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Abstract

In any dimension, the positive level generators of the very-extended Kac-Moody
algebra E11 with completely antisymmetric spacetime indices are associated to the
form fields of the corresponding maximal supergravity. We consider the local E11

algebra, that is the algebra obtained enlarging these generators of E11 in such a way
that the global E11 symmetries are promoted to gauge symmetries. These are the
gauge symmetries of the corresponding massless maximal supergravity. We show the
existence of a new type of deformation of the local E11 algebra, which corresponds
to the gauging of the symmetry under rescaling of the fields. In particular, we show
how the gauged IIA theory of Howe, Lambert and West is obtained from an eleven-
dimensional group element that only depends on the eleventh coordinate via a linear
rescaling. We then show how this results in ten dimensions in a deformed local E11

algebra of a new type.
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1 Introduction

Given a supergravity theory with a global internal symmetry group and abelian vectors

transforming in a representation of this group, the gauging of a subgroup thereof consists

in deforming this theory turning on a gauge coupling, and collecting a subset of the vec-

tors in the adjoint representation of the gauge subgroup, compatibly with gauge invariance

with respect to the gauge subgroup and with supersymmetry. In this paper we will only

be interested in theories with maximal supersymmetry. The first, and probably one of the

best known examples of a gauged theory with maximal supersymmetry is the four dimen-

sional N = 8 theory of [1], that is a deformation of the massless maximal supergravity of

[2] where an SO(8) subgroup of the internal, or Cremmer-Julia, symmetry group E7(7) is

gauged (we refer to the internal symmetry E11−D(11−D) of the massless maximal supergrav-

ity in D dimensions as Cremmer-Julia [3] symmetry). Gauged supersymmetric theories

are sometimes called massive theories because supersymmetry typically relates coupling

constants with mass terms.

A method of obtaining a lower dimensional gauged supergravity theory starting from a

massless higher dimensional one is due to Scherk and Schwarz [4]. If the higher dimensional

theory possesses an internal symmetry, one can perform a dimensional reduction with the

fields depending on the internal coordinate via a linear internal symmetry transformation

proportional to a mass parameter m. Because of the symmetry of the higher dimensional

theory, this procedure is bound to give a consistent lower dimensional theory, in the sense

that in the lower dimension there is no dependence on the internal coordinate. This

resulting theory is a massive theory, with masses proportional to the parameter m.

As an example, we can consider the Scherk-Schwarz reduction of the IIB theory to nine

dimensions [5, 6]. The IIB theory possesses an SL(2, R) symmetry with generators Ri, i =

1, 2, 3. One thus performs a generalised dimensional reduction to nine dimensions, in which

the fields transform under SL(2, R) linearly in the internal coordinate and proportionally

to the mass parameter mi in the triplet of SL(2, R). This gives rise to a massive maximal

supergravity in nine dimensions, with mass mi.

There are gauged supergravities that are not of the type discussed so far in this in-

troduction. These arise from the gauging of the global scaling symmetry that leaves the

field equations invariant, but rescales the action. This symmetry is not a symmetry of

the Cremmer-Julia type, and it is referred to as “trombone” symmetry (it is important to
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observe, though, that the trombone symmetry plays a crucial role in understanding the

occurrence of the Cremmer-Julia symmetries in the lower dimensional theories [7]). The

first example of such a theory is the gauged IIA theory of Howe, Lambert and West [8].

The massless IIA theory [9] has an internal symmetry R+ under shifts of the dilaton, and

one can consider a combination of this symmetry and the scaling symmetry that leaves

the vector invariant. This combined symmetry can thus be gauged, resulting in a Higgs

mechanism in which the dilaton field is eaten by the vector, which becomes massive. The

fact that the scaling symmetry is not a symmetry of the lagrangian implies that this theory

does not admit a lagrangian formulation, but only field equations. It is probably unnec-

essary to stress that this theory is different from the massive IIA theory of Romans [10],

corresponding to a deformation of the massless IIA in which the vector is eaten by means

of a Higgs mechanism in which the 2-form becomes massive.

In [6] the gauged IIA theory was shown to arise from a generalised Scherk-Schwarz

dimensional reduction from eleven dimensional supergravity. This corresponds to perform-

ing a dimensional reduction from eleven to ten dimensions in which the fields depend on

the internal coordinate in terms of a linear rescaling. Given that the eleven-dimensional

scaling symmetry is a symmetry of the field equations, the ten dimensional equations do

not depend on the internal coordinate and as such the truncation to ten dimensions is con-

sistent from this point of view. The lagrangian, though, has an overall scaling symmetry

which is linear in the internal coordinate, and thus the truncation to ten dimensions is not

consistent at the level of the lagrangian. This is another way of seeing that the theory does

not have a lagrangian formulation.

Maximal supergravity theories have a very elegant and natural classification in terms

of the very-extended infinite-dimensional Kac-Moody algebra E11 [11]. This algebra was

first conjectured in [11] to be a symmetry of M-theory. The maximal supergravity theory

in D dimensions corresponds to decomposing E11 in terms of GL(D, R)⊗E11−D, and thus

the occurrence of the internal symmetry E11−D appears natural from this perspective. In

particular, the IIA theory naturally has from the E11 viewpoint an R+ symmetry that

corresponds to the shift of the dilaton. Decomposing the adjoint representation of E11

with respect to the subalgebra associated to the IIA theory one obtains generators that

are associated to the IIA fields and their duals [11]. In this IIA decomposition of the E11

algebra there is a generator with nine antisymmetric ten-dimensional spacetime indices,

which is associated to a 9-form in the IIA theory [12]. This 9-form has a 10-form field
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strength, which can be thought as the dual of the mass parameter of Romans. Therefore

the Romans massive IIA is naturally encoded in E11 [13].

More generally, decomposing the E11 algebra in a given dimension and considering

only the level zero generators (that is the generators of GL(D, R) ⊗ E11−D, that are asso-

ciated to the graviton and the scalars) and the positive level generators with completely

antisymmetric indices, that are associated to forms, one finds in all cases the field con-

tent of the D-dimensional supergravity theory, in a democratic formulation in which all

fields appear together with their magnetic duals [12, 14]. One also finds generators as-

sociated to D − 1 forms, that are not propagating fields. Remarkably, these generators

are in one to one correspondence with a constant scalar quantity, the so called embed-

ding tensor, that parametrises all possible gaugings of subgroups of the internal symmetry

E11−D in any dimension, and can be thought of as belonging to a representation of E11−D

[15, 16, 17, 18, 19, 20, 21], which indeed is the same representation as the one to which

the D − 1 form generators belong [14, 22]. Exactly like in the case of Romans, one thinks

of the D − 1 form fields as being dual to the embedding tensor, obtaining in this way a

classification of all possible maximal gauged supergravities in terms of E11.

In the non-linear realisation, the action of positive level E11 generators with completely

antisymmetric spacetime indices corresponds to gauge transformations for the associated

form fields that are linear in the spacetime coordinates, and one wants to enlarge the

algebra so that it includes arbitrary gauge transformations. This was done in [23], and the

corresponding algebra includes the non-negative level generators as well as momentum and

an infinite set of additional generators, that were called Ogievetsky, or Og generators, that

correspond to an expansion in the spacetime coordinates of the gauge parameters. This

extension is dimension-dependent, and it was called Elocal
11,D in [23]. From the non-linear

realisation of the Elocal
11,D algebra with as local subalgebra the D dimensional Lorentz algebra

times the maximal compact subalgebra of E11−D one computes all the field strengths of

the massless maximal supergravity in D dimensions.

Given the local E11 algebra in D dimensions, one can consider its possible massive

deformations. In [24] the deformations that do not involve the GL(D, R) generators were

studied, and the consistency of the deformed algebra implies that all possible deformations

are parametrised by a constant quantity that turns out to be the embedding tensor. All

the possible deformations are thus in one to one correspondence with all the possible

gauged supergravities resulting from the gauging of a subgroup of E11−D. The non-linear
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realisation then provides an extremely simple and powerful method to compute the field

strengths and gauge transformations of the fields.

If the gauged supergravity theory arises from a dimensional reduction, this can be seen

from the E11 point of view in terms of the fact that the deformed generators arise from

a redefinition involving the undeformed E11 and Og generators in the higher dimension.

This was shown in detail in [23] for the case of the Scherk-Schwarz reduction of IIB to

nine dimensions. Taking the local E11 group element associated to the ten-dimensional IIB

theory, the Scherk-Schwarz reduction corresponds to transforming this group element by an

SL(2, R) transformation that is linear in the internal coordinate and in the mass parameter

mi, with the rest of the group element only depending on the nine-dimensional coordinates.

From the nine-dimensional viewpoint, this results in an algebra that is deformed by the

mass parameter mi with respect to the algebra associated to the massless nine-dimensional

theory.

In this paper we show that the construction of [23] admits additional deformations that

are associated to the gauging of the trombone symmetry. In particular we show that the

gauged IIA theory of [8] naturally arises as a deformation of the local E11 algebra of a new

type. We show this by considering an eleven-dimensional group element that only depends

on the eleventh coordinate by a linear scaling, while the fields are taken to only depend on

the ten-dimensional coordinates. This exactly reproduces the generalised Scherk-Schwarz

construction of [6]. The fact that the symmetry that one is gauging is not a symmetry of

the lagrangian corresponds from this point of view to the fact that the Maurer-Cartan form

has an explicit dependence on the eleventh coordinate. Still, there is a very natural way of

interpreting the results in ten dimensions, as will be explained in the paper. The resulting

ten-dimensional algebra is the algebra corresponding to the IIA theory of [8], and the new

feature is that the deformation involves not only the generator of the internal symmetry,

that is the scalar generator associated to the dilaton, but also the scaling generator that

is the trace of the GL(10, R) generators. Recently a complete classification of this type of

maximal gauged supergravities in any dimension was performed in [25] using the embedding

tensor formalism. The analysis of the corresponding deformations of the local E11 algebra

will be presented in a separate paper [26].

It is important to observe that the local E11 algebra is not compatible with the full

E11 symmetry, including the negative level generators. The approach taken in [23, 24] was

therefore to include only the non-negative level generators, and from this approach E11
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is not a symmetry of the eleven-dimensional group element. This is the approach taken

in this paper. An attempt to describe gauged supergravity theories compatibly with the

full E11 symmetry, based on extending the momentum operator including infinitely many

charge generators to form an E11 representation [27], was made in [28]. That approach will

not be discussed in this paper.

The paper is organised as follows. Section 2 contains a review of the description of

gravity as a non-linear realisation of [23], as well as some comments on its dimensional

reduction. These results are useful for the main result of the paper, that is the E11 de-

scription of the gauged IIA theory of [8], which is contained in section 3. Finally, section

4 contains the conclusions.

2 On gravity as a non-linear realisation

In this section we first review the formulation of gravity as a non-linear realisation of [23],

and we then show that deformations of this algebra correspond to field redefinitions, and

we finally discuss the issue of frame dependence in the dimensional reduction. The aim of

this section is to set up the framework for the main result of the paper, which is contained

in the next section.

We want to describe gravity as a non-linear realisation of the algebra of diffeomorphisms

with the Lorentz algebra as local subalgebra. This was originally achieved in the four-

dimensional case in [29, 30], where the algebra of diffeomorphisms was realised as the closure

of IGL(4, R) with the conformal group SO(2, 4). This was generalised to D dimensions in

[31], where a vierbein rather than a metric was introduced (the metric indeed arises using

the Lorentz group to make a particular choice of coset representative).

The more straightforward approach of [32] (see also [33]) is to consider directly the

algebra of diffeomorphisms, which is the infinite dimensional algebra generated by

Pµ , Kµ
ν , Kµ1µ2

ν . . . Kµ1...µn
ν . . . (2.1)

with Kµ1...µn
ν = K(µ1...µn)

ν, satisfying the commutation relations

[Kµ
ν, Pρ] = −δµ

ρ Pν (2.2)

[Kµ1...µn
ν, Pρ] = (n − 1)δ(µ1

ρ Kµ2...µn)
ν n > 1 (2.3)
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and

[Kµ1 ...µn
ρ, K

ν1...νm
σ] = (n + m − 1)

[
1

n
δ(ν1|
ρ Kµ1...µn|ν2...νm)

σ − 1

m
δ(µ1
σ Kµ2...µn)ν1...νm

ρ

]
. (2.4)

Here the GL(D, R) indices µ, ν, ... go from 1 to D and an upstairs index denotes the D

and a downstairs index the D of GL(D, R). Note that the last equation for n = m = 1

is the GL(D, R) algebra. A realisation of the algebra of eqs. (2.2), (2.3) and (2.4) can

be obtained in terms of the position and derivative operators yµ and ∂µ = ∂/∂yµ by the

identification

Pµ = ∂µ Kµ1µ2...µn
ν =

1

n
yµ1yµ2...yµn∂ν . (2.5)

One can assign a grade to the generators - that is Kµ1...µn
ν has grade n − 1 and Pµ has

grade −1 - which is preserved by the algebra above. Note that the grade of a generator is

its dimension when the generator is realised in terms of position and momentum operators

as is eq. (2.5). The generators of grade n higher than zero, that is all the generators apart

from the momentum generator Pµ and the GL(D, R) were called Ogievetsky n, or Og n,

generators in [23].

Given the algebra of eqs. (2.2), (2.3) and (2.4), we consider the group element written

in the form

g = exµPµ . . . eΦν
µ1...µn (x)Kµ1...µn ν . . . eΦν

µ1µ2
(x)Kµ1µ2νehµ

ν(x)Kµ
ν , (2.6)

where the momentum generator is contracted with the spacetime coordinate xµ, while all

the other fields are functions of xµ. The fields Φ contracting the Og generators are called

Og fields. In particular, Φν
µ1...µn+1

is an Og n field.

We now consider the non-linear realisation of the algebra of eqs. (2.2), (2.3) and (2.4)

with as local subalgebra the D-dimensional Lorentz algebra. We want the theory to be

invariant under transformations of g of the form

g → g0gh , (2.7)

where g0 is a constant group element and h is a local Lorentz group transformation. The

fact that the group element transforms under the Lorentz group from the right means that

in the exponential of hµ
ν we have to replace the column index with a Lorentz index. As it

will appear natural from the Maurer-Cartan form, we identify the exponential of hµ
ν with

the vierbein,

eµ
a = (eh)µ

a , (2.8)
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where the a (a = 1, ..., D) index is a Lorentz index. This means that the vierbein converts

curved, that is GL(D, R), indices to flat, that is Lorentz, indices. We want local Lorentz

transformations, that act from the right on the group element, to only rotate the vierbein,

and it is for this reason that we have written the group element with hµ
ν sitting on the

far right. One can show that acting as in eq. (2.7) on g one reproduces general coordinate

transformations for all the Og fields, while the vierbein transforms under general coordi-

nate transformations and under local Lorentz transformations in the usual way [32]. This

notation differs from the one used in [23], where GL(D, R) indices were denoted with Latin

letters.

The Maurer-Cartan form g−1dg is invariant under g0 transformations in eq. (2.7) and

only transforms under h. As a consequence, the generators have to be decomposed in

irreducible representations of the Lorentz algebra, and thus the indices of the generators

must be converted to Lorentz indices. One gets

g−1dg = dxµ(eµ
aPa + Gµ,a

bKa
b + Gµ,ab

cKab
c + . . .) , (2.9)

with

Gµ,a
b = (e−1∂µe)a

b − Φρ
µν(e

−1)a
νeρ

b (2.10)

and

Gµ,ab
c = (∂µΦλ

ρκ − 2Φλ
µρκ − Φτ

µ(ρΦ
λ
κ)τ +

1

2
Φτ

ρκΦ
λ
µτ )(e

−1)a
ρ(e−1)b

κeλ
c . (2.11)

Lorentz indices can be raised and lowered using the invariant metric ηab. Moreover, apart

for the momentum operator, the generators belong to reducible Lorentz representations.

In particular the operator Kab splits in its antisymmetric part, its symmetric traceless part

and its trace, and the antisymmetric part of Kab is the adjoint representation of the Lorentz

algebra. Note that nothing has happened to the generators as such. The generators are

invariant tensors, which one can think of as constant matrices, and we have relabelled

the indices of these matrices according to the fact that we have to think about them as

invariant tensors of the Lorentz algebra.

Identifying as we anticipated in eq. (2.8) the vierbein with the exponential of hµ
ν, one

realises that the quantity Gµ
ab defined in eq. (2.10) is part of the covariant derivative of

the vierbein if one further identifies Φρ
µν with the Christoffel connection. In particular, if

one imposes that the symmetric part in ab of Gµ
ab vanishes, this forces to identify Φρ

µν

7



with the Levi-Civita connection [33]

Φρ
µν = Γρ

µν ≡ 1

2
gρτ(∂νgτµ + ∂µgτν − ∂τgµν) , (2.12)

and Gµ
ab becomes the spin connection ωµ

ab [23],

ωµ
ab =

1

2
eνa(∂µeν

b − ∂νeµ
b) − 1

2
eνb(∂µeν

a − ∂νeµ
a) − 1

2
eνaeρb(∂νeρ

c − ∂ρeν
c)eµ

c , (2.13)

where we have denoted the inverse vierbein as

eµ
a = (e−1)a

µ . (2.14)

In the term contracting the Og 1 generator, that is eq. (2.11), one can covariantly solve

for the Og 2 field φλ
µνρ in terms of the Og 1 field, which is the Levi-Civita connection in

such a way that eq. (2.11) becomes the Riemann tensor

2Gµ,ρκ
λ = Rµρ

λ
κ ≡ ∂µΓρκ

λ − ∂ρΓµκ
λ + Γµτ

λΓρκ
τ − Γρτ

λΓµκ
τ . (2.15)

One can solve for the Og fields of any grade in terms of the lower grade fields, which results

in the Maurer-Cartan form only containing the Riemann tensor and covariant derivatives

thereof. This concludes the review of section 2 of [23].

The algebra of eqs. (2.2), (2.3) and (2.4) can be deformed compatibly with GL(D, R).

In particular, restricting our attention to the generators up to Og 2, we can write the

relevant commutators as

[Kµ
ν , Pρ] = −δµ

ρ Pν + aδµ
ν Pρ

[Kµ1µ2
ν, Pρ] = δ(µ1

ρ Kµ2)
ν + bδ(µ1

ν Kµ2)
ρ + cδ(µ1

ν δµ2)
ρ K , (2.16)

where K is the trace of the GL(D, R) generators,

K = Kµ
µ . (2.17)

The parameters a, b and c satisfy conditions coming from the Jacobi identities. In partic-

ular, if Da 6= 1, one can without loss of generality impose b = 0, and then determine c to

be

c =
a

1 − Da
. (2.18)
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Summarising, the deformed algebra is

[Kµ
ν, Pρ] = −δµ

ρ Pν + aδµ
ν Pρ

[Kµ1µ2
ν, Pρ] = δ(µ1

ρ Kµ2)
ν +

a

1 − Da
δ(µ1
ν δµ2)

ρ K (2.19)

for any parameter a, provided that Da 6= 1.

We now consider the group element of eq. (2.6), and we compute the Maurer-Cartan

form using the modified commutators of eq. (2.19). The result is

g−1dg = dxµ(e−ah(eh)µ
aPa + Gµ,a

bKa
b + . . .) , (2.20)

where we have defined

h = hµ
µ , (2.21)

and where

Gµ,a
b = (e−h∂µeh)a

b − Φρ
µν(e

−h)a
ν(eh)ρ

b − a

1 − Da
Φν

µνδ
b
a . (2.22)

We now interpret the matrix contracting the momentum operator as the vierbein,

eµ
a = e−ah(eh)µ

a , (2.23)

and inverting this relation one gets

(eh)µ
a = (dete)

a
1−Da eµ

a , (2.24)

where we have denoted the determinant of the vierbein with dete to avoid confusion as

much as possible between Euler’s number and the vierbein. If we plug this relation into

eq. (2.22), we get

Gµ,a
b = (e−1∂µe)a

b+
a

1 − Da
(dete)−1∂µ(dete)δb

a−Φρ
µν(e

−1)a
ν(e)ρ

b− a

1 − Da
Φν

µνδ
b
a . (2.25)

If we now impose that the symmetric part in ab of this equation vanishes, we find that eq.

(2.12) is still a solution, and the δb
a part of eq. (2.25) cancels because eq. (2.12) gives the

well-known formula

Φν
µν = Γν

µν = (dete)−1∂µ(dete) . (2.26)

This proves that the modification of the algebra of diffeomorphisms as in eq. (2.19) is

equivalent to the redefinition of the vierbein in terms of hµ
ν as in eq. (2.23).
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Before we conclude this section, we want to make a comment on dimensional reduction.

We consider a circle dimensional reduction from dimension D+1 to dimension D, we denote

with µ and a the curved and flat indices in D dimensions, and we denote with y the D+1-

th coordinate. The D + 1 dimensional momentum splits in Pµ and Q = Py. As shown in

[23], circle dimensional reduction corresponds to a truncation of the algebra in which the

operator Q is projected out, and consistently one must project out all the generators that

have non-trivial commutator with Q. By looking at eq. (2.2), this implies that Ky
µ must

be projected out. This implies the standard ansatz for the D dimensional vierbein,

(
eαφeµ

a eβφAµ

0 eβφ

)
, (2.27)

and computing the part of the Maurer-Cartan form along dxµ, neglecting for simplicity

the Og contribution, one gets

dxµg−1∂µg = eαφeµ
aPa+(eν

a∂µeν
b+αδb

a∂µφ)Ka
b+e(β−α)φ∂µAνe

ν
aK

a
y+β∂µφKy

y . (2.28)

By looking at this equation, we define the D dimensional vector and scalar generators as

Rµ = Kµ
y

R = αK + βKy
y , (2.29)

and the non-trivial commutators, apart from the commutators with the GL(D, R) gener-

ators which are standard, are

[R, Rµ] = (α − β)Rµ

[R, Pµ] = −αPµ . (2.30)

From these commutators it is then easy to show that the Maurer-Cartan form of eq. (2.28)

arises from the D dimensional group element

g = ex·P eAµRµ

ehµ
νKµ

νeφR . (2.31)

This concludes the analysis of this section. In the next section we will consider a (gener-

alised) dimensional reduction of eleven dimensional supergravity to ten dimensions, and

for simplicity we will work in the frame in which α = 0 and β = 1, but all the results can

easily be generalised to any frame.
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3 Local E11 and gauged IIA

In [23] it was shown that the Scherk-Schwarz reduction of the IIB theory corresponds to

a non-linear realisation based on an E11 group element that is entirely nine-dimensional,

apart from an overall transformation with respect to the generators of the internal sym-

metry of the IIB theory which is linear in the compactified coordinate. The main aim of

this section is to perform for the gauged IIA theory of [8] an analysis equivalent to the

one performed in [23] for the Scherk-Schwarz reduction of the IIB theory. This analysis is

motivated by ref. [6], where the gauged IIA theory was derived performing a generalised

Scherk-Schwarz reduction of eleven dimensional supergravity in which one performs a scal-

ing transformation of the fields which is linear in the internal coordinate. The symmetry

under rescaling of the fields was called “trombone” symmetry in [6], because although it

is a symmetry of the field equations, it actually gives rise to an overall scaling of the la-

grangian. The fact that this symmetry is not a symmetry of the lagrangian implies that

its gauging results in a theory which does not admit a lagrangian formulation.

We first review the E11 analysis of 11-dimensional supergravity with the inclusion of

the Og generators, as was derived originally in [23]. We use a notation similar to the one

of the previous section, and we thus use Greek letters to denote the GL(D, R) indices.

This notation again differs from the one used in [23]. In particular, GL(11, R) indices are

denoted by µ̂ (µ̂ = 1, ..., 11), and similarly 11-dimensional Lorentz indices are denoted by

â. We only consider the GL(11, R) generator K µ̂
ν̂ and the 3-form generator Rµ̂1µ̂2µ̂3 , which

corresponds to a truncation of the E11 algebra to level 1 (and only considering positive

level generators). The relevant E11 commutators are thus the commutators giving the

GL(11, R) algebra and

[K µ̂
ν̂, R

ρ̂1ρ̂2ρ̂3 ] = 3δ
[ρ̂1

ν̂ R|µ̂|ρ̂2ρ̂3] . (3.1)

As explained in [23], in order to promote the 3-form constant shift to a gauge transforma-

tion, we have to add an infinite set of Og generators, the first one being K µ̂,ν̂1ν̂2ν̂3
1 satisfying

K µ̂,ν̂1ν̂2ν̂3
1 = K

µ̂,[ν̂1ν̂2ν̂3]
1 K

[µ̂,ν̂1ν̂2ν̂3]
1 = 0 , (3.2)

whose commutator with momentum is

[K µ̂,ν̂1ν̂2ν̂3

1 , Pρ̂] = δµ̂
ρ̂ Rν̂1ν̂2ν̂3 − δ

[µ̂
ρ̂ Rν̂1ν̂2ν̂3] . (3.3)

If one considers the group element in the form

g = ex·PeΦOgKOg

eAµ̂ν̂ρ̂Rµ̂ν̂ρ̂

ehµ̂
ν̂Kµ̂

ν̂ (3.4)
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and computes the Maurer-Cartan form, one gets

g−1dg = dxµ̂
[
eµ̂

âPâ + (∂µ̂Aν̂ρ̂σ̂ − Φµ̂,ν̂ρ̂σ̂) eν̂
âe

ρ̂
b̂e

σ̂
ĉR

âb̂ĉ + ...
]

(3.5)

where the dots denote both the Og generators contribution, as well as the gravity sector

which is as in [23] and reviewed in section 2. As explained in [23], the inverse Higgs

mechanism permits to solve covariantly for the Og 1 field Φµ̂,ν̂ρ̂σ̂ in terms of the derivative

of the 3-form potential, in such a way that only the completely antisymmetric term ∂[µ̂Aν̂ρ̂σ̂]

survives, which is the field strength of the 3-form. Similarly, by the same mechanism the

Og generators are contracted with covariant derivatives of the field strength of the 3-form.

We now consider the dimensional reduction of this system to ten dimensions. For

simplicity we take α = 0 and β = 1 in the vierbein ansatz of eq. (2.27). The construction

is easy to generalise to any other frame. The notation for the dimensionally reduced gravity

generators is the same as in the previous section, while the 11-dimensional 3-form generator

gives rise to the 3-form Rµ1µ2µ3 and the 2-form Rµ1µ2 = Rµ1µ2y, where the Greek index µ

is a GL(10, R) index and y denotes the 11-th direction.

In terms of these generators, the E11 algebra becomes (we only consider the non-

vanishing commutators)

[Kµ
ν , R

ρ] = δρ
νR

µ [Kµ
ν, R

ρ1ρ2] = 2δ[ρ1
ν R|µ|ρ2] [Kµ

ν, R
ρ1ρ2ρ3] = 3δ[ρ1

ν R|µ|ρ2ρ3] (3.6)

[R, Rµ] = −Rµ [R, Rµν] = Rµν (3.7)

[Rµ, Rνρ] = Rµνρ . (3.8)

We also have

[Rµ, Pν] = −δµ
ν Q , (3.9)

where as in the previous section Q denotes the momentum operator in the y direction.

The 11-dimensional Og generator K µ̂,ν̂1ν̂2ν̂3 gives rise to the 10-dimensional Og genera-

tors Kµ,ν1ν2ν3 , Kµ,ν1ν2, Kµ1µ2µ3 and Kµ1µ2 , with

Kµ,ν1ν2 = Kµ,ν1ν2y − K [µ,ν1ν2]y

Kµ1µ2µ3 =
4

3
Ky,µ1µ2µ3

Kµ1µ2 = Ky,µ1µ2y . (3.10)

12



The commutators of these operators with Pµ and Q are

[Kµ,ν1ν2ν3, Pρ] = δµ
ρ Rν1ν2ν3 − δ[µ

ρ Rν1ν2ν3] [Kµ,ν1ν2ν3 , Q] = 0

[Kµ1µ2µ3 , Pν] = δ[µ1
ν Rµ2µ3] [Kµ1µ2µ3 , Q] = Rµ1µ2µ3

[Kµ,ν1ν2, Pρ] = δµ
ρ Rν1ν2 − δ[µ

ρ Rν1ν2] [Kµ,ν1ν2 , Q] = 0

[Kµ1µ2 , Pν] = 0 [Kµ1µ2 , Q] = Rµ1µ2 . (3.11)

We also consider the 10-dimensional Og generators that arise from the 11-dimensional

gravity Og 1 generator Kµν
ρ. In particular we are only interested in the Og generators

whose lower index in is the y direction, that are

Kµν = Kµν
y Kµ = 2Kµy

y K = Kyy
y , (3.12)

and whose commutation relation with Pµ and Q are

[Kµν , Pρ] = δ(µ
ρ Rν) [Kµν , Q] = 0

[Kµ, Pν] = δµ
ν R [Kµ, Q] = Rµ

[K, Pµ] = 0 [K, Q] = R . (3.13)

We now consider the non-linear realisation based on this algebra. We first consider the

case of standard massless dimensional reduction, which corresponds to taking the group

element

g = ex·PeyQeΦOgKOg

eAµνρRµνρ

eAµνRµν

eAµRµ

eφRehµ
νKµ

ν , (3.14)

where we take all the fields not to depend on y. We then compute the Maurer-Cartan form

g−1dg = dxµg−1∂µg + dyg−1∂yg . (3.15)

We first consider the part along dxµ. Following [23], we use the inverse Higgs mechanism

to covariantly solve for the not fully antisymmetric Og fields in terms of the other fields in

such a way that all the terms in the Maurer-Cartan form are completely antisymmetric.

This gives

dxµg−1∂µg = dxµ[eµ
aPa + eφAµQ + (∂µφ − Φµ)R + eφ∂[µAν]e

ν
aR

a

+e−φ
(
∂[µAνρ] − Φµνρ − Φ[µAνρ]

)
eν

ae
ρ
bR

ab

+
(
∂[µAνρσ] − ∂[µAνρAσ] + Φ[µνρAσ] + Φ[µAνρAσ]

)
eν

ae
ρ
be

σ
cR

abc + ...] (3.16)
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We then consider the dy term. Again following [23] we impose that the part of the Maurer-

Cartan form in the dy direction vanishes apart from the Q term. This imposes that all the

Og fields associated to the Og generators that do not commute with Q must vanish:

Φ = 0 Φµ = 0 Φµ1µ2 = 0 Φµ1µ2µ3 = 0 . (3.17)

Plugging these conditions into eq. (3.16), we then read the field strengths

Fµν = ∂[µAν]

Fµνρ = ∂[µAνρ]

Fµνρσ = ∂[µAνρσ] − ∂[µAνρAσ] , (3.18)

that are the field strengths of the gauge fields of the massless IIA theory. Acting with

g0 transformations on the group element of eq. (3.14) one also derives the corresponding

gauge transformations, that are

δAµ = ∂µΛ

δAµν = ∂[µΛν]

δAµνρ = ∂[µΛνρ] + ∂[µΛAνρ] . (3.19)

We now want to derive the field strengths and gauge transformations of the gauged

IIA theory of [8, 6] in an analogous way. We take as our starting point an 11-dimensional

group element that has a non-trivial y dependence, namely

g = ex·P eyQemy(K+R)eΦOgKOg

eAµνρRµνρ

eAµνRµν

eAµRµ

eφRehµ
νKµ

ν , (3.20)

where K is the trace of the GL(10, R) generators, m is a constant parameter and we take

all the fields not to depend on y. Observe that this particular choice of the group element

is due to the fact the trombone scaling is generated by K µ̂
µ̂ in eleven dimensions, and

K µ̂
µ̂ = K + R in the frame in which α = 0 and β = 1 in eq. (2.27). One can easily

generalise this to an arbitrary frame.

We now compute the Maurer-Cartan form. As in the massless case, we first consider

the dxµ term, and we use the inverse Higgs mechanism to solve for the Og fields with mixed

symmetry in terms of the other fields in such a way that all the terms that are left in the

Maurer-Cartan form are completely antisymmetric. With respect to eq. (3.16) the Pµ and
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Q terms, as well as the Og fields, acquire a y dependence due to the non-trivial form of

the group element of eq. (3.20). The result is

dxµg−1∂µg = dxµ[emyeµ
aPa + emyeφAµQ + (∂µφ − emyΦµ) R + eφ∂[µAν]e

ν
aR

a

+e−φ
(
∂[µAνρ] − emyΦµνρ − emyΦ[µAνρ]

)
eν

ae
ρ
bR

ab

+
(
∂[µAνρσ] − ∂[µAνρAσ] + εmyΦ[µνρAσ] + emyΦ[µAνρAσ]

)
eν

ae
ρ
be

σ
cR

abc + ...] (3.21)

The fact that this term has a non-trivial y dependence is the crucial difference with re-

spect to the Scherk-Schwarz reduction of IIB discussed in [23]. In that case, the group

element was deformed by a y-dependent SL(2, R) transformation, which commutes with

momentum. Correspondingly, the dxµ part of the Maurer-Cartan form did not contain

any y dependence. This is what guarantees the consistency of the truncation to the lower

dimensional theory. In this case, the dxµ part of the Maurer-Cartan contains a y depen-

dence, and this is the translation in this group-theoretic language of the fact that the

trombone symmetry is not a symmetry of the lagrangian but only of the field equations.

As emphasised in [6], having such a symmetry is actually sufficient to guarantee that also

in this case the truncation to ten dimensions is consistent at the level of the field equations.

We will see in the following how this notion of consistency of the truncation is translated

in our langauge.

We now compute the dy part of the Maurer-Cartan form. We get

dyg−1∂yg = eφemyQ + m(K + R) − emyΦR + eφemy (−Φµ + ΦAµ) eµ
aR

a

+e−φ (−emyΦAµν − emyΦµν + 3mAµν) eµ
ae

ν
bR

ab

+(−emyΦµAνρ + emyΦAµνAρ − emyΦµνρ + emyΦµνAρ + 3mAµνρ

−3mAµνAρ)e
µ

ae
ν
be

ρ
bR

abc . (3.22)

Following [23], we now use the inverse Higgs mechanism to impose that all the terms in

eq. (3.22) proportional to positive level generators vanish. This gives

Φ = 0 Φµ = 0 , (3.23)

as well as

emyΦµν − 3mAµν = 0 emyΦµνρ − 3mAµνρ = 0 . (3.24)
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Substituting these relations in eq. (3.21), we then read the field strengths

Fµν = ∂[µAν]

Fµνρ = ∂[µAνρ] − 3mAµνρ

Fµνρσ = ∂[µAνρσ] − ∂[µAνρAσ] + 3mA[µνρAσ] , (3.25)

that are the field strengths of the gauge fields of the gauged IIA theory [8, 6]. Acting

with g0 transformations on the group element of eq. (3.14) one also derives the gauge

transformations

Aµ → Aµ + ∂µΛ

Aµν → e3mΛAµν + ∂[µΛν]

Aµνρ → e3mΛAµνρ + ∂[µΛνρ] + ∂[µΛAνρ] , (3.26)

which transform covariantly the field strengths of eq. (3.25), that is

Fµν → Fµν

Fµνρ → e3mΛFµνρ

Fµνρσ → e3mΛFµνρσ . (3.27)

We now perform an analysis of the deformed algebra that parallels the one performed

in [23] for the case of the Scherk-Schwarz reduction of IIB to nine dimensions. We start

observing that eq. (3.24) relates the Og fields to the E11 fields times the deformation

parameter. Iterating this one obtains for any n an Og n field identified with an E11 field

times the nth power of the mass parameter. This generalises to all the fields in the theory

whose corresponding operators have non-vanishing commutator with the operator K + R.

Putting these solutions into the original group element of eq. (3.20) we find that it takes

the form

g = ex·PeyQey(K+R)eΦOgK̃Og

eAµνρR̃µνρ

eAµν R̃µν

eAµRµ

eφRehµ
νKµ

ν , (3.28)

where

R̃µν = Rµν + 3me−myKµν + ...

R̃µνρ = Rµνρ + 3me−myKµνρ + ... , (3.29)
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where the dots correspond to higher powers in m multiplying higher grade Og generators,

and K̃ denotes deformed Og generators associated with ten-dimensional gauge transforma-

tions. We also define, as suggested by the Maurer-Cartan form of eq. (3.21), the deformed

10-dimensional momentum operator as

P̃µ = emyPµ . (3.30)

We therefore get the commutator

[R̃µ1µ2µ3 , P̃ν] = 3mδ[µ1
ν R̃µ2µ3] , (3.31)

while the commutator of R̃µ1µ2 with P̃µ vanishes.

We think of the deformed generators constructed this way as constituting a deformed

local E11 algebra. This deformed algebra has an algebraic classification as the set of

generators that commute with the operator

Q̃ = emyQ + m(K + R) . (3.32)

This operator can be read from eq. (3.22), which indeed becomes, once one imposes the

conditions of eqs. (3.23) and (3.24),

dye−φRQ̃eφR . (3.33)

In terms of the operator Q̃ the commutator between Rµ and P̃µ reads

[Rµ, P̃ν] = −δµ
ν Q̃ + mδµ

ν (K + R) . (3.34)

We then consider the scalar sector of eq. (3.21), that is

eφemyAµQ + ∂µφR = Aµe−φRQ̃eφR + (∂µφ − mAµ)R − mAµK . (3.35)

The R term in this equation gives the covariant derivative for the scalar,

Dµφ = ∂µφ − mAµ , (3.36)

which is invariant under

δφ = mΛ δAµ = ∂µΛ . (3.37)

Finally, we consider the gravity sector. This is again different with respect to the Scherk-

Schwarz reduction discussed in [23]. Indeed, in that case the deformation of the group
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element was due to an internal symmetry generator, which commutes with the gravity

generators, and thus the analysis of the dimensionally reduced gravity sector was trivial.

In this case the deformation involves the generator K, which is the trace of the GL(10, R)

generators, and as such this has a non-trivial effect in the gravity sector. Specifically,

taking into account the K term in the Maurer-Cartan form, the Kab term becomes

[
(e−1∂µe)ab − Φρ

µνe
ν
aeρb − mAµηab

]
Kab . (3.38)

Observing that the vierbein transforms under Λ as

eµ
a → emΛeµ

a , (3.39)

we write the term contracting Kab in eq. (3.38) as

(e−1Dµe)ab − Φρ
µνe

ν
aeρb , (3.40)

where Dµ is the derivative covariantised with respect to the transformation of eq. (3.39),

that is Dµ = ∂µ−mAµ. Applying the same arguments of [23], which are reviewed in section

2, we obtain that imposing that the symmetric part in ab of eq. (3.40) vanishes gives for

the antisymmetric part the spin connection as in eq. (2.13), but with the derivative ∂µ

substituted by the covariant derivative Dµ. This is [25]

ω̃µ
ab = ωµ

ab − 2meµ
[ae|ν|b]Aν . (3.41)

If one plugs this into the Maurer-Cartan form and applies the inverse Higgs mechanism at

the level of the next gravity Og field, one obtains that the term contracting Kab
c is the

covariantised Riemann tensor

R̃µν
ab = 2∂[µω̃ν]

ab + 2ω̃ac
[µ ω̃ν]c

b . (3.42)

Therefore this reproduces exactly the field theory analysis of [25] in the gravity sector.

The question we now want to address is in what sense one can truncate the algebra in

such a way that the resulting theory is purely ten-dimensional. What we want to do is

to project out of the algebra the operator Q̃, and consider the group element as a purely

ten-dimensional one with commutation relations deformed with respect to the massless

case. From eq. (3.34) we consider as a starting point for the ten-dimensional deformed

algebra the commutator

[Rµ, Pν] = mδµ
ν (K + R) , (3.43)
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where now we have for simplicity dropped the tilde from the deformed generators. We

want to determine the rest of the algebra by requiring the closure of the Jacobi identities.

This is exactly the method explained in [23] and applied in [24] to derive the deformed

algebra associated to any gauged maximal supergravity in any dimension.

The Jacobi identity involving K + R, Rµ and Pµ gives

[R, Pµ] = Pµ , (3.44)

which implies

[K + R, Pµ] = 0 . (3.45)

We then get

[Rµν , Pρ] = 0 [Rµνρ, Pσ] = 3mδ[µ
σ Rνρ] . (3.46)

We thus recover the commutation relation of eq. (3.31) from a purely ten-dimensional

perspective. If we then consider the ten-dimensional group element

g = ex·PeΦOgKOg

eAµνρRµνρ

eAµνRµν

eAµRµ

eφRehµ
νKµ

ν , (3.47)

the corresponding Maurer-Cartan form gives, once the inverse Higgs mechanism is applied,

the field strengths of eq. (3.25), as well as the covariantised spin connection of eq. (3.41)

and the covariantised Riemann tensor of eq. (3.42).

As a final comment, we discuss the overlap of this deformation, corresponding to the

gauged IIA theory, with the deformation associated with Romans massive IIA theory.

Denoting with mR the mass parameter associated to Romans theory, the deformation

corresponds to a non-vanishing commutator between the 2-from generator and momentum

[13]

[Rµν, Pρ] = mRδ[µ
ρ Rν] . (3.48)

A simple computation shows that using this commutator together with the one of eq.

(3.43) the Jacobi identity involving Rµν , Pρ and Pσ closes only if the quadratic constraint

mmR = 0 (3.49)

holds. This means that it is not consistent to turn on both deformations together. This

result is perfectly consistent with the field theoretic analysis. Indeed turning on the Romans

mass breaks the trombone symmetry also at the level of the field equations, and thus it is

not consistent to perform the gauging of the trombone symmetry when the Romans mass

parameter is non-vanishing.
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4 Conclusions

In this paper we have shown that the local E11 algebra corresponding to the IIA theory

admits a deformation which is associated to the gauged IIA theory of [8, 6]. This deforma-

tion is shown to arise from considering the Maurer-Cartan form that results from taking

the eleven-dimensional group element as in eq. (3.20), and solving for the Og fields using

the inverse Higgs mechanism. The deformed algebra can also be obtained directly in ten

dimensions starting from the commutator of eq. (3.43) and imposing the closure of the

Jacobi identities, which also imply that this deformation can not be turned on together

with the Romans deformation. Given that the commutator of eq. (3.43) involves the trace

of the GL(10, R) generators, this deformation has a non-trivial effect in the gravity sector,

as shown in eqs. (3.41) and (3.42).

The deformed algebra can naturally be extended to include higher rank form generators,

and we expect the field equations to arise as duality relations between the corresponding

field strengths. It is important to observe, though, that the only 9-form generator that

is present in the IIA decomposition of E11 is associated to the Romans mass. This can

be seen explicitly by observing that the field strength of the IIA 9-form that one obtains

from the deformed E11 algebra associated to the Romans theory [23] coincides up to field

redefinitions with the 9-form that one obtains imposing the closure of the supersymmetry

algebra [34, 35], which also imposes the duality of its field strength with the Romans mass.

Therefore, there is no dual form in the spectrum associated to the trombone deformation.

In [25] it was observed that in any dimension D the E11 spectrum contains generators with

D − 1 spacetime indices in the (D − 2, 1) mixed symmetry irreducible representation of

GL(D, R) with D − 2 antisymmetric indices, that could be associated to the trombone

deformations. In this IIA case, this would be a generator in the (8, 1) representation

of GL(10, R), which is indeed present. Actually, the occurrence of these generators is

completely general, as already shown in [36]. Indeed these are the first of an infinite chain of

so called “dual” vector generators in the GL(D, R) representations (D−2, D−2, ..., D−2, 1),

and their presence is crucial for the universal structure of E11 reproducing the gauge algebra

of all the form fields in all dimensions. In [37, 38] it was observed that in the case of the

internal gaugings one can consider a lagrangian formulation in which the D − 1 forms

are Lagrange multipliers for the embedding tensor (so that their field equation implies

the constancy of the embedding tensor). The fact that these forms are present in the
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gauge algebra is thus intrinsically related to the fact that one expects such a lagrangian

formulation to be possible. In [34] this lagrangian formulation was originally derived for the

IIA case, thus describing simultaneously the massless and the Romans case. The IIA theory

considered in this paper does not admit a lagrangian formulation, and thus we consider the

fact that there is no form generator associated to this deformation as completely consistent,

and we do not expect any E11 generator associated to a non-propagating field to play a

role in triggering this deformation.

As mentioned in the introduction, in [25] it was shown that all possible gauged maximal

supergravities of the trombone type in any dimension D can be classified in terms of a new

embedding tensor in the representation of E11−D which is conjugate to the one to which the

vectors belong. The consistency of the gauge algebra imposes quadratic constraints, which

the authors of [25] also analyse in the case in which this trombone gauging is considered

together with the embedding tensor associated to the internal gauging. In [26] these

results are reproduced imposing the closure of the Jacobi identities of the deformed local

E11 algebra with deformations also involving the trace of the GL(D, R) generators, and

the gauge transformations and the field strengths of the fields are computed in all cases.
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