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1. Introduction

In this paper we discuss how primordial non-Gaussianity (NG) in the cosmological

perturbations is left imprinted in the Large-Scale Structure (LSS) of the universe in a

ΛCDM cosmology. We show how the information on the primordial non-Gaussianity, set

on super-Hubble scales, flows into smaller scales through a complete General Relativistic

(GR) computation. Primordial NG thus leaves an observable imprint in the LSS.

Another interesting finding is that, on sufficiently large scales, there is another additional

source of non-Gaussianity which arises from GR corrections, the leading contributions

of which are Post-Newtonian terms as first pointed out in Ref. [1]. The importance

of the signatures of primordial non-Gaussianity in the evolution of the matter density

perturbations is due to the fact that future high-precision measurements of the statistics

of the dark matter density will allow to pin down the primordial non-Gaussianity, thus

representing a tool complementary to studies of the Cosmic Microwave Background

(CMB) anisotropies. It is beyond the scope of this paper to go into the details of the

various theoretical and observational methods related to this issue. This paper will

then serve as a basic guideline to capture the starting point expressions that relates

primordial NG to the dark matter density and gravitational potentials, outlining some

specific non-Gaussian signatures in the LSS that can be potentially interesting. We

perform our calculations in assuming a flat Universe with pressure-less matter, i.e. Cold

Dark Matter (CDM) plus non-relativistic ordinary matter and a cosmological constant,

hereafter ΛCDM cosmology. We present our results both in the Poisson gauge and in

the comoving time-orthogonal gauge, which are relevant for comparison to observations.

The primordial NG considered in our analysis is set at primordial (inflationary)

epochs on large (super-Hubble) scales. At later times cosmological perturbations reenter

the Hubble radius during the radiation or during the matter- and dark energy-dominated

epochs. For scales re-entering the Hubble radius during the radiation dominated era one

should include the radiation in the evolution equations, thus using a complete second-

order matter transfer function also for those scales. A detailed treatment of it has

been given in Refs.[2, 3]. Refs. [4, 5] also investigate the evolution of the dark matter

perturbations up to second-order accounting for a radiation-dominated epoch, both

analytically and numerically. Here we will focus on large scales for which the effects

arising during the radiation-dominated epoch can be neglected.

The plan of the paper is as follows. In Section 2 we give the general form of the

perturbed line-element and we introduce the gauge-invariant curvature perturbation

of uniform density hypersurface at first and second order, which is used to provide

the inflationary initial conditions, including the effect of primordial non-Gaussianity. In

Section 3 we derive the second-order expression for the density perturbation in a ΛCDM

cosmology, in the Poisson gauge, taking into full account both NG initial conditions

and Post-Newtonian corrections arising from the non-linear evolution of perturbations

according to the fully General Relativistic treatment. Section 4 contains a similar

calculation in the comoving-synchronous gauge. Section 5 contains our concluding
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remarks.

2. Metric perturbations and primordial non-Gaussianity

We consider a spatially flat Universe filled with a cosmological constant Λ and a non-

relativistic pressureless fluid of Cold Dark Matter (CDM), whose energy-momentum

tensor reads T µν = ρuµuν . Following the notations of Ref. [6], the perturbed line element

around a spatially flat FRW background reads

ds2 = a2(τ){−(1 + 2φ)dτ 2 + 2ω̂idτdx
i + [(1− 2ψ)δij + χ̂ij]dx

idxj} . (1)

where a(τ) is the scale factor as a function of conformal time τ . Here each perturbation

quantity can be expanded into a first-order (linear) part and a second-order contribution,

as for example, the gravitational potential φ = φ(1) + φ(2)/2. Up to now we have not

choosen any particular gauge. We can employ the standard split of the perturbations

into the so-called scalar, vector and tensor parts, according to their transformation

properties with respect to the 3-dimensional space with metric δij, where scalar parts

are related to a scalar potential, vector parts to transverse (divergence-free) vectors and

tensor parts to transverse trace-free tensors. Thus φ and ψ, the gravitational potentials,

are scalar perturbations, and for instance, ω̂
(r)
i = ∂iω

(r) + ω
(r)
i , where ω(r) is the scalar

part and ω
(r)
i is a transverse vector, i.e. ∂iω

(r)
i = 0 ((r) = (1, 2) stand for the rth-

order of the perturbations). The symmetric traceless tensor χ̂ij generally contains a

scalar, a vector and a tensor contribution, namely χ̂ij = Dijχ + ∂iχj + ∂jχi + χij,

where Dij ≡ ∂i∂j − (1/3)∇2δij, χi is a solenoidal vector (∂iχi = 0) and χij represents

a traceless and transverse (i.e. ∂iχij = 0) tensor mode‡. As for the matter component

we split the mass density into a homogeneous ρ(τ) and a perturbed part as ρ(x, τ) =

ρ(τ)(1+δ(1) +δ(2)/2) and we write the four velocity as uµ = (δµ0 +vµ)/a with uµuµ = −1

and vµ = v(1)µ + v(2)µ/2.

The Friedmann background equations are

3H2 = a2(8πGρ(τ) + Λ) , (2)

and

ρ′(τ) = −3Hρ(τ) , (3)

where a prime stands for differentiation with respect to conformal time, and H = a′/a.

The matter density parameter is Ωm(τ) = 8πGa2(τ)ρ(τ)/(3H2(τ)).

Before recalling how one can parametrize the primordial non-Gaussianity, we need

to provide a general definition for the amplitude of non-Gaussianity characterizing the

matter density contrast beyond the usual second-order Newtonian contributions. It

‡ In what follows, for our purposes we will neglect linear vector modes since they are not produced
in standard mechanisms for the generation of cosmological perturbations (as inflation), and we also
neglect tensor modes at linear order, since they give a negligible contribution to LSS formation.
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proves convenient to introduce an effective gravitational potential obeying the Poisson

equation

−∇2Φ =
3

2
ΩmH2δ, (4)

and at an initial epoch, deep in matter domination, we write

Φin = Φ
(1)
in + fNL(Φ

(1)2
in − 〈Φ(1)2

in 〉) , (5)

with the dimensionless non-linearity parameter fNL setting the level of quadratic non-

Gaussianity, and Φ ∝ g(τ), g(τ) being the usual growth suppression factor (see Sec. 3).

Therefore we will write the matter density contrast in Fourier space in terms of the

linear density contrast by defining the kernel Kδ(k1,k2; τ) depending on the wavevector

of the perturbation modes as

δk(τ) = δ
(1)
k (τ) +

1

2
δ

(2)
k (τ) (6)

= δ
(1)
k (τ) +

∫
d3k1d

3k2

(2π)3
Kδ(k1,k2; τ)δ

(1)
k1

(τ)δ
(1)
k2

(τ)δD(k1 + k2 − k) .

We can write the kernel as

Kδ(k1,k2; τ) = KNδ (k1,k2; τ) +
3

2
ΩmH2fNL(k1,k2, τ)

gin

g(τ)

k2

k2
1k

2
2

, (7)

where k2 ≡ |k1 + k2|2 and KNδ (k1,k2; τ) is the second-order Newtonian kernel.

2.1. Primordial non-Gaussianity and initial conditions

We conveniently fix the initial conditions at the time when the cosmological

perturbations relevant for LSS are outside the horizon. A standard and convenient

way to account for any initial primordial non-Gaussianity is to consider the curvature

perturbation of uniform density hypersurfaces ζ = ζ(1) + ζ(2)/2 + · · ·, where ζ(1) =

−ψ̂(1) −Hδρ(1)/ρ′ and at second-order [12, 7]

−ζ(2) = ψ̂(2) +Hδ
(2)ρ

ρ′
− 2Hδ

(1)ρ′

ρ′
δ(1)ρ

ρ′
− 2

δ(1)ρ

ρ′
(ψ̂(1)′ + 2Hψ̂(1))

+

(
δ(1)ρ

ρ′

)2(
Hρ

′′

ρ′
−H′ − 2H2

)
, (8)

where ψ̂(r) = ψ(r) +∇2χ(r)/6. This is a gauge-invariant quantity which remains constant

on super-horizon scales after it has been generated during a primordial epoch (and

possible isocurvature perturbations are no longer present). Therefore, ζ(2) provides

all the necessary information about the primordial level of non-Gaussianity. The

conserved value of the curvature perturbation ζ allows to set the initial conditions for the

metric and matter perturbations accounting for the primordial contributions. Different

scenarios for the generation are characterized by different values of ζ(2), while the post-

inflationary nonlinear evolution due to gravity is common to all of them [13, 14, 15, 7].

For example, in standard single-field inflation ζ(2) is generated during inflation and its

value is ζ(2) = 2
(
ζ(1)
)2

+ O (ε, η) [16, 17, 13], where ε and η are the usual slow-roll
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parameters. Therefore it turns out to be convenient to parametrize the primordial

non-Gaussianity level in terms of the conserved curvature perturbation as in Ref. [20]

ζ(2) = 2aNL

(
ζ(1)
)2
, (9)

where the parameter aNL depends on the physics of a given scenario, and in full generality

it can depend on scale and configuration. For example in the standard scenario aNL ' 1,

while in the curvaton case (see e.g. Ref. [7]) aNL = (3/4r) − r/2, where r ≈ (ρσ/ρ)D

is the relative curvaton contribution to the total energy density at curvaton decay. In

the minimal picture for the inhomogeneous reheating scenario, aNL = 1/4. For other

scenarios we refer the reader to Ref. [7, 8, 9, 10, 11]. One of the best techniques to

detect or constrain the primordial large-scale non-Gaussianity is through the analysis of

the CMB anisotropies, for example by studying the CMB bispectrum [7, 18, 19]. The

non-linearity parameter fNL as defined in Eq. (5) is defined also to make contact with

the primordial non-Gaussainity entering in the CMB anisotropies. For large primordial

non-Gaussianity, when |aNL| � 1, fNL ' 5aNL/3 (see Refs. [7, 20]).

3. Dark matter density perturbations at second-order: Poisson gauge

The goal of this section is to compute the matter density contrast in the Poisson

gauge [21], i.e. the generalization beyond linear order of the longitudinal gauge, by which

a more direct comparison with the standard Newtonian approximation adopted in the

interpretation of LSS observations and in N-body simulations in Eulerian coordinates

s possible (see, however, Ref. [22] for a critical discussion of the potential problems

connected to the use of the Poisson gauge on scales comparable with the Hubble radius).

In the Poisson gauge one scalar degree of freedom is eliminated from the g0i component

of the metric, and one scalar and two vector degrees of freedom are eliminated from gij.

Let us briefly recall the results for the linear perturbations in the case of a non-

vanishing cosmological Λ term. At linear order the traceless part of the (i-j)-components

of Einstein equations gives φ(1) = ψ(1) ≡ ϕ. Its trace gives the evolution equation for

the linear scalar potential ϕ

ϕ′′ + 3Hϕ′ + a2Λϕ = 0 . (10)

Selecting only the growing mode solution one can write

ϕ(x, τ) = g(τ)ϕ0(x) , (11)

where ϕ0 is the peculiar gravitational potential linearly extrapolated to the present time

(τ0) and g(τ) = D+(τ)/a(τ) is the so called growth-suppression factor, where D+(τ) is

the usual linear growing-mode of density fluctuations in the Newtonian limit, i.e. the

no-decaying solution of the differential equation

D′′ +HD′ − 3

2
H2ΩmD = 0 . (12)



Second-order matter perturbations in a ΛCDM cosmology and non-Gaussianity 6

We normalize the growth factor so that D+(τ0) = a0 = 1. The exact form of g can be

found in Refs. [23, 24, 25]. In the Λ = 0 case g = 1. A very good approximation for g

as a function of redshift z is given in Refs. [23, 24]

g ∝ Ωm

[
Ω4/7
m − ΩΛ + (1 + Ωm/2) (1 + ΩΛ/70)

]−1
, (13)

with Ωm = Ω0m(1 + z)3/E2(z), ΩΛ = Ω0Λ/E
2(z), E(z) ≡ (1 + z)H(z)/H0 =

[Ω0m(1 + z)3 + Ω0Λ]
1/2

and Ω0m, Ω0Λ = 1 − Ω0m, the present-day density parameters

of non-relativistic matter and cosmological constant, respectively. According to our

normalization, g(z = 0) = 1. The energy and momentum constraints provide the

density and velocity fluctuations in terms of ϕ (see, for example, Ref. [13] and [26, 27]

for the Λ case)

δ(1) =
1

4πGa2ρ̄

[
∇2ϕ− 3H (ϕ′ +Hϕ)

]
, (14)

v
(1)
i = − 1

4πGa2ρ̄
∂i (ϕ

′ +Hϕ) . (15)

In a similar way the expression of the second-order matter density contrast can be

computed starting from the energy constraint given by the (0 − 0) Einstein equation,

once the evolution of the gravitational potentials is known. The latter has been already

computed in detail in Ref. [28] and in the following we summarize the main results.

The evolution equation for the second-order gravitational potential ψ(2) is obtained

from the trace of the (i-j)-Einstein equations §

ψ(2)′′ + 3Hψ(2)′ + a2Λψ(2) = S(τ) , (16)

where S(τ) is the source term

S(τ) = g2ΩmH2

[
(f − 1)2

Ωm

ϕ2
0 + 2

(
2

(f − 1)2

Ωm

− 3

Ωm

+ 3

)
α0(x)

+ g2

[
4

3

(
f 2

Ωm

+
3

2

)
∇−2∂i∂

j
(
∂iϕ0∂jϕ0

)
−
(
∂iϕ0∂iϕ0

) ]
, (17)

where, for simplicity of notation, we have introduced

α0(x) =

[
∇−2

(
∂iϕ0∂iϕ0

)
− 3∇−4∂i∂

j
(
∂iϕ0∂jϕ0

) ]
, (18)

and

f(Ωm) =
d lnD+

d ln a
= 1 +

g′(τ)

Hg(τ)
, (19)

which can be written as a function of Ωm as f(Ωm) ≈ Ωm(z)4/7 [23, 24]. In Eq. (17)

∇−2 stands for the inverse of the Laplacian operator.

§ The second-order perturbations of the Einstein tensor Gµν can be found for any gauge in Appendix
A of Refs. [16, 7] and directly in the Poisson gauge, e.g., in Refs. [2, 3]. The perturbations of the
energy-momentum tensor up to second order in the Poisson gauge have been computed in Ref. [13] for
a general perfect fluid (see Ref. [7] for expressions in any gauge).
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The solution of Eq. (16) is then obtained using Green’s method with growing and

decaying solutions of the homogeneous equation ψ+(τ) = g(τ) and ψ−(τ) = H(τ)/a2(τ),

respectively. The second-order gravitational potentials then read [28]

ψ(2)(τ) =

(
B1(τ)− 2g(τ)gin −

10

3
(aNL − 1)g(τ)gin

)
ϕ2

0 +

(
B2(τ)− 4

3
g(τ)gin

)
α0(x)

+ B3(τ)∇−2∂i∂
j(∂iϕ0∂jϕ0) +B4(τ)∂iϕ0∂iϕ0 , (20)

φ(2)(τ) =

(
B1(τ) + 4g2(τ)− 2g(τ)gin −

10

3
(aNL − 1)g(τ)gin

)
ϕ2

0 +

[
B2(τ) +

4

3
g2(τ)

×
(
e(τ) +

3

2

)
− 4

3
g(τ)gin

]
α0(x) +B3(τ)∇−2∂i∂

j(∂iϕ0∂jϕ0) +B4(τ)∂iϕ0∂iϕ0 ,

(21)

where we have introduced Bi(τ) = H−2
0 (f0 + 3Ω0m/2)−1 B̃i(τ) with the following

definitions

B̃1(τ) =

∫ τ

τin

dτ̃ H2(τ̃)(f(τ̃)− 1)2C(τ, τ̃) , (22)

B̃2(τ) = 2

∫ τ

τin

dτ̃ H2(τ̃)
[
2(f(τ̃)− 1)2 − 3 + 3Ωm(τ̃)

]
C(τ, τ̃) , (23)

B̃3(τ) =
4

3

∫ τ

τin

dτ̃

(
e(τ̃) +

3

2

)
C(τ, τ̃) , B̃4(τ) = −

∫ τ

τin

dτ̃ C(τ, τ̃) , (24)

and

C(τ, τ̃) = g2(τ̃)a(τ̃)
[
g(τ)H(τ̃)− g(τ̃)

a2(τ̃)

a2(τ)
H(τ)

]
, (25)

with

e(Ωm) ≡ f 2(Ωm)

Ωm

. (26)

The expression for φ(2) is obtained from the relation between ψ(2) and φ(2)

∇2∇2ψ(2) = ∇2∇2φ(2)−4g2∇2∇2ϕ2
0−

4

3
g2
(
e+

3

2

)[
∇2(∂iϕ0∂

iϕ0)−3∂i∂
j(∂iϕ0∂jϕ0)

]
,(27)

which follows from the traceless part of the (i-j)-component of Einstein equations [28].

Here ϕin = ginϕ0 represents the initial condition taken at some time τin deep in the

matter dominated era on super-horizon scales. The solutions (20) and (21) properly

account for the non-Gaussian initial conditions parametrized by (aNL − 1). These are

obtained using the expression for ζ(2) during the matter-dominated epoch together with

Eq. (27) and the second-order (0-0)-component of Einstein equations (both evaluated

for a matter-dominated epoch), so that one can express φ
(2)
in and ψ

(2)
in in terms of ζ(2) of

Eq. (9), where ζ(1) = −5ϕin/3 (see Refs. [13, 15, 7, 20, 28]).

Before proceeding further notice that in the expression for the second-order

gravitational potentials of Eq. (20) and (21) we recognize two contributions. The term

which dominates on small scales, [B3(τ)∇−2∂i∂
j(∂iϕ0∂jϕ0) + B4(τ)∂iϕ0∂iϕ0], which

gives rise to the second-order Newtonian piece and is insensitive to any non-Gaussianity

in the initial conditions. The remaining pieces in Eqs. (20) and (21) correspond to
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contributions which tend to dominate on large scales with respect to those characterizing

the Newtonian contribution, and whose origin is purely relativistic. In particular these

are the pieces carrying the information on primordial non-Gaussianity. For a flat matter-

dominated (Einstein-de Sitter) universe g(τ) = 1 and B1(τ) = B2(τ) = 0, while

B3(τ)→ (5/21)τ 2 and B4(τ)→ −τ 2/14, so that one recovers the expressions of [3] (see

also [29]). In Ref. [27] second-order cosmological perturbations have been computed in

the Λ 6= 0 case from the synchronous to the Poisson gauge, thus extending the analysis

of Ref. [6], and the CMB temperature anisotropies induced by metric perturbations

have been also considered by applying the expressions of Ref. [30] (see also Ref. [28]).

However, an important point to notice is that both Refs. [6, 30] and Ref. [27] disregard

any primordial non-linear contribution from inflation.‖
The matter density contrast at second-order can now be calculated from the (0−0)

Einstein equation

3Hψ(2)′ + 3H2φ(2) −∇2ψ(2) + 12Hψ(1)ψ(1)′ − 2∇2
(
ψ(1)

)2 − 12H2
(
φ(1)
)2 − 12Hφ(1)ψ(1)′

− 3
(
ψ(1)′

)2

+ ∂iψ
(1)∂iψ(1) − 4ψ(1)∇2ψ(1) = −3H2Ωm

(
1

2
δ(2) + v(1)2

)
. (28)

We thus arrive at the density contrast in the Poisson gauge

δ(2) =
1

Ωm

[
(f − 1)2 − 2

g2

A′(τ)

H
− 2

g2
A(τ)− 1

]
ϕ2 − 2

Ωmg2

[
B′2(τ)

H
− 4

3

g′

H
gin +B2(τ)

− 4

3
ggin +

4

3
g2

(
e+

3

2

)]
α(x, τ)− 2

Ωmg2

B′3(τ)

H
∇−2∂i∂

j(∂iϕ∂jϕ)− 2

Ωmg2

B′4(τ)

H
∂iϕ∂

iϕ

+
2

3Ωmg2

[
B1(τ)− 2ggin −

10

3
(aNL − 1)ggin + 2g2

]
∇2ϕ2

H2
+

2

3Ωmg2

[
B2(τ)− 4

3
ggin

− 4

3

f 2g2

Ωm

− g2 − 3H2B4(τ)

]
∂iϕ∂

iϕ

H2
+

2

3Ωmg2

[
− 3B2(τ) + 4ggin − 3H2B3(τ)

]
× 1

H2
∇−2∂i∂

j(∂iϕ∂jϕ) +
8

3Ωm

ϕ∇2ϕ

H2
+

2

3Ωmg2

B3(τ)

H2
∂i∂

j(∂iϕ∂jϕ) +
2

3Ωmg2

× B4(τ)

H2
∇2(∂iϕ∂iϕ) , (29)

where A(τ) ≡ [B1(τ)−2ggin−(10/3)(aNL−1)ggin] and α(x, τ) has the same expressions

as α0(x) introduced in Eq. (18) with ϕ in place of ϕ0. Notice that we have explicitly

verified that Eq. (29) in the limit of an Einstein-de Sitter universe recovers the expression

for the matter density contrast obtained in Ref. [1].

Eq. (29) is the main result of this section. It shows how the primordial NG, which

is initially generated on large scales, is transferred to the density contrast on subhorizon

scales. The expression for the density contrast is made of three contributions: a second-

order Newtonian piece (the last two terms in Eq. (29), proportional to τ 4 in an Einstein-

de Sitter universe) which is insensitive to the non-linearities in the initial conditions; a

Post-Newtonian (PN) piece (related to two gradient terms of the gravitational potential)

which carries the most relevant information on primordial NG; the super-horizon terms

‖ The results in Refs. [6, 30, 27] have initial conditions corresponding to our aNL = 0.
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(corresponding to the first two lines of Eq. (29)). Our findings show in a clear way that

the information on the primordial NG set on super-Hubble scales flows into the PN

terms, leaving an observable imprint in the LSS. Another interesting result which shows

up in Eq.(29) is the presence in the Post-Newtonian term of contributions different

from the primordial NG which are due to weakly non-linear corrections which switch on

when the modes cross inside the Hubble radius and which can constitute an interesting

additional source of non-Gaussianity since they can probe large-scale GR corrections.

3.1. The non-linearity parameter fNL

We can rewrite the matter density contrast in Fourier space in terms of the linear density

contrast as in Eq. (6). We find

KNδ (k1,k2; τ) =
3

4

Ωm

g2
H2

[
B3(τ)

(k · k1)(k · k2)

k2
1k

2
2

+B4(τ)
k2(k1 · k2)

k2
1k

2
2

]
,(30)

and for the non-linearity parameter

fPNL(k1,k2; τ) =

[
5

3
(aNL − 1) + 1− g

gin

− 1

2

B1(τ)

ggin

]
− (k2

1 + k2
2)

k2

g

gin

(31)

+
(k1 · k2)

k2

[
2

3
e(τ)

g

gin

+
1

2

g

gin

+
2

3
− 1

2

B2(τ)

ggin

+
3

2
H2B4(τ)

ggin

]
+

(k · k1)(k · k2)

k4

[
3

2
H2B3(τ)

ggin

− 2 +
3

2

B2(τ)

ggin

]
− (k · k1)(k · k2)

k2

k2
1 + k2

2

k2
1k

2
2

3

2
H2f(τ)

B3(τ)

ggin

− (k1 · k2)
k2

1 + k2
2

k2
1k

2
2

3

2
H2f(τ)

B4(τ)

ggin

.

The non-linearity parameter fNL is defined via Eq. (4) and in this way it generalizes the

standard definition of Ref. [31] inferred from the Newtonian gravitational potential. In

order to obtain the expressions in Eqs. (30) and (31) we have performed an expansion in

(H/k1,2)� 1 up to terms (H/ki)2 starting from Eq. (29). In Eq. (31) the primordial NG

is clearly evident in the piece proportional to (aNL−1). The remaining terms are due to

the horizon scale Post-Newtonian corrections we commented about in Eq. (29). The non-

linearity (NG) induced by these terms show a specific and non-trivial shape dependence

that can help in detecting them. Of course their relative importance increases with the

scale, and in fact it has been shown in Ref. [32] that, through the large-scale halo bias

techniques investigated in Refs. [33, 34], these GR corrections are potentially detectable.

It is also worth noticing that some of the terms entering in the non-linearity

parameter vanish in the limit of a vanishing cosmological constant (e.g. B1(τ) and

B2(τ) go to zero in this limit).

A final comment on Eq. (6). In this expression, when the various modes are

well inside the horizon, one can take the usual configuration for the linear density

perturbations with δ
(1)
k (τ) ∝ (2k2T (k)/3Ωm0H

2
0 )D+(a), where T (k) is the usual linear

matter transfer function. In this way one partially accounts for the effects of the

transition from a radiation- to a matter-dominated epoch. In fact a full computation

would require to study up to second-order the evolution of the density perturbations
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also during the radiation dominated era. In this way one can recover a full matter

transfer function up to second-order. Details about such a computation can be found

in Refs. [3, 4, 5]. For example, Ref. [5] shows that the corrections from the full matter

transfer function, when accounting for a matching at second-order to the radiation

epoch, gives a relative correction with respect to the Newtonian kernel that is of order

aeq ∼ 10−4 and that such a correction is equivalent to the effect of a primordial NG

of fNL ∼ 4. That these small-scale corrections are tiny is easy to understand. By

looking at Eq. (28) one realizes that accounting for the radiation epoch at second-order

the matter density perturbations from, say approximately the matter-radiation equality

epoch onwards, will get a correction which scales like δ(2)|equiv τ
2, which rescales the

matching initial conditions to the radiation epoch. However we expect such term to be

negligible w.r.t. the Newtonian part which scales like (δ
(1)
k (τ))2 ∝ τ 4, and also w.r.t. a

sizable primordial NG.

4. Dark matter density perturbations at second-order:

comoving-synchronous gauge

Let us now see how the second-order matter perturbations and gravitational potentials

are obtained in the comoving-synchronous gauge.

We make use of the formalism developed in Refs. [35, 36, 37, 6] which the reader

is referred to for more details. The synchronous, time-orthogonal gauge is defined by

setting g00 = −a2(τ) and g0i = 0, so that the line-element takes the form

ds2 = a2(τ)[−dτ 2 + γij(x, τ)dxidxj] . (32)

For our fluid containing irrotational, pressure-less matter plus Λ, this also implies

that the fluid four-velocity field is given by uµ = (1/a, 0, 0, 0), so that x represent

comoving “Lagrangian” coordinates for the fluid element (indeed, the possibility of

making the synchronous, time-orthogonal gauge choice and comoving gauge choice

simultaneously is a peculiarity of fluids with vanishing spatial pressure gradients, i.e.

vanishing acceleration, which holds at any time, i.e. also beyond the linear regime). A

very efficient way to write down Einstein and continuity equations is to introduce the

peculiar velocity-gradient tensor [37]

ϑij ≡ ui ;j −
a′

a
δij =

1

2
γikγ′kj , (33)

where we have subtracted the isotropic Hubble flow. Here semicolons denote covariant

differentiation. From the continuity equation T µν ;ν = 0, we infer the exact solution for

the density contrast δ = δρ/ρ [37, 6]

δ(x, τ) = (1 + δ0(x))[γ(x, τ)/γ0(x)]−1/2 − 1 , (34)

where γ = detγij. The subscript “0” denotes the value of quantities evaluated at the

present time.
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From Eq. (34) it is evident that in the comoving-synchronous gauge the only

independent degree of freedom is the spatial metric tensor γij. The energy constraint

reads

ϑ2 − ϑi jϑ
j
i + 4Hϑ+R = 6H2Ωmδ , (35)

where Ri
j is the Ricci tensor associated with the spatial metric γij with scalar curvature

R = Ri
i. The momentum constraint reads ϑi j|i = ϑ,j, where bars stand for covariant

differentiation in the three-space with metric γij. Finally, one can use the Raychaudhuri

equation

ϑ′ +Hϑ+ ϑi jϑ
j
i +

3

2
H2Ωmδ = 0 , (36)

which is obtained from the energy constraint and the trace of the evolution equation

ϑi
′

j + 2Hϑi j + ϑϑi j +
1

4

(
ϑklϑ

l
k − ϑ2

)
δij +Ri

j −
1

4
Rδij = 0 . (37)

Notice that these equations are exact and describe the fully non-linear evolution of

cosmological perturbations (up to the time of caustic formation). In order to show

how the primordial non-Gaussianities appear in in the matter density contrast, we then

perform a perturbative expansion up to second order in the fluctuations of the metric.

The spatial metric tensor can be expanded as

γij = (1− 2ψ(1) − ψ(2)) δij + χ
(1)
ij +

1

2
χ

(2)
ij , (38)

where χ
(1)
ij and χ

(2)
ij are traceless tensors and include scalar, vector and tensor

(gravitational waves) perturbations. As usual we split the density contrast into a linear

and a second-order part as δ(x, τ) = δ(1)(x, τ)+ 1
2
δ(2)(x, τ). At linear order the growing-

mode solutions in the comoving-synchronous gauge are given by

ψ(1)(x, τ) =
5

3
ϕin(x) +

2

9H2(τ)Ωm(τ)
∇2ϕ(x, τ) ,

χ
(1)
ij (x, τ) = Dijχ

(1)(x, τ), χ(1)(x, τ) = − 4

3H2(τ)Ωm(τ)
ϕ(x, τ) , (39)

where ϕ(x, τ) is the growing-mode scalar potential defined in Eq. (11). The linear

density contrast δ(1) in this gauge is related to ϕ via the usual Poisson equation, namely

∇2ϕ(x, τ) =
3

2
H2(τ)Ωm(τ)δ(1)(x, τ) . (40)

In writing χ
(1)
ij we have eliminated the residual gauge ambiguity of the synchronous

gauge as in Ref. [6] ¶. We have also assumed that linear vector modes are absent,

since they are not produced in standard mechanisms for the generation of cosmological

perturbations (as inflation). We have also neglected linear tensor modes, since they play

a negligible role in LSS formation.

¶ More in general, at any order n in perturbation theory the scalar potentials ψ(n) and χ(n) can be
shifted by arbitrary constant amounts δψ(n)

0 and δχ
(n)
0 , only provided δψ

(n)
0 + (1/6)∇2δχ

(n)
0 = 0.
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By perturbing Eq. (34) up to second order, we get

δ(2) = δ
(2)
0 + 3

(
ψ(2) − ψ(2)

0

)
+

1

2

(
D2

+ − 1
) [1

2

(
∇2χ

(1)
0

)2

+

+ ∂i∂jχ
(1)
0 ∂i∂jχ

(1)
0

]
− (D+ − 1)

(
2ψ

(1)
0 +

1

3
∇2χ

(1)
0

)
∇2χ

(1)
0 . (41)

To compute the metric perturbation ψ(2), we can use the evolution equation,

Eq. (37). To this aim it proves convenient to write

ψ(2) = ψ
(2)
0 −

1

3
δ

(2)
0 +

1

6
∂i∂jχ

(1)
0 ∂i∂jχ

(1)
0 −

− 1

3

(
2ψ

(1)
0 +

1

3
∇2χ

(1)
0

)
∇2χ

(1)
0 +

1

12

(
∇2χ

(1)
0

)2

+ ξ , (42)

where we have introduced the variable ξ which is determined by the equation

ξ′′ +Hξ′ − 3

2
H2Ωmξ =

=
1

4
H2ΩmD

2
+

[
1

2

(
∇2χ

(1)
0

)2

−
(

1 +
2

3e(Ωm)

)
∂i∂jχ

(1)
0 ∂i∂jχ

(1)
0

]
. (43)

An approximate solution of this equation can be obtained by making use of the

usual approximation (see e.g. Ref. [38, 39]) e(Ωm) ≈ 1, which holds true for reasonable

values of Ωm. Under these circumstances we can write

ξ(τ) ≈ AD+(τ) +
D2

+(τ)

14

[
1

2

(
∇2χ

(1)
0

)2

− 5

3
∂i∂jχ

(1)
0 ∂i∂jχ

(1)
0

]
, (44)

where A is an integration constant which can be determined by the energy constraint

at the initial time. Notice that it is precisely the sub-leading, Post-Newtonian term

proportional to the linear growing mode D+ which brings all the relevant information

about primordial and GR-induced non-Gaussianity. It is also important to stress that

the time dependence of this term, which comes from the homogeneous solution of

the above equation is exact, while the above approximation only affects the fastest

growing Newtonian terms, i.e. those proportional to D2
+. Using this procedure and

providing the initial data (formally at τ → 0) in terms of the gauge-invariant curvature

perturbation, which in this gauge reads ζ
(1)
in = −ψ(1)

in − (1/6)∇2χ
(1)
in = −5ϕin/3 and

ζ
(2)
in = −ψ(2)

in − (1/6)∇2χ
(2)
in = 50anlϕ

2
in/9, we finally obtain

δ(2)(τ) =
100

9H2
0

[
f(Ω0m) +

3

2
Ω0m

]−1 {
D+(τ)

[(
3

4
− aNL

)
(∇ϕin)2 + (2− aNL)ϕin∇2ϕin

]
+
D2

+(τ)

14H2
0

[
f(Ω0m) +

3

2
Ω0m

]−1 [
5
(
∇2ϕin

)2
+ 2∂i∂jϕin∂i∂jϕin

]}
, (45)

where we made use of the following property

HD′+ +
3

2
H2ΩmD+ = const. , (46)

whose validity can be easily proven on the basis of Eq. (12) and of the Friedmann

equation H′ − H2 + (3/2)H2Ωm = 0. One may notice that even the Newtonian part

(i.e. the one proportional to D2
+) of the second-order matter perturbations differs from
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the Poisson gauge expression. This is a well-known feature that is to be ascribed to

the different meaning of the mass density when moving from Eulerian to Lagrangian

coordinates, which only appears at second and higher orders (see, e.g. Ref. [40]).

As we did in the Poisson-gauge case, we can re-express this result in terms of a

suitable potential Φ in order to introduce a non-linearity parameter fNL with the usual

meaning. We obtain (see also Ref. [32])

fCNL(k1,k2) =
5

3

[
(aNL − 1)− 1 +

5

2

k1 · k2

k2

]
(47)

Notice that the non-linearity parameter is different w.r.t. the one in Eq. (31), not

only because they have been computed in two different gauges, but also because in the

comoving synchronous gauge the Post-Newtonian term giving rise to fSNL can be easily

written in an exact form where the growing mode D+(τ) is factored out, while this is

not the case for the Poisson gauge. It is also important to stress here that the expression

for fNL obtained in this gauge is the one to be used to evaluate the effect of NG on the

Lagrangian bias of dark matter halos, as recently stressed in Ref. [41]. In Ref. [32] it

was shown that tiny effects in the above equation which come purely from the General

Relativistic evolution, i.e. the term which survives in the limit aNL = 1, are potentially

detectable for some planned LSS surveys.

5. Concluding remarks

In this paper we have investigated the effect of primordial and GR-induced non-

Gaussianities on the second-order matter density perturbation in a ΛCDM cosmology.

The calculation has been performed in two popular gauges, the Poisson gauge and

the comoving time-orthogonal one, which are useful for comparison with observations,

depending on the particular quantity under study. For instance, in evaluating the

effect of NG on the mass function and Lagrangian bias of dark matter halos, the

comoving gauge expression is more appropriate, while the Poisson gauge formulae are

more suitable for gravitational lensing studies. The strongest present limits on fNL come

from the analysis of the angular bispectrum of WMAP temperature anisotropy data.

Indeed, Komatsu et al. [42], analyzing the 7-years WMAP data obtain the 95% limits

−10 < f local
NL < 74, and −214 < f equilateral

NL < 266. The analysis of Planck data both in

temperature and E-mode polarization is expected to improve the accuracy by almost an

order of magnitude. A complementary and very powerful information on the amplitude

and shape of primordial NG will come from the study the galaxy clustering (e.g.

Ref. [43]) and other LSS datasets, such as weak gravitational lensing (e.g. Refs [44, 45])

and redshifted 21cm background anisotropy (e.g. Refs. [46, 47]). Primordial NG in

LSS data can be searched for by various techniques: abundance of massive and/or high-

redshift objects [48, 49, 50, 51, 52, 53, 54], abundance of voids [55], higher-order statistics

such as bispectrum and trispectrum (see, e.g. Ref. [56]), large-scale clustering of halos,

thought as rare high peaks of the dark matter distribution [57, 33, 34, 58, 59, 51], and
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their cross-correlation with the CMB via the Integrated Sachs-Wolfe effect [60], small-

scale NG corrections to the matter power-spectrum [59, 61]. For instance, Slosar et

al. [62], exploiting the scale-dependence of the NG correction to the halo linear bias

∆bNG ∝ f local
NL k−2, obtained the 95% confidence range −29 < f local

NL < 70, using the

two-point function of a combination of datasets. The prospects for sensibly narrowing

these limits with the advent of galaxy surveys sampling regions comparable to the

Hubble volume are analyzed in Ref. [63]. Indeed, as shown in Ref. [32], there are very

promising prospects to observe NG signatures down to the limits of the order unity GR

corrections discussed in this paper. This largely motivates theoretical efforts to obtain

accurate predictions of these effects.
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