that such evaporating objects must satisfy and their different behaviours

and possibilities using the geometrical approach of requiring the existence of a well

defined metric around the evaporation event. In order to get these models we will

match a general interior solution with the exterior radiating Vaidya’s solution, in

such a way that mass will be lost in the form of outgoing incoherent null radiation.

Since the physics of some evaporating models at late stages can be fairly unknown,

we will not restrict the energy-momentum tensor in the interior of the model allowing

classical or quantum fields. This semiclassical approach will be necessary when

we consider regular interiors for evaporating objects reaching high densities and

pressures in their final stages. However, even this approach will fail when considering

singular interiors in which the second order curvature invariants diverge. In the

vicinity of such singularities only a full quantum gravity theory could provide us with

the accurate answers. Therefore, when we deal with this singular case our aim will

be to try to discover the possibilities allowed in the semiclassical framework. On the

other hand, we will not even impose the fulfillment of any kind of energy conditions

in the interior of the models since it is well known that the energy conditions can

be violated in the presence of quantum fields. In fact, this is an usual feature for

evaporating black holes ([19], proposition 9.2.8).

This work is organized as follows: In section 2 we deal with the radiating

Vaidya’s solution. We limit the study of this solution to its possibilities as the

exterior of an evaporating model and, subsequently, we interpret these possibilities

in terms of what is happening with the star. In section 3, we introduce the general

interior and study its different properties, characteristics and possibilities around the

total evaporation event. In section 4 we study the complete matched models and
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the dynamical behaviour of the object’s surface. The models that lose all its mass

without reaching a complete collapse are treated in section 5. In section 6 we deal

with the conditions that should be satisfied by models that collapse and evaporate

completely avoiding the formation of any exterior singularity. The models with

regular interiors, interiors with a non-spacelike singularity and evaporating black

holes are sequentially treated in section 7. Finally, the possible existence of models

that develop an exterior singularity in their collapse is studied in section 8.

2. Vaidya’s solution as the radiating exterior of an evaporating model

Locally, Vaidya’s metric [20] can be described in radiative coordinates [21] as

ds2
V = −χ̄dū2 − 2 dū dR̄ + R̄2

(
dθ̄2 + sin2 θ̄dφ̄2

)
(1)

where χ̄ = 1 − 2 m̄(ū)
R̄

and the mass function m̄ [22, 23, 24] depends only on ū. For

those values of ū such that m̄ > 0, there is a space-like curvature singularity at

R̄ = 0.

The energy-momentum tensor for the metric (1) is of pure radiation type

T̄µν = − 2

R̄2

dm̄(ū)

dū
lµlν, lµdxµ = −dū lµl

µ = 0 . (2)

The weak energy conditions demand that dm̄(ū)
dū

≤ 0. We shall assume from

now on that ū grows towards the future. Then, m̄ is a non-increasing function of

ū and the incoherent radially directed radiation described by (2) is outgoing. Here

outgoing means going towards bigger values of R̄.

We want to describe a process of total evaporation such that the mass function

must decrease until vanishing from the total evaporation event on. Vaidya’s solution

will model the radiating exterior of the evaporating object. Therefore, we are only

interested in studying the particular Vaidya’s solutions with vanishing mass. We

will proceed for the exterior space-time as follows: we use the metric (1) in the

interval −∞ ≤ ū ≤ 0, assuming that the non-increasing function m̄(ū) satisfies

m̄(ū = 0) = 0, (3)

so that we arbitrarily set the evaporation event at ū = 0. For ū ≥ 0 we extend

Vaidya’s metric with Minkowski’s spacetime, i.e. m̄(ū ≥ 0) = 0 (see [7], [8] and
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references therein for details).

In order to analyze the particular Vaidya’s solutions with vanishing mass it

is useful to study the behaviour of the radial ingoing null geodesics. To do that,

we have to take into account that the differential equation for these null geodesics

non-transporting radiation, i.e.

dū

dR̄
= − 2R̄

R̄ − 2m̄(ū)
, (4)

has a critical point at {R̄ = 0, ū = 0}.

In particular, if

− 1

16
≤ Υ ≤ 0, (5)

where

Υ ≡ lim
ū→0−

m̄(ū)

ū
= lim

ū→0−

dm̄(ū)

dū
, (6)

then ū = R̄ = 0 has a node (or col-node) structure [25][26]. This implies that

every ingoing radial null geodesic must reach the critical point according to a well

defined value for its tangent which can only be one between two possibilities. In

order to calculate the values of these tangents, let us define ξ ≡ ū/R̄ and let λ

be the affine parameter of the radial null geodesic such that limλ→0 ū(λ) = 0 and

limλ→0 R̄(λ) = 0. Then we have, by applying Hôpital’s rule, ξ0 ≡ limλ→0 ū/R̄ =

limλ→0 dū/dR̄ = −2/(1 − 2m̄,ūcū=0 ξ0). Which provide us with the two possible

values for the critical directions:

ξ0±(Υ) =
1 ±

√
1 + 16Υ

4Υ
(7)

Therefore, condition (5) implies

−∞ < ξ0+ ≤ −4 ≤ ξ0− ≤ −2. (8)

Even more, the node (or col-node) structure implies that there is an infinite family

of spherically symmetric null hypersurfaces reaching the critical point ū = R̄ = 0

with tangent ξ0+, while there is only one with tangent ξ0− [27][28][29] as illustrated

in figure 1.
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Figure 1. In this graphic we show the behaviour of the ingoing radial null

geodesics when Υ = 0. Notice the existence of a null geodesic ending at the critical

point with tangent equal to −2 (labelled as l2) and of null geodesics arriving with

minus infinite tangent (labelled as l∞).

In what follows, it will be useful to know the values of χ̄ at ū = R̄ = 0 as

measured in this two directions ξ0±. Using (7)

χ̄0±(Υ) = lim
ū→0−

(
1 − 2

m̄(ū)

R̄

)
=

1

2
(1 ∓

√
1 + 16Υ) (9)

What implies

0 ≤ χ̄0+(Υ) ≤ 1

2
≤ χ̄0−(Υ) ≤ 1. (10)

In particular, if Υ = 0 then ξ0+ = −∞, χ̄0+ = 0, ξ0− = −2 and χ̄0− = 1.

The translation of these results into Penrose’s diagrams is shown in figures 2

and 3, where a null singularity ū = R̄ = 0 appears. In practice, only if we know the

behaviour of m̄(ū) for all ū in the interval (−∞, 0) we will be able to distinguish

between the two possibilities appearing in the figures.

For the sake of completeness, let us remark that if Υ < − 1
16

the critical point

in the differential equation for the radial ingoing null geodesics is an unstable focus.

The Penrose diagram corresponding to this case can be seen in figure 4. No other

cases exist since Υ ≤ 0.
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Figure 2. The Penrose diagram for Vaidya’s spacetime when m̄(ū) vanishes from

some instant ū = 0 on and −1/16 ≤ Υ ≤ 0. Note that in this diagram some

ingoing radial null geodesics come from the past null infinity J − and reach the

light-like singularity (R̄ = 0, ū = 0). A generic space-like hypersurface F has the

past Cauchy Horizon in the null hypersurface marked as “CH for F ”.
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Figure 3. Alternative Penrose’s diagram for Vaidya’s spacetime when m̄(ū)

vanishes from some instant ū = 0 on and −1/16 ≤ Υ ≤ 0. Note that in this

diagram no ingoing radial null geodesic comes from the past null infinity J − and

reaches the light-like singularity. A generic space-like hypersurface F has the past

Cauchy Horizon in the null hypersurface marked as “CH for F ”.
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Figure 4. The Penrose diagram for Vaidya’s solution when m̄(ū) vanishes from

some instant ū = 0 on and Υ < −1/16.

2.1. Candidates for matching hypersurface in Vaidya’s spacetime

The behaviour of the stellar model will depend both on the chosen solution for the

interior and on the hypersurface chosen as the matching hypersurface. In this way, a

totally collapsing evaporating model must have a time-like matching hypersurface Σ

ending at ū = R̄ = 0. This exclusively corresponds with hypersurfaces of type σNS

and σSF appearing in figure 2‖. In the case σNS a null singularity emerges beyond

the total evaporation event, while this does not happen if the matching hypersurface

were σSF .

A spherically symmetric timelike hypersurface (ū(τ), R̄(τ)) (where τ is a future-

directed time coordinate defined only on the hypersurface) is timelike and future

directed if, and only if,

χ̄ ˙̄u + 2 ˙̄R > 0 (11)

and ˙̄u > 0, where dots stand for derivatives with respect to τ .

The slope of such hypersurface when reaching ū = 0, R̄ = 0, at let’s say τ = 0,

‖ This type of hypersurfaces does not exist in the particular Vaidya’s solutions shown in figures 3

and 4



Evaporating stars and black holes 9

in the {ū, R̄} plane can be computed as:

ζ ≡ lim
τ→0−

ū(τ)

R̄(τ)
= lim

τ→0−

˙̄u
˙̄R
. (12)

Likewise, the value of χ̄ on the hypersurface as it approaches ū = 0, R̄ = 0 will

be

χ̄0ζ ≡ lim
τ→0−

(
1 − 2

m̄(ū)

R̄

)
= 1 − 2Υζ. (13)

If we use (11), (12) and (13) we find that the slope of the timelike hypersurface

reaching ū = R̄ = 0 must satisfy

−∞ < ξ0+(Υ) ≤ ζ ≤ ξ0−(Υ) ≤ −2, (14)

where ξ0± are defined in (7) and we have taken into account that, since the time-like

hypersurface reaches R̄ = ū = 0 which does not belong to the manifold, the limiting

value could also be ξ0±¶. Let us remark that inequality (14) is expected from the

structure shown for the ingoing radial null geodesics.

If we now use (7) and (13) we find the following bounds for χ̄0ζ :

0 ≤ χ̄0+(Υ) ≤ χ̄0ζ(Υ, ζ) ≤ χ̄0−(Υ) ≤ 1. (15)

When dealing with a spherically symmetric timelike hypersurface ending at

ū = R̄ = 0 (see figure 2), a way of classifying it as type σNS or type σSF is to notice

that only timelike hypersurfaces of type σSF cross all the ingoing radial geodesics

near the cauchy horizon for F (except for this same CH). Due to the node (or col-

node) structure of the family of ingoing radial null geodesics, in the {R̄, ū} plane

(see figure 1) this means that a curve of type σNS must fulfill

ζNS = ξ0+(Υ) (16)

0 ≤ χ̄0ζNS
(Υ, ζNS) = χ̄0+(Υ) ≤ 1

2
. (17)

We would like to remark that this is the behaviour of, for example, all radial timelike

geodesic hypersurfaces ending at the singularity ū = R̄ = 0 [29].

On the other hand, it is sufficient for a curve to be of the type σSF to fulfill:

ξ0+(Υ) < ζSF ≤ ξ0−(Υ), (18)

0 ≤ χ̄0+(Υ) < χ̄0ζSF
(Υ, ζSF ) ≤ χ̄0−(Υ) ≤ 1. (19)

¶ Note that, nevertheless, the hypersurface would be time-like in the manifold.
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Another possibility for evaporation is possible if the matching hypersurface is

of type σe, as can be seen in figures 3 and 4. In this case the stellar surface would

reach ū = 0, corresponding to m̄(ū = 0, R̄ 6= 0) = 0, with a non-zero value of R̄

(R̄ ≡ R̄0). This means that from ū = 0 on, the mass-energy contained in the sphere

R̄ = R̄0 vanishes [23]. Beyond this point Σ could be continued with an arbitrary

timelike trajectory crossing the Minkowski region. Therefore no singularities can be

formed there.

3. The interior solution

Let us consider a four-dimensional spherically symmetric space-time V, so that

its line-element can be expressed in radiative coordinates [21] {xµ} = {u, R, θ, ϕ}

(µ = 0, 1, 2, 3) as

ds2 = −e4βχdu2 + 2εe2β du dR + R2 dΩ2, (20)

where χ ≡ 1−2m/R, ε2 = 1, β and m depend on {u, R}, and dΩ2 ≡ dθ2 + sin2 θdϕ2.

It is easily checked that m(u, R) is the mass function [22, 23, 24], which represents

the total energy inside the two-spheres with constant values of u and R.

We choose u growing to the future, then

l =
d

d`
= −ε

∂

∂R
(21)

is a future directed radial null vector tangent to the null geodesics u =constant and

` is a future directed parameter. If ε = −1 (or +1), then the expansion of these

null geodesics is positive (negative, respectively) and, therefore, they are outgoing

(ingoing, respectively) radial null geodesics. On the other hand,

k =
d

dκ
= e−2β ∂

∂u
+ ε

χ

2

∂

∂R
(22)

is a future directed radial null vector such that l · k = −1 and κ is a future directed

parameter. If χ > 0 and ε = −1 (or +1), then this vector is tangent to a family of

null geodesics with negative (positive, respectively) expansion and, therefore, these

radial null geodesics are ingoing (outgoing, respectively). It is interesting to note

that if, in a given 2-sphere, χ < 0 and ε = −1 (ε = +1) then the two radial null

vectors have both positive (negative) expansion which means that the 2-sphere is a
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closed surface trapped to its past (future, respectively). We will call the spherically

symmetric hypersurface defined by χ = 0 the Apparent 3-Horizon, A3H for short.

It is well known that spacetimes can be classified according to the properties

of the energy momentum tensor [19]. A spherically symmetric spacetime is said to

be type I if its energy-momentum tensor diagonalizes in an orthonormal basis E0

(time-like), E1, E2 ∝ ∂/∂θ and E3 ∝ ∂/∂ϕ, being λα the corresponding eigenvalues,

as long as

α ≡ β,R

(
χ2β,R +ε

2e−2β

R
m,u

)
> 0 (23)

is satisfied. The corresponding eigenvalues are

λ0 ≡ − ρd = −2
m,R
R2

+
2

R
(χβ,R −α1/2), (24)

λ1 ≡ pd = −2
m,R
R2

+
2

R
(χβ,R +α1/2), (25)

λ2 ≡ pT =

(
3 − χ

R
+ 4χβ,R − 6

R
m,R

)
β,R +2χβ,RR − 1

R
m,RR +

+ ε2e−2ββ,uR . (26)

λ3 = λ2. (27)

If α = 0 then λ0 = λ1 = −2m,R /R2 and we have a double eigenvalue that

corresponds to the null eigenvector l. Then the energy momentum tensor is said to

be type II.

The dominant energy conditions (DECs) [19] require the energy density and

the energy-flux measured by any timelike observer to be non-negative and non-

spacelike, respectively. These conditions applied to our interior line element written

in radiative coordinates can be written, in both (type I and II) cases, as

β,R ≥ 0, (28)

m,R −Rχβ,R ≥ 0, (29)

χ2β,R +ε
2e−2β

R
m,u ≥ 0, (30)

ρd − pT ≥ 0, (31)

ρd + pT ≥ 0. (32)

Let us now consider a first application of the DEC that we will use later:
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Proposition 3.1 In regions fulfilling the DECs and with χ > 0:

• The mass function must be a non-decreasing function along the outgoing radial

null geodesics.

• The mass function must be a non-increasing function along the ingoing radial null

geodesics.

To show this we can use (28), (29) and the condition χ > 0 to get

m,R ≥ 0 (33)

and we can use (29), (30) and the condition χ > 0 to get

χ

2
m,R +εe−2βm,u ≥ 0. (34)

On the other hand, the variation of the mass function along a u =constant null

geodesic can be computed using (21) to get

dm

d`
= −εm,R . (35)

And the variation of the mass function along the other family of radial null geodesics

can be computed using (22) to get

dm

dκ
= ε(

χ

2
m,R +εe−2βm,u ). (36)

For outgoing radial null geodesics, if ε = −1 then l is tangent to these geodesics

and we must combine (33) and (35) to show that the mass is non-decreasing along

the outgoing geodesics. However, if ε = +1 then k is now the vector tangent to

the outgoing geodesics and we must combine (34) and (36) to show that the mass

is non-decreasing along the outgoing geodesics. (It is enough to follow a similar

reasoning to show that along ingoing radial null geodesics the mass function will be

non-increasing).

3.1. Inner local behaviour

Let us consider U ≡ {(u, R)| δu ≤ u ≤ 0, 0 ≤ R ≤ δR}, where the boundaries δu

and δR must be fixed according to some natural conditions for evaporating models

that will be stated from section 6 on. In order to build the Einstein Field Equations

we need β and m to be C2 in the points of U belonging to the manifold. In this

paper we will assume that β and m are C2 in U .
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Without loss of generality, we will always consider β(u, R = 0) ≡ β0(u) = 0

(since, if it was not, we can always perform a coordinate change u → u′ such that

the new coordinate u′ were defined by du′ = e2β0(u)du).

According to the values of m(u, R) and β(u, R) and their partial derivatives

computed at u = R = 0 we can classify U (with a fixed characterization of R = 0)

as follows:

1) Regular interiors: If there are not curvatures singularities in U , i.e., if the

curvature scalar invariants polynomial in the Riemann tensor (henceforth second

order curvature invariants) remain finite at U . A full independent set of invariants

was found in [30]. By using this set it is easy to show that, out of R = 0, we have a

singularity-free region of the space-time if, and only if, β and m and their first and

second partial derivatives are non-diverging functions there, but this is guaranteed

by our assumption that both m and β are C2. On the other hand, one gets some

conditions on R = 0 which lead to the following statement [31][32]: All curvature

invariants will be finite at U preventing the existence of curvature singularities if,

and only if,

lim
R→0

β(u, R)

R2
= β2(u) and lim

R→0

m(u, R)

R3
= m3(u), (37)

where β2(u) and m3(u) are finite functions in U . This implies that

m(u, R = 0) = m,R (u, R = 0) = m,RR (u, R = 0) = 0

β(u, R = 0) = β,R (u, R = 0) = 0. (38)

2) Interiors with a non-spacelike singularity at R = 0: It is easy to show that

we have a non-spacelike singularity at R = 0 if, and only if, conditions (38) are not

all fulfilled but

m(u, R = 0) = 0 and m,R (u, R = 0) ≤ 1/2. (39)

3) Interiors with a spacelike singularity at R = 0: In this case

m(u, R = 0) > 0 or

m(u, R = 0) = 0 and m,R (u, R = 0) > 1/2. (40)

It should be noted (37) that in cases 2) and 3) the second order curvature

invariants diverge.
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A spherically symmetric timelike hypersurface {u(τ), R(τ)} (where τ is a

future-directed time coordinate defined only on the hypersurface) is timelike and

future directed in the manifold if, and only if,

2εṘ − e2βχu̇ < 0 (41)

and u̇ > 0, where dots stand for derivatives with respect to τ . However, we need

to remark that in case the hypersurface reaches a singularity at R = 0 then the

inequalities in the timelike conditions above could be replaced by equalities in the

limit as R tends to 0 while the hypersurface would be timelike in the manifold.

Whenever a mass function satisfies m(u = 0, R = 0) = 0 and there is a

spherically symmetric hypersurface reaching u = R = 0, in general the value of χ

computed along this hypersurface in the limit when it reaches u = R = 0 will depend

on the specific hypersurface. However, there will be certain important situations in

which the value of χ in this limit is fixed. Consider the following

Proposition 3.2 If a mass function m is C2 in U and satisfies m(δu ≤ u ≤ 0, R =

0) = 0 (δu 6= 0) and m,R (0, 0) = 0, then the limiting value of χ along an arbitrary

spherically symmetric hypersurface {u(τ), R(τ)} reaching u = R = 0 at τ = 0

satisfies

lim
τ→0−

χ = 1. (42)

In order to show this, consider in U a first order power-series development in R

of the mass function taking into account that m(δu ≤ u ≤ 0, R = 0) = 0:

m(u, R) = m,R (u, R = 0) R +
1

2
m,RR (u, R = ρ) R2, (43)

where the last term is the remainder and, according to Taylor’s theorem, 0 ≤ ρ ≤ R.

Likewise, m,R (u, R = 0) can be developed in u taking into account that m,R (0, 0) =

0 to obtain the following zeroth order power-series development

m,R (u, R = 0) = m,uR (u = ν, R = 0) u, (44)

where only the remainder appears and, according to Taylor’s theorem, u ≤ ν ≤ 0.

Finally, with (43) and (44) and using u(τ = 0) = 0 and R(τ = 0) = 0 we get

lim
τ→0−

χ = 1 − 2 lim
τ→0−

m

R
=
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= 1 − 2 lim
τ→0−

(
m,uR (u = ν, R = 0) u +

1

2
m,RR (u, R = ρ)R

)
= 1.

4. The complete matched models

Now, in order to get the complete evaporating models, we need to match a part of

the interior spacetime containing R = 0 with the exterior radiating Vaidya’s solution

through a spherically symmetric timelike matching hypersurface identified with the

evolving star’s surface. In fact, we are interested in the local behaviour around the

evaporating event. Therefore, we restrict the analysis of our matching to U in the

interior manifold and to Ū in the Vaidya spacetime, where similarly to U , we define

Ū ≡ {(ū, R̄)| δū ≤ ū ≤ 0, 0 ≤ R̄ ≤ δR̄} and the boundaries must be fixed according

to the conditions that we will discuss from section 6 on.

The matching of two spherically symmetric space-times through a time-like

matching hypersurface Σ can be found in [7] and references therein. First we need to

identify an embedding of Σ in both the Vaidya and the general interior space-times.

To that end let us consider a general timelike hypersurface σ̄ preserving the spherical

symmetry of the exterior spacetime and with intrinsic coordinates {ξa} = {λ, ϑ, ϕ},

where λ is a future-directed time coordinate defined only on the hypersurface. The

general parametric equations of σ̄ are: ū = ū(λ), R̄ = R̄(λ), θ̄ = ϑ, φ̄ = ϕ. Similarly,

let us take a general spherically symmetric timelike hypersurface σ in the interior

spacetime. This hypersurface is assumed to be diffeomorphic to σ̄, and thus the

intrinsic coordinates are chosen to be the same {ξa} = {λ, ϑ, ϕ}. The general

parametric equations for σ are: u = u(λ), R = R(λ), θ = ϑ, φ = ϕ.

Finally, the Darmois gravitational junction conditions (see [7] and references

therein for details) applied to the case ε = −1 provide us with the following matching

conditions

R̄
Σ
= R, (45)

m̄
Σ
= m, (46)

˙̄u
Σ
= e2βu̇, (47)

0
Σ
=
(
χβ,R −m,R

2R

)
e2βu̇ + β,R Ṙ. (48)
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On the other hand, if ε = +1 the matching conditions are

R̄
Σ
= R, (49)

m̄
Σ
= m, (50)

χ̄ ˙̄u
Σ
= χe2βu̇ − 2Ṙ, (51)

0
Σ
=

[
χ
(
χβ,R −m,R

2R

)
+

m,u e−2β

R

]
e2βu̇ +

(m,R
R

− χβ,R

)
Ṙ. (52)

We choose ū(λ = 0) = u(λ = 0) = 0, so that λ = 0 is identified with the total

evaporation event.

Regarding the existence of two sets of matching conditions, it is interesting to

notice that the choice ε = −1 implies that an outgoing radial null geodesic defined

by u = constant when crossing Σ is simply continued with an outgoing radial null

geodesic in the Vaidya metric defined by ū = constant. Contrarily, if we choose

ε = +1 a radial ingoing null geodesic defined by u = constant is continued through

Σ with a radial ingoing null geodesic in the Vaidya metric which is not defined by

ū = constant. This has as a consequence that the analysis of the ε = +1 case is

generally more complicated.

5. Evaporating models that do not completely collapse

We first study the evaporating models that lose all their mass without completely

collapsing. The exterior for these models was studied in subsection 2.1. There we

saw that the matching hypersurface must be of type σe (see, for example, figure 4).

In these models, the following proposition applies:

Proposition 5.1 Let a model be such that it fulfills the DECs, the 2-spheres of the

model are not closed trapped surfaces (χ > 0) and the mass function is not negative.

Then, if the mass function vanishes on the matching hypersurface at, let’s say,

u = ū = 0 and R
Σ
= R̄

Σ≡ R̄0 > 0, the matched model will have null mass on and in

the future of the outgoing spherically symmetric lightlike hypersurface that, starting

at R = 0 and ending at the future null infinity, crosses Σ at (u = 0, R = R̄0).

This behaviour has been illustrated in figure 5. Let us remark that the boundary

of the region in the interior solution defined by m = 0 does not need to coincide
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Vaidya

Minkowski

u=
0

Figure 5. An evaporating model that loses all its mass without completely

collapsing.

with the lightlike hypersurface introduced in the proposition.

In order to show proposition 5.1, we must consider the outgoing radial null

geodesic reaching the matching hypersurface at (u = 0, R = R̄0), where the mass

function becomes null. According to proposition 3.1, the mass function must be null

along the outgoing radial null geodesic from R = 0 until reaching (u = 0, R = R̄0).

Moreover, as m̄(ū = 0) = 0, the mass function will be null along ū = 0 in the exterior

region and, thus, it will be null along all the geodesic. We can always match the

model across this null geodesic with a portion of Minkowski’s solution. (See [33] for

details). In this way we get a model of a completely evaporating star that vanishes

without generating any singularity.

6. Evaporating collapsing models: The case Σ of type ΣSF

In this section we will analyze the matching in the cases in which the matching

hypersurface reaches R = u = 0 = R̄ = ū with m̄(ū ≥ 0) = 0, in such a way that

no exterior singularities appear. I.e., the cases in which Σ will be identified with a

hypersurface of type σSF in Vaidya’s spacetime and, as stated in subsection 2.1, (18)

and (19) hold. Henceforth, a matching hypersurface of this type will be denoted by
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ΣSF . We will list the sufficient conditions for a general interior to produce this kind

of evaporating collapse: “The evaporating collapsing conditions”. The analysis of

every particular interior and the necessary and sufficient conditions for every case

will be treated in the next section.

6.1. The evaporating collapsing conditions on the exterior

• 1. There must be a C1 solution R̄(λ) to the matching conditions in Ū satisfying

R̄(λ = 0) = 0, (53)

R̄(λ < 0) > 0. (54)

• 2. We demand the mass of the object to be non-negative according to an

observer in the exterior:

m̄(ū < 0) > 0 and m̄(ū = 0) = 0. (55)

• 3. The matching hypersurface must be timelike in the manifold:

˙̄R
˙̄u

+
χ̄

2

ΣSF

> 0 (56)

in Ū − {ū = R̄ = 0}.

• 4. As stated in subsection 2.1, the matching with Σ of type ΣSF imposes a

bound on Υ:

− 1

16
≤ Υ ≤ 0. (57)

It is appropriate to remark now that we will also require a condition on the

interior : In the case of existence of a previous spacelike singularity in the interior

spacetime the presence of a region in which the 2-spheres are closed surfaces trapped

to their past (ε = −1) has been excluded. In this way, we avoid, for example, the

presence of a white hole in a stellar interior. Thus we only treat the case ε = +1 in

this situation.

6.2. Consequences of the conditions

• From 1 : Ṙ/u̇ must exist in U and

Ṙ

u̇
≤ 0. (58)
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• From 2 : Conditions (55) imply that

˙̄m
˙̄u
≤ 0 (59)

in Ū . Therefore, under these circumstances, WEC’s hold in Ū .

Taking into account (46) or (50), we obtain

m(u < 0, R > 0)
ΣSF

> 0 and m(u = 0, R = 0) = 0. (60)

In interiors in which m(u, R = 0) = 0 condition (60) implies m,R (u, R) > 0 in

U +.

• From 3 : If we define

η ≡ lim
λ→0−

Ṙ

u̇
(61)

and

χ0η = lim
λ→0−

(
1 − 2m

R

)
, (62)

then the timelike condition in the interior lead us to

lim
λ→0−

(
−ε

Ṙ

u̇
+

χe2β

2

)
= −εη +

χ0η

2
≥ 0. (63)

By the way, note that the matching conditions imply that χ0η = χ0ζ . So that,

from (19), we will have 0 < χ0η ≤ 1 if the matching hypersurface is of type

ΣSF .

7. Constructing specific evaporating models with Σ of type ΣSF

In this section, first we will deal with some general considerations to see how the

collapsing conditions together with the matching conditions restrict the different

possible interiors. Then, we will analyze the consequences for every different type

of interior.

In what follows it will be useful to define

K±
0 ≡ lim

λ→0−

u̇
˙̄u
, (64)

where the ± refers to the two possibilities ε = ±1.

We can write η and K±
0 as functions of the exterior quantities ζ and Υ if we

use (47) or (51) (when ε = −1 or +1, respectively) and (13) as follows

+ Notice that the first two items help to delimit U and Ū .
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• If ε = −1 then

η = ζ−1 (65)

K−
0 = 1

• If ε = +1 then

η =
1 − 2Υζ

2 + ζ − 2Υζ2
(66)

K+
0 =

2 + ζ − 2Υζ2

ζ − 2Υζ2

It will be useful to note that K±
0 are finite. This is obvious for K−

0 and can be

shown for K+
0 using (5) and (18) since one gets 0 ≤ K+

0 ≤ 1.

In order to compute Υ partially in terms of interior magnitudes we have

Υ ≡ lim
ū→0−

dm̄

dū
= lim

λ→0−

˙̄m
˙̄u

= lim
λ→0−

ṁ

u̇

u̇
˙̄u

=

= K±
0 (m,u (0, 0) + m,R (0, 0)η). (67)

7.1. General considerations

Let us now explore the consequences on the interior of including the evolution

equations (48) or (52).

In what follows it will be useful to define:

A0 ≡ lim
λ→0−

m,R
Rβ,R

. (68)

Note that, in general, A0 will depend on the particular matching hypersurface ΣSF .

7.1.1. Case ε = −1

In this case χ0η and η are finite, according to (18), (19) and (65). Then A0 is also

finite since from (48) we have

η ≡ lim
λ→0−

Ṙ

u̇
= lim

λ→0−

(
m,R

2Rβ,R
− χ

)
=

1

2
A0 − χ0η. (69)

It is important to remark here that equation (69) can be in fact a non linear algebraic

equation for the variable η.

Provided that η < 0, equation (69) can be integrated in U in order to obtain

RSF ∼ ηu. (70)
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The timelike character of ΣSF (63) together with (69) implies

A0 − χ0η ≥ 0. (71)

If (71) holds then ΣSF will be timelike in U − {u = R = 0}.

Finally, conditions (71) and η < 0 (from (18) and (65)) lead to

χ0η ≤ A0 < 2χ0η (72)

7.1.2. Case ε = +1

.

In this case, from (52):

η ≡ lim
λ→0−

Ṙ

u̇
= lim

λ→0−

χ (2Rχβ,R −m,R ) + 2m,u
2(Rχβ,R −m,R )

. (73)

The timelike character of the matching hypersurface is trivially satisfied if η < 0

and χ0η > 0 in U since they imply limλ→0−(−Ṙ/u̇ + χe2β/2) > 0.

Condition η < 0 is equivalent to

lim
λ→0−

χ (2Rχβ,R −m,R ) + 2m,u
2(Rχβ,R −m,R )

< 0 (74)

If η is finite and negative then the integration of (73) in U provides

RSF ∼ ηu. (75)

7.2. Models with a regular interior

In this subsection we would like to study the local behaviour of models with a regular

interior that evaporate without creating an exterior singularity. A typical Penrose’s

diagram corresponding to a completely evaporating star of this type is illustrated in

figure 6.

In this case, if we use (37), (38) and the finiteness of K±
0 on (67) then we get

Υ = 0. (76)

Since proposition 3.2 applies to a regular interior (38)

χ0η = 1. (77)
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u
=
0

Figure 6. Penrose’s diagram corresponding to a completely evaporating star.

In this case the star’s surface reaches R = 0 and, simultaneously, the total mass

vanishes completely.

7.2.1. Case ε = −1

Proposition 7.1 All conditions for an evaporating collapsing model with a regular

interior will be fulfilled if, and only if, the interior satisfies m(u < 0, R)
ΣSF

> 0 in

U − {u = 0, R = 0} and

1 ≤ lim
λ→0−

m,R
Rβ,R

< 2. (78)

This is easy to show by mere inspection of the conditions and taking into account

that the last inequality comes from (72) for the particular case of a regular interior.

An example involving the lowest order derivatives of m and β that can be non-

null at u = R = 0 in the case of a regular interior (that is, we assume m,RRR (0, 0) 6= 0

and β,RR (0, 0) 6= 0) is

η ≡ lim
λ→0−

dR

du
=

m,RRR (0, 0)

4β,RR (0, 0)
− 1. (79)

In U we can choose the integration constant in order to satisfy (53) and (54) so that

the evolution equation can be written as

RSF (u) ∼
(

m,RRR (0, 0)

4β,RR (0, 0)
− 1

)
u. (80)
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We have in this case

m
Σ∼ 1

6
u̇3

0m,RRR (0, 0)η3λ3 > 0 (81)

β
Σ∼ 1

2
u̇2

0β,RR (0, 0)η2λ2, (82)

in U , where u̇0 ≡ u̇(λ = 0) is an arbitrary positive constant. Positivity of the mass

function on ΣSF implies mRRR(0, 0) > 0 and therefore, condition (78) becomes

0 < 2β,RR (0, 0) ≤ m,RRR (0, 0) < 4β,RR (0, 0). (83)

7.2.2. Case ε = +1

Proposition 7.2 All conditions for an evaporating collapsing model with a regular

interior will be fulfilled if, and only if, the interior satisfies m(u < 0, R)
ΣSF

> 0 in

U − {u = 0, R = 0} and

lim
λ→0−

(2Rβ,R −m,R ) + 2m,u
2(Rβ,R −m,R )

< 0 (84)

The last inequality comes from (74) applied to the regular interior case.

The first example involving the lowest non-null derivatives of m and β is

η ≡ lim
λ→0−

dR

du
=

m,RRR (0, 0) − 4β,RR (0, 0)

2(m,RRR (0, 0) − 2β,RR (0, 0))
. (85)

The functions m(λ) and β(λ) are expressed in U as in (81) and (82), respectively.

Positivity of the mass function on ΣSF implies m,RRR (0, 0) > 0 and therefore,

condition (84) becomes

0 < 2β,RR (0, 0) ≤ m,RRR (0, 0) < 4β,RR (0, 0). (86)

7.3. Models with a non-spacelike interior singularity

We will now consider interiors with m(u, 0) = 0 and m,R (u, 0) ≤ 1/2, but not

satisfying all the conditions for a regular interior (38), what implies the existence of

a non-spacelike singularity at u = R = 0. The interior of these models must satisfy

m,R (0, 0) = 0. (87)
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u
=
0

Figure 7. A stellar model with a preexisting timelike curvature singularity

completely evaporates. Therefore, a locally naked singularity is already present

before the evaporation event. The figure only shows the behaviour around the

total evaporation.

To show this in the case ε = −1 it is enough to consider the finiteness of A0 and

its definition (68). In the case ε = +1 we must take into account that these models

have m,u (0, 0) = 0 and the negativeness of η in (73) to show it.

On the other hand, (87) implies that Υ = 0 and χ0η = 1 (see previous

subsection). Since the existence of a null singularity at R = 0 requires m,R (u, 0) =

1/2, it is clear that an interior spacetime with a null singularity at R = 0 cannot be

matched with a Vaidya metric across a timelike hypersurface.

The Penrose diagram around the evaporation event for this case is illustrated

in figure 7.

7.3.1. Case ε = −1

Similarly to the regular interior case we have

Proposition 7.3 All conditions for an evaporating collapsing model with a non-

spacelike interior singularity will be fulfilled if, and only if, the interior satisfies

m(u < 0, R)
ΣSF

> 0 in U − {u = 0, R = 0} and

1 ≤ lim
λ→0−

m,R
Rβ,R

< 2. (88)
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An example with the possible lowest order derivatives that could be non null

at u = R = 0 would be

η ≡ lim
λ→0−

dR

du
=

m,uR (0, 0) + m,RR (0, 0)η

2β,R (0, 0)η
− 1. (89)

Now, η is a negative solution of the previous quadratic algebraic equation.

We have in this case

m
Σ∼ 1

2
u̇2

0(2m,uR (0, 0) + m,RR (0, 0)η)ηλ2 (90)

β
Σ∼ u̇0β,R (0, 0)ηλ, (91)

in U . Positivity of mass function on ΣSF implies 2m,uR (0, 0) + m,RR (0, 0)η < 0.

Finally, condition (88) becomes

1 ≤ m,uR (0, 0) + m,RR (0, 0)η

β,R (0, 0)η
< 2. (92)

7.3.2. Case ε = +1

Proposition 7.4 All conditions for an evaporating collapsing model with a non-

spacelike interior singularity will be fulfilled if, and only if, the interior satisfies

m(u < 0, R)
ΣSF

> 0 in U − {u = 0, R = 0} and

lim
λ→0−

(2Rβ,R −m,R ) + 2m,u
2(Rβ,R −m,R )

< 0 (93)

The last inequality comes from (74) applied to the case with a non-spacelike

interior singularity.

The corresponding example involving the lowest order derivatives that could be

non null in this case implies

η ≡ lim
λ→0−

dR

du
=

(m,RR (0, 0) − 2m,uR (0, 0) − 2β,R (0, 0))η + m,uR (0, 0)

2 [(m,RR (0, 0) − β,R (0, 0))η + m,uR (0, 0)]
.(94)

Therefore, η is a negative solution of this quadratic algebraic equation.

The functions m(λ) and β(λ) are expressed in U as in (90) and (91), respectively.

Positivity of mass function on ΣSF implies 2muR(0, 0) + mRR(0, 0)η < 0.

Finally, condition (93) is directly

(m,RR (0, 0) − 2m,uR (0, 0) − 2β,R (0, 0))η + m,uR (0, 0)

2 [(m,RR (0, 0) − β,R (0, 0))η + m,uR (0, 0)]
< 0. (95)
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7.4. Interiors with spacelike singularities

We would like to analyze those models describing the evaporation of a star in

which a spacelike singularity (m(u < 0, R = 0) > 0 or m(u < 0, R = 0) = 0

but m,R (u < 0, R = 0) > 1/2) and a black hole interior region are already present.

These models must obey the minimum set of conditions (subsec. 6.1).

Furthermore, as we discussed then, around the space-like singularity χ < 0 and, thus,

the existence of a black hole region demands ε = +1. Another less usable condition

is that in order to have a total evaporation (m(u = 0, R = 0)
Σ
= m̄(ū = 0) = 0) the

star’s surface can not cross the event horizon. A typical Penrose’s diagram of the

complete matched spacetime for this situation is shown in figure 8.

Note that there are radial outgoing null geodesics ending at the R = 0

singularity so that their expansion is initially positive and becomes negative once

they cross the A3H (section 3). The EH is one of these null geodesics. Likewise,

the degree of differentiability of the space-time guarantees that there are radial

outgoing null geodesics close enough to the EH (and to its right –see figure 8–)

with an initial positive expansion that becomes later negative. These null geodesics

do not end at the singularity, but continue their travel to the future null infinity

and must, therefore, turn their expansion to positive again, after crossing the A3H

somewhere in the stellar interior. This, according to [19] (proposition 9.2.8), can

only happen if they traverse regions where the weak energy conditions are violated.

Let us remark that despite figure 8 illustrates a particular case of evaporating black

hole, the behaviour of the EH and the A3H around the total evaporation event is

totally generic. Thus, all these evaporating black holes must violate the WECs.

In this case, the conditions explained in subsec. 6.1 for ε = +1 lead us to a

rather complex set of inequalities that must be fulfilled. Therefore, in order to show

the existence of solutions modelling evaporating black holes, we will just work out a

particular example. Let us consider m(u, R) ' m40u
4 +m03R

3 and β(u, R) ' β02R
2

in U , where m40, m03 and β02 are constants. Using the procedure described above

taking into account that ε = +1 we find

η−1 =
2(3m03 − 2β02)

3m03 − 4β02
. (96)
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Figure 8. Typical Penrose’s diagram for an evaporating star with an inner black

hole region. Note that the outgoing null radial geodesic labelled ū = 0 emerges

from the singularity and reaches the future null infinity. Therefore, there is an

instantaneous globally naked singularity in this situation. The radial outgoing null

geodesic outside the BH labelled as VWEC has a positive expansion from R = 0

until reaching the A3H. After crossing it, the expansion becomes negative and the

geodesic continues its travel to the future null infinity crossing again the A3H and

turning its expansion to positive again. Therefore [19], it must traverse regions

where the weak energy conditions are violated.

If we now take into account the non-negativity of the exterior mass function and

the negativity of η (what also guarantees a timelike Σ) we get the following set of

conditions for the correct behaviour of Σ:

0 < 2β02 ≤ 3m03 < 4β02 (97)

On the other hand,

dm̄(ū)

dū
' −3m03

(
1 − 3m03

4β02

)
R2 (98)

In this way, Υ = 0.
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8. Generation of exterior light-like singularities

If a star collapses and an exterior light-like singularity at R̄ = ū = 0 appears then

the time-like matching hypersurface must be of type σNS and, thus, (16) and (17)

must be fulfilled. From (16) we know that for this case ζ = ξ0+ so we can easily find

ζ using (7). We have to consider two different cases according to the two different

values for ε.

• Case ε = −1. The value of η can be obtained from (65):

η = (
√

1 + 16Υ − 1)/4 = −χ0η

2
. (99)

Equation (69) together with (99) implies A0 = χ0η.

• Case ε = +1. The value of η can be obtained from (66):

η = −∞. (100)

This, together with the differentiability of the metric, the limits on χ0η (17)

and (73) implies A0 = χ0η.

Therefore, in both cases, A0 must be a finite quantity satisfying 0 ≤ A0 ≤ 1/2

according to (17). Since limλ→0− R = 0, then the definition of A0 (68) implies that

m,R (0, 0) = 0 (101)

We now consider the possibility that m(u, R = 0) = 0 on a neighbourhood of

u = R = 0, then (101) would imply χ0η = limλ→0− χ = 1 (according to proposition

3.2), what contradicts the necessary requirement (17) for the matching with a ΣNS

hypersurface. The only possibility left for a total evaporation is that near the

evaporation event m(u < 0, R = 0) > 0 and m(u = 0, R = 0) = 0. Let us

consider the two possibilities for ε:

• If ε = −1 and m(u < 0, R = 0) > 0 then there is an inner space-like singularity

and the 2-spheres near to it will be closed surfaces trapped to their past (i.e.,

there is a white hole-like region), what we think can be discarded for a stellar

interior. However this possibility has been already treated for the particular

(non-stellar) case in which the interior is Vaidya’s spacetime, as can be seen in

figure 3, if we take for the matching hypersurface σNS.
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• If ε = +1 and m(u < 0, R = 0) > 0 the model must have a previous inner

space-like singularity, but now the 2-spheres near to it will be closed surfaces

trapped to their future (i.e., there would be a black hole-like region). On the

other hand, χ0η can be easily written as

χ0η = 1 − 2 lim
λ→0−

(
m,R +m,u

u̇

Ṙ

)
. (102)

Taking into account the differentiability of the mass function, (100) and (101)

it is clear that χ0η = 1, what contradicts (17).

The considerations above can be summarized in the following

Proposition 8.1 A collapsing star endowed with an interior C2 mass function

cannot develop an exterior light-like singularity at the total evaporation event.

9. Discussion and conclusions

Due to the great number of situations in which the evaporating models have

been used in the current literature, our aim in this article was to study the

evaporating models as a whole and to analyze their common properties, behaviours

and possibilities. Our work was centered on the evaporating event itself. However,

we have to remark that this semiclassical study is not completely general. This is

due to the fact of demanding an interior C2 metric in U . This, for example, prevents

us to include in our study singular evaporating models in which the mass function

is not even well-defined at u = R = 0 (see, for instance, [1]∗). Taking this into

account, let us now list our main results.

First, we have treated stellar models that evaporate without reaching a complete

collapse, i.e., models in which the star simply gets rid of all its mass in a more or

less violent process. Proposition 5.1 tell us that whenever the dominant energy

conditions are fulfilled and in absence of closed trapped 2-spheres there must

be an outgoing spherically symmetric lightlike hypersurface crossing the matched

spacetime such that the mass function is null on it and to its future.

∗ Nevertheless, some of our results apply. For example, in the aforementioned model χ0η = 1 and,

therefore, according to (17) it can not develop an exterior singularity.
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u
=
0

Figure 9. Hypothetical Penrose’s diagram corresponding to a completely

evaporating star with a regular interior. We have shown that this possibility

is not feasible under our assumptions since an exterior lightlike singularity can

not appear.

As stated in the introduction the evaporating models have been often used

in the current literature as a means of avoiding the generation of singularities

during the collapse (from [7] to [12]), sometimes under the name of incipient BHs

or non-singular evaporating BHs (from [13] to [18]). In this respect, we have shown

(propositions 7.1 or 7.2) that a collapsing stellar model with a regular interior will

evaporate if, and only if, the mass function on the matching hypersurface is non-

negative and condition (78) (or 84) is satisfied for the ε = −1 (or the ε = +1,

respectively) case. Furthermore, provided that the conditions are fulfilled, we have

shown that the star cannot generate an exterior lightlike singularity (proposition

8.1) such as the one illustrated in figure 9. This is remarkable because, even if such

situation is not possible in non-radiative models (Schwarzschild’s exterior), it seemed

feasible with an exterior radiating Vaidya’s solution. In this way, the complete

matched model must be singularity free. Figure 6 illustrates this situation.

We have extended our study to stellar models in which an inner non-spacelike
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u
=
0

u
=
R
=
0

Figure 10. Hypothetical Penrose’s diagram around the evaporation event

corresponding to a completely evaporating star with a interior timelike singularity.

We have shown that this possibility is not feasible under our assumptions since an

exterior lightlike singularity can not appear.

singularity (and, therefore, naked) has already formed during the collapse. In this

case, we have shown (propositions 7.3 or 7.4) that a collapsing stellar model with

an inner non-spacelike singularity will evaporate if, and only if, the mass function

on the matching hypersurface is non-negative and condition (88) (or 93) is satisfied

for the ε = −1 (or the ε = +1, respectively) case. Furthermore, provided that the

conditions are fulfilled, we have shown that the star cannot generate an exterior

lightlike singularity (proposition 8.1) such as the one illustrated in figure 10. In this

way, the evaporation process seems to evaporate the inner singularity in case of not

being spacelike. In other words, the evaporation process eliminates any preexisting

naked singularity. Figure 7 illustrates this situation around the evaporation event.

Finally, we have treated the case in which an inner spacelike singularity

preexists. The models presented here can be considered a special type of evaporating

black hole since the object achieves the total collapse with null total mass. These

models violate the weak energy conditions and they all posses an instantaneous

naked singularity that does not extend to the exterior of the collapsing object (figure

11). We have illustrated this type of evaporating black holes in figure 8.



Evaporating stars and black holes 32

A3H

u
=
0

E
H

u
=
R
=
0

Figure 11. Hypothetical Penrose’s diagram for an evaporating star that collapses

creating an inner black hole region and an exterior light-like singularity. We have

shown that this possibility is not feasible under our assumptions since an exterior

lightlike singularity can not appear.
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