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We review the dynamical equivalence between f(R) gravity in the metric formalism and scalar-
tensor gravity, and use this equivalence to deduce the post-Newtonian parameters γ and β for a f(R)
theory, obtaining a result that is different with respect to that known in the literature. Then, we
obtain explicit expressions of these paremeters in terms of the mass of the scalar field (or, differently
speaking, the mass of the additional scalar degree of freedom associated to a f(R) theory) which
can be used to constrain f(R) gravity by means of current observations.

I. INTRODUCTION

In f(R) theories of gravity the gravitational Lagrangian depends on an arbitrary analytic function, f , of the scalar
curvature, R. The field equations of these theories (see [1], [2] and references therein) can be obtained in the metric
formalism, by varying the action with respect to the metric tensor, or in the Palatini formalism, where the action
is varied with respect to the metric and to the affine connection, which are supposed to be independent from each
other. In both cases the matter Lagrangian is supposed to depend only on the matter fields and the metric tensor.
In addition to these two formalism, there is also the metric-affine formalism, in which one performs the Palatini-type
variation supposing the matter Lagrangian to depend upon the metric tensor and the affine connection [3], besides
the matter fields. These theories are also referred to as higher-order theories of gravity, since the field equations are
of higher order with respect to those of General Relativity (GR).

The dynamical equivalence between f(R) theories and a particular class of scalar-tensor (ST) theories, i.e. Brans-
Dicke (BD) theory is very well-known and studied, both in the case of metric formalism [4], [5], [6] as well as in
the Palatini formalism [7], [8]. We stress that two theories are said to be dynamically equivalent (limiting ourselves
to the classical point of view) when it is possible to make their field equations (or actions) coincide by means of
suitable redefinitions of the fields (gravitational and matter). In particular, the dynamical equivalence between f(R)
and the BD theory (see e.g. [2] and references therein) suggests to use the results known for the latter to directly
obtain, after suitable manipulations, those corresponding to the former. This could be very fruitful especially for
those results directly related to observations or experiments: for instance, post-Newtonian parameters (see [9] for the
original works, [10] for a detailed description of the framework and [11] for a recent review) can be used to constrain
f(R) theories. The issue of the post-Newtonian parameters for metric f(R) theories has been previously dealt with
in the literature, following the approach described in [12]. However, the choice of the starting parameters and a
too peculiar selection for the transformation between f(R) and the corresponding BD theory have led to at least
misleading results.

In this paper, after reviewing the dynamical equivalence between f(R) and ST theories, we focus on the post-
Newtonian parameters issue. In particular, in the framework of metric f(R) gravity, we discuss how post-Newtonian
parameters are obtained, by exploiting the dynamical equivalence with ST theories, and we suggest that those obtained
in [12] are not correct. Then we deduce the post-Newtonian parameters γ and β for a metric f(R) theory and,
furthermore, we give the expressions of these two parameters in terms of the mass of the scalar field, both for a
general scalar-tensor theory and for a f(R) theory.
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II. GENERAL CORRESPONDENCES BETWEEN f(R) GRAVITY AND SCALAR-TENSOR THEORIES

We discuss the dynamical equivalence between f(R) and ST theories, focusing on the simplest case of a fourth-order
Lagrangian (see [6], [13], [14] for the extension to theories of order higher than the fourth, i.e., of the type f(R,�nR),
with n ≥ 1).

By varying the action integral of f(R) gravity1

SHO =
1

16πGN

∫
d4x

√
−gf(R) + Sm, (1)

where

Sm =
∫
d4x

√
−gLm (2)

is the matter action and Lm is the matter Lagrangian, with respect to the components of the metric tensor, the
following fourth-order equations of motion are obtained [15],

Gµν =
1

f ′(R)

{
1
2
gµν [f(R) −Rf ′(R)] + f ′(R),µ;ν − gµν�f ′(R)

}
+

8πGN
f ′(R)

Tµν (3)

where Gµν represents the Einstein tensor and

Tµν
.= − 2√

−g
δLm
δgµν

(4)

are the components of the matter/energy fields stress-energy tensor.
Now, let us consider the scalar-tensor action integral

Sφ =
1

16πGN

∫
d4x

√
−g [f(φ) + (R − φ)f ′(φ)] + Sm. (5)

By varying it with respect to the metric tensor, we get the equations of motion

Gµν =
1

f ′(φ)

{
1
2
gµν [f(φ) − φf ′(φ)] + f ′(φ),µ;ν − gµν�f ′(φ)

}
+

8πGN
f ′(φ)

Tµν , (6)

whereas a variation with respect to the scalar field, φ, gives the equation

[R− φ] f ′′(φ) = 0. (7)

As a consequence, it is easy to realize that, for a given function f , provided that f ′′(φ) 6= 0, Eqs.(6) coincide with
Eqs.(3) on shell, i.e. on the solutions of the last equation (7), so when

R = φ. (8)

This correspondence on shell can be demonstrated to apply also in N dimensions and with a more general higher-
order Lagrangian, i.e. for (2n+ 4)th−order gravity [6], [13], [14] (see also [16] for a representation of the higher-order
Lagrangian density when also negative powers of the Dalambertian operator are present).

Now, it is interesting to point out that the action (5) can be transformed into a general ST action,

SST =
1

16πGN

∫
d4x

√
−g [F (ϕ)R − Z(ϕ)gµν∇µϕ∇νϕ− 2V (ϕ)] + Sm, (9)

by setting in the latter the identifications:

F (ϕ) = f ′(φ), Z(ϕ) = 0, 2V (ϕ) = φf ′(φ) − f(φ). (10)

1 We use units such that c = 1.
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Type Tricks L/
√
−g

GST F (ϕ)R − Z(ϕ)gµν∇µϕ∇νϕ − 2V (ϕ)

GBD F (ϕ) ≡ ϕ, Z(ϕ) ≡ ω/ϕ ϕR − ω
ϕ

gµν∇µϕ∇νϕ − 2V (ϕ)

O’H ω = 0 ϕR − 2V (ϕ)

ST ϕ ≡ f ′(φ), 2V (ϕ) ≡ φf ′(φ) − f(φ) f(φ) + (R − φ)f ′(φ)

HOT φ ≡ R f(R)

TABLE I: In this table, the steps to follow in order to pass from a generalized scalar-tensor (GST) Lagrangian density,
normalized to the square root of the metric determinant, to an f(R) one are indicated. We have indicated, respectively,
with GBD the generalized Brans-Dicke, O’H the O’Hanlon, ST the scalar-tensor and HOT the higher-order type normalized
Lagrangian density.

Consequently, by varying the action (9) with respect to both the components of the metric and the scalar field we
obtain the following equations of motion,

Gµν =
1

F (ϕ)

{
Z(ϕ)

[
∇µϕ∇νϕ−

1
2
gµν∇σϕ∇σϕ

]
+ F (ϕ),µ;ν − gµν�F (ϕ) − gµνV (ϕ)

}
+

8πGN
F (ϕ)

Tµν , (11)

and

�ϕ+
1

2Z(ϕ)

{
R
dF

dϕ
+ ∇σϕ∇σϕ

dZ

dϕ
− 2

dV

dϕ

}
= 0, (12)

respectively.
As it is well-known [17], the action integral (9) reduces to the generalized Brans-Dicke one by simply substituting

F (ϕ) = ϕ, Z(ϕ) =
ω

ϕ
. (13)

So, on taking into account Eqs (10) and (13), we see that f(R) theories can be suitably transformed into a BD theory
with ω = 0.

In table I a synopsis of the key steps for going to a generalized scalar-tensor Lagrangian to an f(R) one are described.

Remark. According to what has been stated above, metric f(R) gravity is nothing but a different representation
of the Brans-Dicke theory with null BD parameter, ω = 0: as a consequence, metric f(R) gravity has one extra degree
of freedom with respect to General Relativity. Actually, this extra degree of freedom is dynamic, as one can easily
deduce from the equation of motion for the ϕ field, obtained from Eq.(12) with the substitutions (13), in which we
set ω = 0, after the replacement of the Ricci scalar with the trace of Eq.(11), that is

3�ϕ+ 4V (ϕ) − 2ϕ
dV (ϕ)
dϕ

= 8πGNT. (14)

Of course, one should also bear in mind that the shape of the potential V (ϕ) of the particular BD theory we are
referring to is constrained by the scalar curvature. Precisely, it is

2V ′(ϕ) = R, (15)

as one immediately deduces from the relations (8) and (13).

III. POST-NEWTONIAN PARAMETERS IN METRIC f(R) GRAVITY

We now focus on the deduction of the post-Newtonian parameters for metric f(R) gravity.
To begin with, we consider the approach outlined in [18], where the post-Newtonian parameters for a general scalar-

tensor theory of gravity are obtained, provided that we can disregard the potential associated to the scalar field. On
doing so, we exploit the correspondence between f(R) and scalar-tensor gravity discussed above by considering now
what happens when we conformally transform a scalar-tensor and a higher-order gravity Lagrangian. It can be shown
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[5], [19] that both theories are mapped into General Relativity plus a suitable number of scalar fields: more precisely,
one can demonstrate that a scalar-tensor theory action is conformally equivalent to the Einstein-Hilbert action plus as
many scalar fields as there are in the former action. On the other hand, when a conformal transformation of an f(R)
action from the starting frame (referred to as “Jordan frame”) to the final one (called “Einstein frame”) is performed,
one finds that it is equivalent to Einstein-Hilbert plus a scalar field action.

Before going on, it is useful to point out that there is a longstanding debate on the issue of conformal transformations,
between those who try to establish which frame is the physical one (see for example [20], [21] and references therein
for a general discussion) and those who maintain that the two frames, under suitable redefinitions of the units, are
physically indistinguishable (see [22], [23]). A thorough discussion on this issue is beyond the scope of the present
paper, however the reader can refer to the huge literature on this interesting problem.

Now, after performing the conformal transformation




g̃µν ≡ Ω2(ϕ)gµν = F (ϕ)gµν ,(
dψ
dϕ

)2

≡ 3
4

(
d lnF (ϕ)

dϕ

)2

+ Z(ϕ)
2F (ϕ) ,

A(ψ) ≡ Ω−1(ϕ) = F−1/2(ϕ),
2U(ψ) ≡ V (ϕ)F−2(ϕ),

(16)

the action integral (9) takes the form of the Einstein-Hilbert action plus a scalar field [18], [17],

SConfTr =
1

4πGN

∫
d4x

√
−g

[
R̃

4
− 1

2
g̃µν∇µψ∇νψ − U(ψ)

]
+ Sm

[
Ψm;A2(ψ)g̃µν

]
, (17)

where the matter term is now non-minimally coupled to the scalar field ψ through the conformal factor A2(ψ). Note
that the new dynamical degree of freedom ψ corresponds to the starting dynamical degree of freedom, i.e. to the
scalar field ϕ. On the other hand, when we conformally transform the action integral (1) using the conformal factor

Ω2(ϕ) =
df

dR
, (18)

the conformal transformation at stake turns out to be defined by the relations




g̃µν ≡ Ω2(ϕ)gµν = f ′(R)gµν ,

ψ =
√

3
2

1
8πGN

ln (f ′(R)) ,

A(ψ) ≡ Ω−1(ϕ) = [f ′ (R)]−1/2 ,

2U(ψ) ≡ 1
8πGN

Rf ′(R)−f(R)
f ′2(R) ,

(19)

where the prime indicates the derivative with respect to the scalar curvature, R. The scalar field, ψ, that materializes
in the Einstein frame corresponds to the dynamical degree of freedom, ϕ, of the BD representation one can associate
to f(R) gravity. Eventually, by varying such a transformed action, we are left with the subsequent set of equations

G̃µν = 2∂µψ∂νψ − g̃µν∂
σψ∂σψ − 2g̃µνU(ψ) + 8πGN T̃µν , (20)

for the components of the metric tensor and

�̃ψ = −4πGN α(ψ)T̃ +
dU(ψ)
dψ

(21)

for the scalar field, where

α(ψ) ≡
d lnA(ψ)

dψ
(22)

is a function giving the strength of the coupling between the scalar field and the matter/energy source, while T̃ is the
trace of the stress-energy tensor2 back. It is worth stressing that Eqs.(20) and Eqs.(21) are exactly those one would
obtain by transforming the Eqs.(11) and (12), respectively.

2 From the very definition of the stress-energy tensor also valid in the Einstein frame, T̃µν ≡ 2 (δSm/δg̃µν )/
√
−g̃, it is easy to deduce its

relation with its Jordan frame counterpart, T̃µν = A2(ψ)Tµν . As a consequence, the contracted Bianchi identities give us the tensorial

relation ∇̃µT̃
µ
ν = α(ψ)T̃ ∇νψ.
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The procedure and results shown above are generalizable to actions of order greater than the fourth. In this case,
the Lagrangian (that is function of R, �R, ..., �nR) is dynamically equivalent to a BD Lagrangian given in terms
of (n + 1) scalar fields and with BD parameters all equal to zero. This last Lagrangian is conformally equivalent to
General Relativity plus (n+ 1) scalar fields 3.

Having this in mind, we can proceed to determine the post-Newtonian parameters γ and β for a metric f(R) gravity.
Actually, according to the procedure described in [18], for a scalar-tensor action integral whose potential term can be
neglected, these parameters turn out to have the following expressions:

γ − 1 = −2
α2

1 + α2

∣∣∣∣
ψ0

, (23)

and

β − 1 =
1
2

[
α2

(1 + α2)2
dα

dψ

]

ψ0

, (24)

where ψ0 is the asymptotic value of the field ψ. Taking into account the relations (16), we can express them back
into the Jordan frame. After straightforward algebra, they read:

γ − 1 = − (dF/dϕ)2

ZF + 2(dF/dϕ)2

∣∣∣∣
ϕ0

, (25)

β − 1 =
1
4

[
F (dF/dϕ)

2ZF + 3(dF/dϕ)2
dγ

dϕ

]

ϕ0

, (26)

where now we have to consider the asymptotic value of the field ϕ. These two relations, written for a general
Brans-Dicke theory, give the well-known results

γ =
1 + ω

2 + ω
, (27)

and

β − 1 = 0, (28)

already obtained in [11] without passing through a conformal transformation.
In order to deduce the values of the post-Newtonian parameters γ and β for a metric f(R) gravity, we start by

pointing out what follows: in general, the above parameters (23)-(26) are not suitable for our purposes. In fact, they
have been obtained by requiring the potential associated to the scalar field of the theory to be absolutely negligible.
This is not true a priori: in fact, the potential we are now considering is strictly connected to the choice of the
particular f(R), as it is

2V (ϕ) = Rf ′(R) − f(R). (29)

Actually, this fact has not been considered in [12], where the authors start from the correspondence between metric
f(R) and scalar-tensor theories, namely from the relations (23)-(26) above, to obtain the following expressions

γR − 1 = − f ′′(R)2

f ′(R) + 2f ′′(R)2

∣∣∣∣
R0

, (30)

and

βR − 1 =
1
4

[
f ′(R)f ′′(R)

2f ′(R) + 3f ′′(R)2
dγR
dφ

]

R0,φ0

, (31)

3 To be more precise, we can in general define only one scalar field in the Einstein frame which turns out to have a standard kinetic
term, while the remaining degrees of freedom in Einstein frame will have non-standard kinetic terms and may also be coupled via the
potential [6].
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being R0, φ0 the asymptotic values of the scalar curvature and the φ field, respectively.
Apart from the improper use of the relations (23)-(26), the above results (30) and (31), are not in agreement with

those one would obtain by making use of the substitutions that led us from a higher-order theory to the corresponding
ST one, which have bene discussed above. In fact, by setting F (ϕ) ≡ ϕ ≡ f ′(φ) and φ ≡ R, one obtains the following
expressions for the two considered post-Newtonian parameters:

γ − 1 = −
[f ′′(R)dRdϕ ]2

Zf ′(R) + 2[f ′′(R)dRdϕ ]2

∣∣∣∣
ϕ0

, (32)

and

β − 1 =
1
4

[
f ′(R)f ′′(R)dRdϕ

2Zf ′(R) + 3[f ′′(R)dRdϕ ]2
dγ

dR

dR

dϕ

]

ϕ0

(33)

=
1
4





f ′(R)f ′′(R)dRdϕ

2Zf ′(R) + 3
(
f ′′(R)dRdϕ

)2

Zf ′′(R)
[
(f ′′(R))2 − 2f ′(R)f ′′′(R)

]

[
Zf ′(R) + 2

(
f ′′(R)dRdϕ

)2
]2




ϕ0

. (34)

These expressions for γ and β can be made equal to γR and βR, respectively, only for a specific and peculiar choice
of the fields ϕ and Z(ϕ). In fact, the equivalence between the two sets of relations, (30)-(31) and (32)-(34), only
takes place when Z = 1 and dR = dϕ. In particular, the position Z = 1 implies f ′(R) = ω whereas dR = dϕ
implies f ′′(R) = 1. Even allowing ω to be a function of the curvature and not a constant parameter, putting together
the two positions, leads us to the conclusion that the BD parameter and the f(R) are obliged to be ω = R and
f(R) = (R2/2) + R, respectively4.

Let us further comment on the issue of the interpretation of the post-Newtonian parameters (23) and (24). Suppose
to work with a class of higher-order theory such as f(R) = R1+ε, with ε→ 0. What one would expect is that, as far
as ε → 0, the post-Newtonian parameters reach their GR values (i.e. γ = 1, β = 1). On the other side, the relations
(27) and (28), with ω = 0 (implying that it is also Z(ϕ) = 0), immediately give the results γ = 1/2 and β = 1. The
key point to solve this puzzle is the role of the Z function. In fact, we must consider in our discussion that the more
we approach GR, the closer Z approaches the infinity, and, consequently, γ → 1 as ε → 0. This further shows that
a superficial application of the correspondence between f(R) and scalar-tensor theories leads to results that are non
self consistent.

In next section, we are going to focus on the issue of the relevance of the potential associated to the scalar field
when one wants to obtain the values of the post-Newtonian parameters γ and β for metric f(R) theories starting
from the correspondence with scalar-tensor gravity; as we are going to show, this fact can be related to the mass of
the scalar field.

IV. POST-NEWTONIAN PARAMETERS AND THE MASS OF THE SCALAR FIELD

As pointed out in [2] and [24], the ranges (or, equivalently, the masses) of the Brans-Dicke scalar field ϕ can be
completely different according to which definition of the mass is used. Of course, this choice turns out to be crucial if
we aim at writing the post-Newtonian parameters γ and β in terms of the mass of the scalar field5. So, before going
on, it is useful to clarify this issue, in order to specify which definition of mass we refer to in our approach.

To begin with, we notice that we can assign to a scalar field endowed with a potential V (ϕ) the mass

µ2(ϕ) ≡ d2V

dϕ2
, (35)

that derives from the usual Klein-Gordon equation for a scalar field ϕ, that is

�ϕ− d2V

dϕ2
= S, (36)

4 Of course, in this case, the two Eddington PPN parameters γ and β, being constants, must be evaluated in correspondence with the
asymptotic value R9

5 Historically, the interest in the study of scalar fields provided with a mass such that the experimental limits on the ω parameter were
bypassed, started after that (bosonic) string theory showed to have a low-energy limit corresponding to ω = −1 Brans-Dicke theory [25]



7

where S represents the source term. Note that, with this definition, the mass turns out to be dimensionless, having
both V and ϕ2 the dimensions of the fourth power of a mass6. Actually, the field ϕ that appears in the action integral
of the general Brans-Dicke theory,

SBD =
1

16πGN

∫
d4x

√
−g

[
ϕR − ω

ϕ
gµν∇µϕ∇νϕ− 2V (ϕ)

]
+ Sm, (37)

satisfies a modified Klein-Gordon equation,

�ϕ =
1

3 + 2ω
[8πGT + 2ϕV ′(ϕ) − 4V (ϕ)] , (38)

where T is the trace of the matter/energy stress-energy tensor and the prime stands for derivative with respect to
the ϕ field. Eq.(38) can be immediately recast into a Klein-Gordon one, by the introduction of an effective potential
Veff (ϕ) such that

dVeff (ϕ)
dϕ

=
2

3 + 2ω
[ϕV ′(ϕ) − 2V (ϕ)] , (39)

so that Eq.(38) becomes

�ϕ−
dVeff (ϕ)

dϕ
=

8πGT
3 + 2ω

. (40)

Then, an effective mass, m(ϕ), can be introduced as follows:

m2(ϕ) .=
d2Veff
dϕ2

=
2

3 + 2ω
(ϕV ′′ − V ′). (41)

We notice that, in this case, the mass has the proper dimensions, as now Veff has the dimensions of the sixth power
of a mass. Thus, the correct use of the Klein-Gordon analogy seems to support the definition (41) rather than (35).

For the sake of completeness, we remember a third possible definition of mass, the one in the Einstein frame,

m̃2(ψ) ≡ d2U

dψ2
. (42)

We also stress that, in this case, there are in principle as many definitions as the possible different choices of the
conformal factor.

It is useful to point out that these three different definitions do describe different physical situations, as it appears
clear when considering the simple example of a constant potential V = V0 6= 0. In this case, it is µ = 0 = m(ϕ) thus
giving an infinite range scalar field, but m̃ 6= 0, giving a finite range scalar field.

That being said, we see that the range of ϕ is completely determined by the equation of motion (40) which, in
the weak-field, slow-motion and spherically symmetric limit (suitable to describe the situation inside our low-density
Solar System), becomes

1
r2

d

dr

[
r2
dϕ(r)
dr

]
− dVeff (ϕ)

dϕ
' 0. (43)

Now, the effective mass is obtained by expanding the potential term around the present value of ϕ, ϕ0, as follows:

dVeff (ϕ)
dϕ

' dVeff (ϕ)
dϕ


0

+
d2Veff (ϕ)

dϕ2


0

ϕ = m2(ϕ0)ϕ, (44)

where the last equality has been attained supposing Veff to have a minimum at ϕ0. Equation (43) admits the usual
Yukawa-like solution ϕ(r) ∝ exp[−m(ϕ0)r]/r with the mass determined by the definition (41). It then appears clear
that the right definition of the mass (and, consequently, the proper range for the scalar field) to be singled out and
consequently used in the analysis of post-Newtonian parameters is Eq.(41) [24].

6 Besides c = 1, we also set ~ = 1.
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Eventually, note that from the same definition, on taking into account Eqs. (15),(29), one gets the mass for the
case of a generic f(R) theory,

m2
HO =

[
f ′ −Rf ′′

3f ′′

]
, (45)

provided that f ′′ 6= 0, where primes mean derivative with respect to R. This result is in agreement with that found in
[24] as well as in other contests, like studies of stability [26], perturbations [27] and propagator calculations for f(R)
[28], etc. [29].

For example, if we consider a Lagrangian that can be expressed as power series of the Ricci scalar around the
asymptotic value R = 0, we may write, in general

f(R) = c0 + c1R+ c2R
2 + ...+ cnR

n (46)

where ci are constant coefficients. Then, from (45), after evaluating around R = 0, we obtain

m2
HO =

c1
6c2

(47)

so that the mass is directly related to the parameters of the Lagrangian.

We are now able to write the post-Newtonian parameters in terms of the effective mass (41) of the scalar field,
ϕ, and the shape of the potential, V (ϕ). In fact, as we pointed out above, this is a crucial point that should be
considered in order to translate the PPN parameters from a scalar-tensor to an f(R) theory. As effectively stated in
[30] and in [31], for a massive scalar field like the case we are discussing (where none of the two extreme conditions
m(ϕ)r � 1 and m(ϕ)r � 1, with r that indicates the scale of the experiment or observation testing the dynamics of
the field, is in principle required), the correct expression of γ is:

γ =
3 + 2ω − e−m0r

3 + 2ω + e−m0r
, (48)

where m0 = m(ϕ0) is the background value of the mass, that is

m2
0 =

2
3 + 2ω

(ϕV ′′ − V ′)


0
. (49)

Remark. The expression (48) should be interpreted as an effective value of the post-Newtonian parameter γ,
because of the dependence on the scale of the experiment r; as shown in [30] and [31], this is due to a Yukawa-like
correction to the Newtonian potential7. In particular, it can be used to exploit the known bounds on γ to constrain
the allowed values of m0 and ω, on the experimental scale r such that m0r ' 1, so that these constraints are scale-
dependent8. As for the f(R) case, this fact implies that it is possible to constrain the parameters of the Lagrangian
thanks to relations similar to Eq. (47). For the sake of completeness, we notice that when the background value of
the mass of the scalar field is small, m0 � 1/r (i.e., light, long range field), the value of the parameter γ, on which the
observational bounds are directly applicable, is practically independent of the mass itself. In this case, the constraints
on γ can be turned into a constraints on ω and the relation (48) reduces to the well-know one [11],

γ =
1 + ω

2 + ω
. (50)

On the other hand, when the mass is very large, m0 � 1/r (i.e., very massive, short range field), the γ parameter is
inexorably driven to its GR value, that is one.

7 It is interesting to point out that Yukawa-like corrections arise in f(R) gravity also without making use of the analogy with scalar-tensor
gravity (see e.g. [32, 33]).

8 We point out that our approach cannot be applied in principle to experiments that develop at very different scales, such as gravitational
lensing; in these cases, a generalized parametrized post-Newtonian formalism should be applied that takes into account extra terms
arising in f(R) gravity (see e.g. [32]).
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We can rewrite the ω parameter in terms the effective mass of the field, Eq.(41),

ω =
1

m2(ϕ)
(ϕV ′′ − V ′) − 3

2
, (51)

and substituting it into the relation (48) gives

γ = 1 − 2
e−m0r

2(ϕV ′′ − V ′)


0
+ e−m0r

. (52)

We remark that this equation is only valid in the intermediate range, that is when the mass of the scalar field is
comparable to the range, m0 ' 1/r.

As for the β parameter, it can be shown [31], [30] that it is not affected by the presence of a nonnull mass for the
scalar field, thus remaining frozen to the value it gets in the case of massless BD theories (as well as in GR), i.e., it
is β = 1.

At this point, we can finally work out the post-Newtonian parameters for a metric f(R) theory of gravity. On
taking into account Eqs. (45) and (48), on setting ω = 0 according to what we have seen in Section II, we obtain

γHO =
3 − e−m

0
HOr

3 + e−m
0
HOr

, (53)

and of course

βHO = 1 (54)

where m0
HO is the background value of the mass associated to a f(R) theory, given by (45), in agreement with [31].

For instance, on taking into account the solar system constraints on γ from the Cassini mission [34],

γobs = 1 + (2.1 ± 2.3) × 10−5 (55)

it is possible to constrain m0
HO . As an example, since in this case the scale is r = 1 AU ' 1.5 × 108 km, that is to

say a mass scale mAU ' 10−27 GeV, we obtain m0
HO

mAU
& 10 which, in turn, can be used to constrain the parameters of

the Lagrangian by means of Eq. (45).

V. CONCLUSIONS

We reviewed the issue of the dynamical equivalence between f(R) and scalar-tensor theories, focusing on the metric
formulation of f(R) theory, in order to point out how the field equations for scalar-tensor theories reduce to f(R)
field equations. On exploiting this equivalence, we gave the expressions of the post-Newtonian parameters γ and β for
a general f(R) theory, which are not the same as those available in the literature, also because the latter have been
obtained by using relations that implicitly require the potential of the scalar field to be negligible. Furthermore, we
gave explicit expressions of these paremeters in terms of the mass of the scalar field, or differently speaking, the mass
of the additional scalar degree of freedom associated to an f(R) theory. These expressions could be used to constrain
f(R) theories by means of the values of the post-Newtonian parameters obtained by the available observations and
tests, as we have shown by means of a simple example. Eventually, we showed that if the mass of the scalar field is
very light, values of these parameters that are in agreement with observations are obtained; on the other hand, if the
scalar field is heavy, the scalar field is essentially suppressed, and the predictions of the theory are undistinguishable
from those of General Relativity.
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