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PII: S0167-2681(08)00094-2
DOI: doi:10.1016/j.jebo.2007.04.004
Reference: JEBO 2205

To appear in: Journal of Economic Behavior & Organization

Received date: 2-11-2005
Revised date: 9-11-2006
Accepted date: 12-4-2007

Please cite this article as: Carayol, N., Roux, P., Yıldızoğlu, M., Inefficiencies in a
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Abstract

In this paper, we make an exploratory use of computational techniques (genetic algorithms and

Monte Carlo simulations) to compute efficient and emergent networks in a spatialized version of the

connections model of Jackson and Wolinski (1996). This approach allows us to observe and dis-

cuss inefficiencies that arise in a strategic network formation context with imperfectly link-mediated

positive externalities to connections and spatial link costs. Our results highlight that, depending

on the strength of the externalities, emergent and efficient networks may share several structural

properties. Nevertheless, emergent networks are insufficiently dense and should be more structured

around central agents.

Keywords: Strategic Network Formation; Efficiency; Genetic Algorithms; Monte Carlo Simula-

tions

JEL codes: D85, C63, D62, Z13
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1 Introduction

The analysis of network structures has been the object of a high and growing interest in various fields

during the last decade. Much effort has been dedicated to understand the topology of real networks.

More recently, some studies concentrate on the dynamic processes that determine such topologies. In

economics, recognizing that both individual and collective behaviors and performances are grounded

in networks, several authors focus on the micro-behaviors that drive network formation. In the ACE

literature, the emergent properties of networks have been studied by Kirman and Vriend (2001) and

Tesfatsion (1997) who model the formation of trade networks among strategically interacting buyers

and sellers. These agents choose their partners adaptively on the basis of their past experiences with

these partners1,2. The aim of such computational approaches is to study complex dynamic systems

of interacting agents.

A more theoretical and analytical economic literature on network formation builds upon the

seminal contributions of Aumann and Myerson (1988) and of Jackson and Wolinski (1996). Two

main questions are central in this literature (Jackson 2004): which networks are likely to form when

agents choose their connections in order to maximize given individual payoffs structures, and how

efficient are networks that emerge from self-interested agents’ choices? The first stylized economic

model that tackles those two questions is the so-called Connections model introduced by Jackson

and Wolinski. In this model, costly direct connections between agents create positive externalities to

other agents, the strength of which decreases with relational distance. The very simple specification

of the individual payoffs allows the authors to obtain systematic analytical results on graphs efficiency

and partial results on networks stability. One of their main results is that efficient networks are often

unstable. More recently two articles have extended this model in order to study the dynamics of

network emergence (see Watts 2001 for deterministic dynamics and Jackson and Watts 2002 for

stochastic dynamics). In those contributions, the analytical computation of (possibly numerous)

emergent networks becomes difficult. More generally, this literature faces important difficulties in

generating and discussing non-trivial network configurations. Indeed, the specific network structures

that they analyze are very simple (complete network, empty network, complete star) and have little

in common with real social or economic networks. Some frequent features of real social networks are

short average distance between agents, high clustering (i.e. there is a high probability for two agents

to be neighbors if they have common neighbors), and heterogeneous neighborhood sizes among agents

(Watts and Strogatz 1998, Albert and Barabási 1999). These properties altogether characterize the

so-called Small World phenomenon3.

Very recently, Carayol and Roux (2004, 2006) and Jackson and Rogers (2005) proposed varia-

tions of the Connections model by giving different forms of geographic locations to individuals and

introducing complexities in individual payoff functions through spatial costs of direct link forma-

tion4. Their aim is to find some simple specifications that lead to endogenous networks that are

much richer and that tend to correspond to the empirically observed social networks. In their spa-

1For a survey on ACE models studying network formation, one can refer to Tesfatsion (2003).
2A similar approach is also used by Dupoët and Yıldızoğlu (2006) for studying the emergence of a particular type

of network: communities of practice.
3Empirical characterizations of small worlds have for example been provided for networks of firm board members

(Davis and Greve 1997) or for networks of scientific papers co-authorship (Barabási et al. 2001, Newman 2001).
4Johnson and Gilles (2000) first introduced such spatialized connections model with linear geographical distance.
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tialized connections model, Carayol and Roux (2004) obtain, in a dynamic setting and for a wide

set of parameters, endogenous networks, called emergent networks5, that exhibit the Small World

properties (i.e. highly clustered connection structures and short average path length). Nevertheless,

the interpretation of their results is limited since even for a relatively small set of agents, it becomes

very difficult to compute network efficiency both analytically and numerically6. Indeed, one cannot

appreciate the extent to which emergent networks are efficient and whether they are structurally

different from the optimal networks. Carayol et al. (2005) propose using Genetic Algorithm (GA)

techniques to compute efficient networks. They test and calibrate this technique on simple models,

among then the Connections model7 (for which the efficient networks are fully known) and show that

the proposed method is quite robust for computing the efficient networks in these models.

In the present paper, we make an exploratory use of this approach to compute the efficient

networks in the spatialized connections model. This allows us to compare, for the first time, the

(GA) efficient networks to the emergent networks in this model. Thus we can fully discuss various

failures that may arise in the network formation context. Our aim is to provide a general method for

exploring the efficient and equilibrium networks. The results of this exploration should be very useful

to any ACE model that contains a network formation component. The modeler can get some useful

insights on the possible results of his/her model and on the consequences of the different assumptions

on network formation. In the context of our model, we show that the emergent networks are less

dense than the ones that maximize social wealth. This clearly corresponds to the economic intuition:

because agents benefit from indirect connections, there are positive indirect externalities to bond

formation. Therefore agents naturally build fewer links than they should; they tend to free ride on

the connections of their neighbors. Moreover the emergent networks are found to be less centralized

than they should be. Indeed the supplementary connections observed in the efficient networks are

preferentially attributed to one or several agents who have central positions in the network. These

connections allow a more efficient distribution of wealth among all agents. Emergent networks do

not share such a structural property because agents do not want to play a central and costly role.

Agents would benefit from mutualizing the costs for increasing the connectivity of one (or several)

of them so as to enhance the quality of the indirect connections in the network. This underlines the

need for coordination in strategic network formation to allow for the emergence of central agents in

networks.

The paper is structured as follows. The next section begins with some basic definitions on

network formation literature and presents the model. Section 3 synthetically presents the Genetic

Algorithms approach for determining efficient networks. Section 4 compares the emergent and the

efficient networks. Section 5 concludes.

5This concept should not be confused with the concept of emergence used in the Complex Adaptive System literature,

as well as in the ACE approach.
6Even for a relatively small numbers of players, the number of possible networks becomes very large. Johnson and

Gilles observe that the number of possible networks for n agents is
Pc(n,2)

k=1 c(c(n, 2), k) + 1 where, for every k ≦ n,

c(n, k) := n!/ (k!(n− k)!) . For example, when n = 8, the number of possible networks exceeds 250 million.
7They also study the co-author model of Jackson and Wolinsky, which exhibits negative externalities, and the

line-spatialized Connections model of Johnson and Gilles.
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2 Network formation: the model

In this section, we begin with basic notions on non-directed graphs. We then introduce our model,

a simple spatialized variation of the Connections model where bonds are symmetric and built on

mutual consent, as occur in many real social networks. Finally, the concept of network efficiency is

presented before we turn to the dynamic perturbed process that leads to networks formation.

2.1 Basic notions on graphs

We consider a finite set of n agents, N = {1, 2, ..., n} with n ≥ 3. Let i and j be two members of

this set. Agents are represented by the nodes of a non-directed graph, the edges of which represent

the links between them. The graph represents the relational network between the agents. A link

between two distinct agents i and j ∈ N is denoted ij. A graph g is a list of non-ordered pairs of

connected and distinct agents. Formally, {ij} ∈ g means that ij exists in g. We define the complete

graph gN = {ij | i, j ∈ N} as the set of all subsets of N of size 2, where each player is connected

with all others. Let g ⊆ gN be an arbitrary collection of links on N . We define G =
{
g ⊆ gN

}
as

the finite set of all possible graphs between the n agents.

Let g′ = g+ ij = g∪{ij} and g′′ = g− ij = g\ {ij} be respectively the graph obtained by adding

ij and the one obtained by deleting ij from the existing graph g. The graphs g and g′ are said to

be adjacent, as are the graphs g and g′′. For any g, we define N(g) = {i | ∃j : ij ∈ g} as the set of

agents who have at least one link in the network g. We also define Ni(g) as the set of i’s neighbors,

that is, Ni(g) = {j | ij ∈ g} . The cardinal of that set ηi(g) = #Ni(g) is called the degree of node i.

The total number of links in the graph g is η(g) = #g.

A path in a non-empty graph g ∈ G connecting i to j, is a sequence of edges between distinct

agents such that {i1i2, i2i3, ..., ik−1ik} ⊂ g where i1 = i, ik = j. Let i ←→g j be the set of paths

connecting i and j on graph g. The set of shortest paths between i and j on g noted i←̃→gj is such

that ∀k ∈ i←̃→gj; then k ∈ i←→g j and #k = minh∈i←→gj #h. The geodesic distance between two

agents i and j, is the number of links of a shortest path between them: d(i, j) = dg(i, j) = #k, with

k ∈ i←̃→gj. When there is no path between i and j then their geodesic distance is conventionally

infinite: d(i, j) =∞.

Several typical graphs can be described. First of all, the empty graph, denoted g∅, is such that

it does not contain any links. The ring g◦ is a network in which all agents are connected and only

connected with their two closest geographic neighbors. The double (triple) ring denoted g2◦ (g3◦) is

a network such that all agents are only connected with their four (six) closest geographic neighbors.

Finally, a complete star, denoted g⋆, is such that #g⋆ = n− 1, and there exists an agent i ∈ N such

that if jk ∈ g⋆, then either j = i or k = i. Agent i is called the center of the star. It should be noted

that there are n possible stars since each node can be the center.

2.2 The spatialized “Connections Model”

In the Connections model introduced by Jackson and Wolinski, links represent individuals’ relation-

ships (for example, friendships). In such a context, agents benefit not only from their costly direct

connections, but also from indirect links through the relational network of their partners. However,

the communication is not perfect; the positive externality deteriorates with relational distance ac-

3
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cording to a decay parameter. As a consequence, agents try to maximize the value generated from

direct and indirect connections, avoiding superfluous connections.

In order to generate emergent networks that tend to correspond to empirically observed social

or economic networks, Carayol and Roux (2004, 2006) propose a variation of the Connections model

assigning a fixed geographic location to agents on a circle. Doing this, they introduce an exogenous

distance between agents that could be interpreted as physical, as well as social or cognitive, distance.

The spatial costs two agents bear for their direct connection linearly increase with the geographic

distance separating them on the circle8.

Formally, let us assume that agents are equidistantly located on a ring with unitary intervals9.

We then define a new distance operator denoted l(i, j). Without loss of generality, agents are ordered

according to their index, such that i is the immediate geographic neighbor of agent i+ 1 and agent

i−1. Agents 1 and agent n, also neighbors, close the ring. As a consequence, the geographic distance

between any two agents is given by l(i, j) = min {|i− j| ;n − |i− j|} .

Let πi (g) :
{
g | g ⊆ gN

}
→ ℜ be the net individual payoff that i receives from his position in the

network g. Formally it is given by the following expression:

πi (g) =
∑

j∈N\i

δd(i,j) − c
∑

j:ij∈g

l(i, j), (1)

where d(i, j) is the geodesic distance between i and j. δ ∈ ]0; 1[ is the decay parameter. Then δd(i,j)

gives the payoffs resulting from the (direct or indirect) connection between i and j. It is a decreasing

function of the geodesic distance since δ is less than unity. Notice that if there is no path between i

and j, then d(i, j) =∞ and thus δd(i,j) = 0. The second part of the right-hand side of the equation

describes the costs of direct links. c ∈ ]0; 1[ is a parameter that gives the costs that agents have to

bear for each of their direct connection.

2.3 Network efficiency

The network social value, denoted π (·) , can be computed simply by summing individual payoffs.

The total value of a graph g, with π(∅) = 0 is thus given by:

π (g) =
∑

i∈Nπi (g) . (2)

Since the pioneering work of Jackson and Wolinski, a ‘strong’ notion of efficiency is used in the

economic literature on networks formation: a network is said to be efficient if it maximizes this sum.

The formal definition follows.
8The assumption according to which link costs increase with distance can be justified by the fact that closely located

agents incur lower costs to establish communications (Debreu 1969) and, more generally, to coordinate. Indeed, when

agents are distant, face to face interactions imply higher transporting costs and time. This seems to still hold despite

the introduction of internet technologies since they are complementary to face to face interactions (Gaspar and Glaeser,

1998). Moreover, geographic distance can also generate higher monitoring costs (eg. Lerner 1995).
9We also could have considered a location on a line (as in Johnson and Gilles) or on separate islands or cities (like

in Jackson and Rogers). We also could have introduced irregularities about agents’ locations on the circle (attributing,

for example, random locations). Nevertheless, our specification allows us to avoid ex ante asymmetry between agents.

For instance, on a line, the two agents at the far ends are, by assumption, in the periphery while agents in the middle

of the line are offered a central position, or if agents are located on islands and if the intra-island connection cost is

lower than the inter-island ones, then local clustering is strongly expected.

4
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Definition 1 A network g ⊆ gN is said to be efficient if it maximizes the value function π(g) on the

set of all possible graphs G (i.e. π(g) ≥ π(g′) for all g′ ⊆ gN ).

It should be noticed that several networks can lead to the same maximal total value. For example,

if we consider strictly homogeneous agents, any isomorphic graph of an efficient network is also

efficient.

2.4 Network formation

We turn now toward the stability of graphs. Jackson and Wolinski introduce the notion of pairwise

stability that departs from the Nash equilibrium since the process of network formation is both

cooperative and non-cooperative. In such a process, the formation of a link between two agents

requires the consent of both of them, but not its deletion, which can unilaterally emanate from one

of them. The formal definition of this notion is the following. A network g ⊆ gN is pairwise stable if

i) for all ij ∈ g, πi(g) ≥ πi(g − ij) and πj(g) ≥ πj(g − ij), and ii) for all ij /∈ g, if πi(g + ij) > πi(g),

then πj(g + ij) < πj(g).

In the present paper we are interested in the dynamic network formation presented in Jackson and

Watts. This approach is consistent and encompasses the stability notion presented above. It roughly

corresponds to the following scheme. At each period, two agents i, j ∈ N are randomly chosen with

the same and constant probability pt
ij = p > 0. They can decide to form, maintain or break links.

Let’s assume that agents are myopic: they take their decisions on the basis of the immediate impact

of links on their current payoffs. If these agents are already connected, they consider whether they

may unilaterally severe the link or bilaterally keep it. If they are not directly connected, they consider

whether they should add this connection or stay disconnected. Formally, the dynamic process can

be described as follows:

i) if ij ∈ gt, the link is saved if and only if πi(gt) ≥ πi(gt − ij) and πj(gt) ≥ πj(gt − ij),

ii) if ij /∈ gt, a link is created if and only if πi(gt + ij) ≥ πi(gt) and πj(gt + ij) ≥ πj(gt) with a

strict inequality for at least one of the two agents.

We introduce small but non vanishing random perturbations of agents’ decisions in creating,

maintaining or deleting links. These perturbations may be understood as mistakes or as random

experiments. We propose to let such an error term decrease in time according to the following simple

rule:

εt = 1/ (t+ 1) + ε. (3)

This rule ensures that a significant noise affects the dynamics in the beginning, but it decreases

monotonically with time down to a small strictly positive limit: limt→∞ εt = ε. Agents are likely to

make fewer and fewer errors through time while still a very small error probability persists in the

long run.

The evolution of the system at any time t depends only on the present state of the system

given by the graph structure gt. The stochastic process is thus Markovian. The evolution of the

system {gt, t > 0} can be described by the time-varying probability matrix (P(εt)) describing the

one-step transition probabilities at each period t between all possible states of the finite state space

G. According to Robles (1998), the long run equilibrium ψ (ε) of such time-inhomogeneous Markov

chain exists, is unique, and is equal to the equilibrium of the Markov chain perturbed by the constant

5
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error ε10. It is then ergodic. This property is interesting since it renders numerical experiments more

tractable in order to examine with good confidence the long run behavior of the system (Vega-

Redondo 2006). We label the networks on which the process stabilizes in the long run as emergent

networks. The definition follows.

Definition 2 A network g ∈ G is emergent if its probability of occurrence (ψg(ε)) in the long run

equilibrium of the stochastic process described by the transition matrix P(εt) is strictly positive. The

set of emergent networks is Ĝ = {g ∈ G |ψg(ε) > 0}.

Notice that the set of emergent networks is broader than the set of stochastically stable networks

(Young 1993) that is included in Ĝ 11.

3 Efficient networks: the Genetic Algorithms approach

Searching for efficient network structures is in general a difficult analytical task, but once the pay-off

structure is well-defined in relation with the connection structure, one is tempted to explore this

question using more heuristic strategies. As a matter of fact, the connection structure of the network

can be expressed as a matrix of bits (1 for connection or 0 for absence of connection), and the payoff

structure can assign a value to each of such matrices. The search for efficient networks can hence

be seen as an optimization problem in the connection-matrix space (i.e. the space of all possible

networks). This optimization problem yields analytical solutions only for simple payoff structures.

We examine here a numerical tool for optimization: genetic algorithms (GA) that have proved their

efficacy in optimization problems where the potential solutions can be represented as binary strings.

Our networks can effectively be quite easily represented as binary strings.

3.1 Representing networks as binary strings

Our problem is to find the network g that maximizes social value π as given by the equation 2 over

the set of all possible networks G. In order to use the GA for this optimization problem, we need to

represent our networks as binary strings (sequences of bits – 1 or 0).

Consider first that any network with n agents (whether directed or not, eventually with self-

connections) can, without loss of generality, be represented by a connection matrix of size n × n

of binary elements. Given that all networks we consider are undirected (i is connected to j iff j

is also connected to i) and that self-connections are excluded, the upper triangular part of this

connection matrix, excluding the diagonal, provides complete information on the network structure.

As a consequence, the vector composed by all the connection bits of this upper triangular part in

some conventionally chosen order sums up the network structure. Thus for a network of n agents,

this vector is a binary string of length L =
(
n2 − n

)
/2. Undirected networks can hence be formally

represented as chromosomes defined as sequences of binary elements: A = (a1, a2, ..., aL) with ai ∈

{0, 1} ,∀i ∈ {1, 2, ..., L}.

10See Proposition 3.1 of Robles (p. 211).
11If we label µ (ε) the (unique) stationary distribution of the time-homogeneous Markov chain associated with tran-

sition matrix P(ε), this claim is formally: for all g such that, if limε→0 µg(ε) > 0, then ψg(ε) > 0. This can be

easily proved by recalling the Freidlin and Wentzell (1984) theorem that states ∀g, ψg(ε) = µg(ε) is of the form

ψg(ε) = υg(ε)/
P

g′ υg′(ε) with υg(ε) a polynomial in ε.

6
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In the example below with n = 3 agents, the undirected network g = {13, 23} is fully characterized

by the chromosome A = (0, 1, 1) , whose length is L =
(
32 − 3

)
/2 = 3.

 1

3

21

3

2

→ g = {13, 23} →

1

2

3

1 2 3


0 0 1

0 0 1

1 1 0


→ A = (0, 1, 1)

Once we represent it, we can compute the value of a connection matrix (its fitness) using the

equation 2 and utilize the Genetic Algorithms to search for matrices with the highest value.

3.2 Genetic Algorithms: How do they work?

Genetic algorithms (GA) are numerical optimization techniques developed by John Holland (2001

initially published in 1975). GA transpose to other problems the strategies that the biological evolu-

tion has successfully used for exploring complex fitness landscapes. The search for an optimum by a

GA corresponds to the evolution of a population of candidate solutions through selection, crossover

(combination) and mutation (random experiments). The GA have been used for solving a very large

set of problems directly or indirectly as a component of a classifier system. Goldberg (1991) gives

quite an exhaustive account of the characteristics of the GA and of their applications12.

The canonical genetic algorithm causes a population of binary strings (chromosomes composed of

1 and 0) to evolve. The size of the population m is given. This population is the source of one of the

strengths of the GA: implicit parallelism (the exploration of the solution space using several candi-

dates in parallel). The population of chromosomes at step t (a generation) is denoted Q(t) = {Aj}t
with #Q(t) = m, and ∀t = 1, 2..., T with T the given total number of generations. Notice that T

is the other source of the strengths of the GA. The algorithm (randomly) generates an initial pop-

ulation Q (0) of candidate chromosomes that are evaluated at each period using the fitness (value)

function. They are used for composing a new population at the next period Q(t+1). For illustrative

purposes, Figure 1 gives a deliberately trivial example of optimization by GA. Each chromosome

has a probability of being selected that is increasing in its fitness. The members included in the

new population are recombined using a crossover mechanism. The crossover operation introduces

controlled innovations in the population since it combines the candidates already selected in order

to invent new candidates with a potentially better fitness. Moreover, the mutation operator ran-

domly modifies the candidates and introduces some random experimenting in order to explore more

extensively the state space and escape local optima. Typically, the probability of mutation is rather

low in comparison with the probability of crossover because, otherwise, the disruption introduced

by excessive mutations can destroy the hill-climbing capacity of the population. Finally, an elitism

operator can be used that ensures that the best individual of a population will be carried to the next

generation13.

12For applications of the GA as a learning algorithm, see Yıldızoğlu (2002).
13See Dawid (1999) and Michalewicz (1996) for general properties of genetic algorithms.
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1)  00011  (=3)

2)  01100  (=12)

3)  10111  (=23)

1)  00011  (=3)

2)  01100  (=12)

3)  10111  (=23)

Population at date  t
Population at date  t Fitness: f(x)=x2

Fitness: f(x)=x2

1)  9

2)  144

3)  529

Meanf=227

1)  9

2)  144

3)  529

Meanf=227

Expected number:

 f(x)/Meanf

Expected number:

 f(x)/Meanf

1)  0.0

2)  0.6

3)  2.4

 Sum=3

1)  0.0

2)  0.6

3)  2.4

 Sum=3

Effective number 

proportionally drawn

Effective number 

proportionally drawn

1)  0

2)  1

3)  2

  Sum=3

1)  0

2)  1

3)  2

  Sum=3

New population
New population

1')  10111  (=23)

2')  01111 (=15)

3')  10100 (=20)

1')  10111  (=23)

2')  01111 (=15)

3') 10100 (=20)

Crossover (3)-(2) at bit 3
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Simple application of GAs to optimize the function f(x)=x
2

over the interval 0-31.  Intergers are coded with five bits 

binary code: 00001=1, 11111=31.The example uses an initially random population of 3 members and the GA 

constructs a new population through selective reproduction, combination (crossover) and random experiments (mutation). 

In this schematic example, the GA attains the optimum (31) in one period. For each string, the crossover, its position and 

the partner, as well as mutation position are chosen randomly. The mutation bit simply switches its value: 0->1 or 1->0.

This process is controlled by: population size, bit-string size, probability of crossover and probability of mutation. 

Simple application of GAs to optimize the function f(x)=x2 over the interval 0-31.  Intergers are coded with five bits 

binary code: 00001=1, 11111=31.The example uses an initially random population of 3 members and the GA 

constructs a new population through selective reproduction, combination (crossover) and random experiments (mutation). 

In this schematic example, the GA attains the optimum (31) in one period. For each string, the crossover, its position and 

the partner, as well as mutation position are chosen randomly. The mutation bit simply switches its value: 0->1 or 1->0.

This process is controlled by: population size, bit-string size, probability of crossover and probability of mutation. 

1')  10111  (=23)

2)  01100 (=12)

3) 10111 (=23)

1')  10111  (=23)

2)  01100 (=12)

3) 10111 (=23)

Figure 1: A simple example of genetic algorithm

In our approach, each mutation corresponds either to the creation of a new undirected link in

the network or to the removal of an existing link. The impact of the crossover is more dramatic, it

combines subnets belonging to two different networks in order to connect them and to create two

new networks in the population (in replacement of their parents). The crossover after the first bit

position between the chromosome A1 = (0, 1, 1) representing the network g1 = {13, 23} (see the

example above) and the chromosome A2 = (1, 0, 0) corresponding to the network g2 = {12} would

give the chromosomes A3 = (1, 1, 1) and A4 = (0, 0, 0), respectively corresponding to the complete

network and the empty network.

4 Emergent and efficient networks: Measures and results

We present our research protocol in the next subsection. The second subsection exposes the first

results on efficient networks, and the last one compares the emergent networks to GA efficient net-

works.

4.1 Simulation protocol: Numerical settings, indicators and controls

4.1.1 Numerical settings

Our numerical experiments all correspond to n = 20 agents. For the generation of both the GA–

efficient networks and the emergent networks, all experiments are performed with randomly drawn

values of δ over the value space ]0, 1[.

8
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The first series of experiments relate to the computation of the GA–efficient networks. The Java

JGAP14 library is used to implement the GA based on binary chromosomes. The GA that we use

is elitist and its probabilities of crossover and mutation are both computed by JGAP15. Carayol et

al. test the relevance of the GA as a search algorithm for efficient networks in two stylized models

for which the efficient networks are known and establish the robustness of the GA using an extensive

set of Monte Carlo simulations. When n = 20, we know that the GA performs correctly with a

population of chromosomes of size m = 500 evolving over T = 500 generations. We will use these

numerical values in the present paper. In this article, we slightly adapt the simulation protocol in

order to increase the robustness of our results. For each configuration, we now fully run three times

the GA in order to obtain three final candidate networks among which we keep the one that generates

the highest social value as the GA–efficient network.

The second series of numerical experiments are designed to search the emergent networks defined

in Section 2. We use Monte Carlo experiments to generate networks that are on the support of ψ(ε).

The limit error term ε is set to 10−4. All experiments are stopped at T = 20, 000, the period after

which the process is proven to have almost surely stabilized on a given pairwise stable state (more

than 96% after 20,000 periods). Otherwise, we found that an error recently affected the system.

Thus, we dropped these experiments to ensure that the results are not contingent to recent arbitrary

changes16.

4.1.2 Indicators

Several indicators are used in order to provide a synthetic characterization of the structural properties

of networks.

Average Degree (or Average Number of Neighbors). We compute the average degree of the network

as follows:

η̂(g) = 2η(g)/n. (4)

Average Distance (or Average Path Length). We compute the average distance of (directly or indi-

rectly) connected agents. It is given by

d (g) =

∑
i

∑
j 6=i d (i, j) × 1 {i↔g j 6= ∅}

# {i, j |i 6= j; i, j ∈ N ; i↔g j 6= ∅}
, (5)

if η (g) > 0, with # {·} denoting the cardinal of the set defined in brackets and 1 {·} , the indicator

function that is equal to unity if the condition in brackets is verified and zero otherwise.

Average Clustering (or Average Cliquishness, as it is often referred to in the physics of networks

literature). The average clustering indicates the extent to which the neighborhoods of connected

14http://jgap.sourceforge.net/.
15Probability of crossover is set by JGAP such that in every generation half of the population is concerned by it

on average (so the default crossover rate is 1/2). The probability of mutation is calculated by JGAP based on the

size of the chromosomes in the population such that, on average, one gene will be mutated for every ten chromosomes

processed by this operator. Our partial experiments with these parameters have not showed any significant bias caused

by these default choices.
16Notice that emergent networks could also be part of a closed cycle in the associated time-homogeneous unperturbed

process (Jackson and Watts). We found no such cycle in the numerical experiments.
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agents overlap. It is given by

c (g) =
1

n

∑

i∈N ;ηi(g)>1

# {jl ∈ g |j 6= l; j, l ∈ Ni(g)}

# {j, l |l 6= j; j, l ∈ Ni(g)}
. (6)

It is the frequency with which agents’ neighbors are also neighbors together.

Next, we compute the distribution of neighborhood size in the population.

Global Asymmetry. It is computed using the difference between the largest neighborhood size and the

lowest one in the network:

r(g) = max
i∈N

ηi(g)−min
j∈N

ηj(g). (7)

This indicator measures the global asymmetry of neighborhood sizes in the network.

Last we are also interested in the extent of neighborhood asymmetry between directly connected

agents.

Local Asymmetry. It is computed as the sum over all direct connections of the absolute value of the

difference between neighborhood sizes. That is,

u(g) =
1

η(g)

∑

ij∈g

|ηi(g) − ηj(g)| , (8)

if η (g) > 0. This indicator gives the propensity of the highly connected agents to be linked to agents

that have few connections. It can be understood as a measure of non-assortativity of connections as

regards agents’ neighborhood sizes.

4.1.3 Controls for density

The last four indicators presented above (all but the average degree) are affected by the density

of the network that is likely to vary with δ, c and the generating process (of efficient or emergent

networks). For instance, it is easy to see that the mean degree of network affects crucially the

average distance of the networks: more dense networks are likely to exhibit a shorter average path

length. Without any control for density, one cannot know whether a network is shorter thanks to

the structural allocation of links or simply thanks to a higher density. This is also true for the three

other indicators. Therefore, a rigorous structural analysis of emergent and efficient networks should

control for such a bias. Thus, we propose to build, for each generated network, control random graphs

that have exactly the same number of agents and connections (thus the same density).

Such random networks are simply built by allocating a given number of edges to randomly chosen

pairs of agents (Erdös and Rényi 1960). For each given number of edges of emergent networks, the

average distance, the average clustering, the global and local asymmetry indicators are numerically

computed and averaged over 1, 000 of such random graphs. For instance, instead of looking at d (g),

where g is an emergent network, we compute the ratio d (g) /d
(
grd

)
, where d

(
grd

)
denotes the mean

average distance of the 1, 000 random networks that have exactly the same average degree as g. Thus,

the four indicators are corrected using the corresponding ratio.

This benchmarking procedure was introduced by Watts and Strogatz to identify complex graph

structures. In particular, relying on such ratios, they highlighted that “small worlds” are character-

ized by the two following properties: c (g) /c
(
grd

)
≫ 1 and d (g) /d

(
grd

)
≈ 1. Small world networks

10
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are highly clustered as compared to random graphs, and simultaneously their average distance is

close to the one of random graphs that are known to exhibit very short average path length.

Now we are able to appreciate fully how GA efficient and emergent networks of a given number of

links structurally differ from random networks, that is, how those links are allocated over all possible

pairs of agents (the possible links). This method allows us (i) to analyze the structural properties

of networks given their density, and (ii) to compare efficient and emergent networks for the different

values of δ while controlling for their density. We will underline in the next section the relevance of

this normalization when we will discuss the results concerning main indicators.
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Figure 2: The average degree of GA–efficient networks for random draws of δ and for the various

values of c: 0.05 (circles), 0.1 (crosses), 0.15 (squares), 0.2 (triangles), 0, 3 (diamonds).

4.2 The structural properties of GA–efficient networks

To analyze the structural properties of GA efficient networks, we run 1, 000 experiments with ran-

domly drawn values of δ ∈ ]0, 1[ and for five values of the cost parameter c ∈ {0.05; 0.1; 0.15; 0.2; 0.3}17.

In Figure 2, one can observe that the average degree of GA efficient networks exhibits an inverse

U-shape with δ for all values of c. When δ is small the average degree is null. As δ increases, it

reaches an intermediary plateau where agents have in average two connections. The average degree of

the network then increases up to a maximum plateau for 0.3 . δ . 0.4, the height of which decreases

with c. When δ & 0.7, the average degree decreases down to a value slightly below or equal to two

when δ tends to the unity. Except when δ is close to its extrema, average degree always decreases

with c.

These results meet the economic intuition. When c increases and δ decreases, the net social

returns to links formation decrease below zero. The empty network is then the efficient network18.

17Notice that when c > 0.3, the set of efficient networks becomes narrow (empty or ring networks). One can observe

in Figure 2 that most of networks obtained for c = 0.3 are already either weakly connected or empty.
18One can refer to Carayol and Roux (2006) for an analytical proof indicating that the empty network is the only

efficient network when δ is close to zero (when δ + (n−2)
4

δ2 < c). Thus, as observed in Figure 2, the value of δ under
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When the decay tends to unity, direct and indirect connections are likely to provide the same social

surplus, and thus multiple paths between the same agents become redundant. In this case, the

average degree of efficient networks tends to the average degree of a network connecting all agents

with a minimal number of links.

Proposition 1 The average degree of GA efficient networks exhibits an inverse U-shape along δ for

the different values of c. It is null when δ is close to 0, and it tends to 2 when δ is close to 1. In

between, average degree decreases with c.

The results for the ratios (the other indexes corrected for density) are summarized in Table 1 in the

Appendix19. The region for which δ < 0.1 is never taken into considerations because, since efficient

networks are empty, most indicators are not computable. We find that the average distance of the

GA–efficient networks is globally (δ ≥ 0.1) no more than 7% longer than random graphs’ distance

(see the ratio d(g)/d(grd) in Table 1). Moreover, for δ ∈ [0.4, 0.7[ or δ ∈ [0.7, 1[, average distances

are even always shorter in comparison with the controls. This result is noticeable since the average

distance between any two indirectly connected agents is already known to be very “short” in random

graphs. At the same time, the average clustering ratio of the efficient networks is always significantly

greater than 1, and when both c ≥ 0.15 and δ ∈ [0.1, 0.4[ or δ ∈ [0.4, 0.7[, the efficient networks

are even more than twice clustered than their controls. The conjunction of the two characteristics

c (g) /c
(
grd

)
≫ 1 and d (g) /d

(
grd

)
≈ 1 qualifies the efficient networks as Small Worlds in the sense

of Watts and Strogatz.

Proposition 2 For a large intermediary region of values of δ (δ > 0.4 and excluding cases in which

δ is close to 1) and for different values of c, efficient networks have an average distance (path length)

similar to the one of the control random networks while they are significantly more clustered than

these random networks. In this sense they correspond to Small Worlds à la Watts and Strogatz.

As regard the two other ratios, an interesting contrast arises when one compares, for each value of c

and δ, the global and local asymmetry ratios. Efficient networks are always more locally asymmetric

than they are globally asymmetric as compared to their random controls: see that r(g)/r(grd) <

u(g)/u(grd) for all values of c and δ in Table 1. For instance, for c = 0.1, they are 99% as globally

asymmetric as their controls, while they are 60% more locally asymmetric. In this case, though the

global asymmetry is quite similar (slightly lower) to the one of a network for which connections would

have been simply allocated at random, agents with fewer links have a significantly higher chance to

be directly connected to agents who have many connections. This underlines the social benefit of

providing some central positions to a few agents and to have them directly connect to more peripheral

agents. This would reduce the distance between all agents and thus increase the social surplus.

We also find that both local and global asymmetry ratios are the highest when δ ∈ [0.7, 1[ .

The social need for both central and local coordination is the highest when the decay is high: the

social returns of central structuration(s) tends to overcome its high costs (since it implies distant

connections that are costly)20.

which the empty network is the only efficient network increases with c.
19Appendix is available on the JEBO website.
20The superiority of such networks in terms of social surplus is likely to decrease sharply when δ comes very close to 1

because the connections of various lengths tend to provide the same wealth (the decay phenomenon becomes negligible).
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Proposition 3 Efficient networks always exhibit more local asymmetry than global asymmetry as

compared to their random controls (r(g)/r(grd) < u(g)/u(grd)): efficient networks are more likely to

directly connect their central agents to peripheral ones than random networks. The need for centralized

coordination is the highest when δ ∈ [0.7, 1[ .
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Figure 3: Comparison (gross difference and ratio) of mean social values of GA-efficient networks and

emergent networks over 30 identical length intervals of δ ∈]0, 1[.

4.3 Inefficiencies in emergent networks

We now compare emergent and efficient networks. For the clarity of the argument, we will present

experiments performed on only one value for the parameter c: c = 2/n = 0.1. This value corre-

sponds to the assumption that the most costly link is equal to unity (in the ring metric, we have

maxi,j∈N l(i, j) = cn/2 = 1), which is also the upper bound of a positive externality one can get from

another (single) agent (since δ ∈ ]0, 1[). Moreover, this intermediary value is preferred among the five

values studied above because it allows us to explore the richest set of configurations21. Notice that

the general propositions presented below are robust to the other values of c. Our results are drawn

over 500 GA efficient networks and 1, 500 emergent networks, again with random values of δ ∈ ]0, 1[.

The first results arise from the comparison of the social value generated by GA-efficient networks

and the social value of emergent networks. As Figure 3–(b) shows, the ratio of the average social

values of both types of networks (average emergent networks divided by average GA, for the same

intervals of δ) is always lower than the unity. Moreover, we observe that this ratio increases globally

with δ. Figure 3–(a) shows that this convergence to 1 does not exclude an increase in absolute differ-

ences since for both GA–efficient and emergent networks, increasing δ always significantly increases

the social value.

Proposition 4 The social value of emergent networks is always lower than GA-efficient networks

computed on similar values of δ.

The second series of results relate to networks average degree. Apart from the regions where δ

is either close to 0 or close to 1, the average degree of emergent networks is lower than the one of

efficient networks (see Figure 4). Agents generate fewer connections than they should, as regards

21Proofs can be obtained from the authors under request.
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Figure 4: The average degree of GA–efficient networks (black discs) and of emergent networks (gray

triangles) for the various values of δ when c = 0.1.

social surplus. This clearly confirms the economic intuition that arises from the basic payoff function

of the Connections model: there are positive externalities to link formation since a given agent’s

neighbors, and those to whom he is indirectly connected, benefit from any new connections he would

establish. Therefore, it is not surprising that selfish agents, who do not take into account the social

returns of link formation, establish too few connections.

Proposition 5 When δ is neither close to 0 nor close to 1, the average degree of emergent networks

is lower than the average degree of efficient networks: agents generate fewer connections than they

should as regard social surplus.
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(a) (b)

Figure 5: The average distance (a) and the (controlled for density) average distance ratio (b) of GA

efficient networks (black discs) and of emergent networks (gray triangles) for the various values of δ

and with c = 0.1.

We now explore further structural differences that exist between GA–efficient and emergent net-

works. Before pursuing this topic, we establish to what extent these structural differences between

GA and emergent networks are really due to differences in bond allocation (instead of to their density

differences)22. To that aim, both Figure 5 and Figure 6 present respectively uncontrolled and con-

trolled indicators for average distance and average clustering. Leaving aside scaling considerations,

22A theoretical discussion of this issue is the purpose of subsection 4.1.3.
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controlling for density does not produce significant changes in the differences in average distance be-

tween GA and emergent networks. This means that most of the differences observed in Figure 5–(a)

are, in fact, not much due to underlying density differences but to different allocations of connec-

tions among agents (observed Figure 5–(b)). As regards average clustering, Figure 6-(a) exhibits a

systematically superior clustering of GA–efficient networks, while Figure 6-(b) shows that controlled

values exhibit fewer differences in average clustering between efficient and emergent networks. More,

emergent networks have a higher average clustering ratio when 0.2 . δ . 0.25 and 0.3 . δ . 0.4.

Differences between GA–efficient and emergent networks due to bond allocation might even be op-

posite to the differences due to the joint effects of bond allocation and networks density. These two

situations (either insignificant differences for average distance or significant differences for average

clustering) illustrate why we prefer (and thus from now on exclusively discuss) the controlled indica-

tors that infer potential structural differences in bond allocation between GA–efficient and emergent

networks23.
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Figure 6: The average clustering (a) and the (controlled for density) average clustering ratio (b) of

GA efficient networks (black discs) and of emergent networks (gray triangles) for the various values

of δ and with c = 0.1.

The relational distances between agents in the network (see Figure 5–(a)) are key factors for

wealth generation since they directly intervene in the payoff function. We find that the average

distance of emergent networks, even controlling by random networks, is always longer than the one

of efficient networks (except for δ ≤ 0.15, in which case the average distances are equal, and for

one single GA experiment corresponding to a δ very close to 1). When 0.15 . δ < 0.45 or δ > 0.7

(see Figure 5–(b) and Table 2) the controlled average distance of emergent networks is significantly

greater. In these regions of δ, agents do not generate costly shortcuts. One can see in Figure 7

that when δ = 0.3, the illustrative emergent network is a ring whereas the GA efficient has some

distant connections: the individual rewards of forming such connections are too low as regards their

costs. When δ = 0.9 or 0.95, the difference between private gross returns from (relational) shorter

and longer connections becomes too low as compared to the difference in their costs. It is only for

intermediary regions of δ that agents are provided with nearly sufficient incentives to bear the costs

23Due to space constraints, we do not present uncontrolled local and global asymmetry indexes. These do not

significantly differ from the controlled values, leading us to concentrate on those (controlled) indicators for which the

reader knows that the differences are not due to density differences between GA-efficient and emergent networks.
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δ = 0.2 δ = 0.3 δ = 0.4 δ = 0.6 δ = 0.8 δ = 0.9 δ = 0.95
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Figure 7: Illustrative networks for different values of δ

associated with long distance connections. In particular, for δ ∈ [0.5, 0.7[, the emergent networks

have an average distance equal to their control random graphs while efficient networks have a slightly

shorter average distance (3% less) than their own controls24.

Proposition 6 The average distance is globally longer for emergent networks than for efficient net-

works (even controlling for average degree), but for an intermediary region (δ ∈ [0.5, 0.7[), the average

distance of emergent and efficient networks become very close to the average distance of their control

random graphs.

What are the implications in terms of clustering of the payoff function assumed by the spatialized

connection model? Except for extreme values of δ, there is no simple answer to this question.

On the one hand, the Connections model provides positive externalities that are conveyed through

the network: agents benefit from other agents with whom they are indirectly connected. Such

externalities are the highest at distance 2. Thus agents have low incentives to form triangles (which

would increase clustering), thus connecting to those agents from whom they already benefit. This

is particularly true when δ becomes very close to δ2 (for δ slightly larger than 0.1 or close to 1)

holding constant the costs of link formation. On the other hand, when forming triangles, agents

reduce the distances between their respective neighbors who then better benefit from each other.

Efficient networks are thus expected to be more clustered than emergent ones since the social returns

to overlapping connections (i.e., forming triangles) are higher than the associated private returns:

agents do not consider the positive externalities that forming such triangles would generate on other

players.

We find that the average clustering of emergent networks is null when 0.1 < δ < 0.2, while the

same arises for efficient networks for 0.09 < δ < 0.15 (see Figure 6–(b)). Thus, when 0.1 < δ < 0.15,

the average clustering of both emergent and efficient networks is null. In both cases, we systematically

find the ring network in which agents are connected only to their two nearest geographic neighbors.

When δ then slightly increases, clustering of both efficient and emergent networks jumps up to

nearly five times their control random networks. This corresponds to locally clustered networks, as

Figure 7 illustrates in the case of δ = 0.2. As δ increases again, the average clustering of efficient and

emergent networks decreases first sharply then more slowly, down to a plateau reached at δ = 0.4

24Notice that the clustering ratio of emergent networks fails to remain high when c is large (c = 0.3) because such

very costly links tend to prevent the creation of distant connections that would decrease the average distance to a

similar extent as in random networks.
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Figure 8: The global asymmetry ratio (a) and the local asymmetry ratio (b) of GA efficient networks

(black discs) and of emergent networks (gray triangles), and their median-band fitted values, for the

various values of δ and with c = 0.1.

in the case of efficient networks and at δ = 0.5 for emergent networks. The average clustering of

efficient networks decreases more sharply because they generate shortcuts while emergent networks

remain locally clustered. In both cases, the plateau ends when δ ≈ 0.7. We find (see Table 2) that

for δ ∈ [0.5, 0.7[, efficient networks are 54% more clustered than their control random networks,

while the emergent networks are 32% more clustered than their own controls25. Figure 6–(b) shows

that networks again become less clustered than their controls
(
c(g)/c(grd) < 1

)
, but only when both

0.7 < δ . 0.85 and δ & 0.9 for emergent networks, and when δ & 0.9 for efficient networks. As

illustrated in Figure 7, these networks tend to be locally minimally connected with few triangles.

As regards emergent networks, this can be explained as follows: when δ comes close to unity, the

private returns to overlapping connections tend to zero. The average clustering of efficient networks

is maintained when 0.7 < δ < 0.9, thanks to the simultaneous presence of simple ring connections

and of some very connected agents (and thus of triangles) (see Figure 7 for δ = 0.8).

Proposition 7 For a large intermediary region (δ ∈ [0.2, 0.7]), efficient and emergent networks are

both significantly more clustered than their control random networks. Globally, while controlling for

their average degree, efficient networks are more clustered than emergent networks (except in a narrow

region 0.3 . δ . 0.4 for which the reverse holds).

We now consider the distribution of connections over agents in the efficient and the emergent

networks (see Figure 8). The global asymmetry ratio of neighborhood sizes of efficient networks is

0.99, while the global asymmetry ratio of emergent networks is only 0.37 (Figure 8–(a) and Table 2).

Therefore, efficient networks have a much more uneven distribution of connections than emergent

networks. Comparing the local asymmetry ratios of efficient networks (1.6) and emergent networks

(0.43) also leads to the idea that the emergent networks have a much too balanced distribution of

connections over agents (see Figure 8–(b)). This statement applies to all regions of δ (see Figure 7 and

Table 2 in the Appendix) except when δ is very close to unity. The simultaneity of both geographically

embedded connections and some more central agents in the network also explains why clustering is

25Notice again that emergent networks fail to sustain a high clustering when c is large (0.2, 0.3) because when links

are so costly, only minimally locally connected networks are formed and thus few triangles.
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so high in efficient networks. When δ ≈ 0.9, very centralized networks become efficient and the

asymmetry ratios of efficient networks become very high: Figure 7 illustrates that efficient networks

tend to provide some agents with many connections (“stars”) while the emergent networks fail to

do so (this can be observed for δ equal to 0.8, 0.9 and 0.95). The absence of some highly connected

agents in emergent networks stresses another source of inefficiency in network formation: the emergent

networks are much less structured around central agents who would contribute to increase the wealth

in the population.

Proposition 8 Emergent networks have a too much balanced distribution of connections over agents.

Decentralized strategic interactions in network formation do not favor the emergence of central agents

who would improve social wealth.

5 Conclusion

In this paper, we make a simultaneous use of two new approaches for computing emergent (Monte

Carlo experiments) and efficient networks (Genetic Algorithms) in a spatialized variation of the

Connections model. In this model, agents balance the benefits of forming or maintaining links

against their costs, which increase with geographic distance. Direct connections between agents

create positive externalities to other agents, the strength of which decreases with relational distance.

We then compare the structural properties of emergent and efficient networks. For this purpose, we

rely upon several indexes and ratios (which correct for networks density).

Our results highlight inefficiency sources in social networks formation. First, we find that emer-

gent networks are significantly less dense than efficient ones: agents generate fewer connections than

they should as regards social surplus because the model exhibits positive externalities to bond for-

mation. Selfish agents do not naturally build those links for which the social returns overbalance the

establishment costs while the private returns do not. Our second result is that agents are in average

(socially) too distant from each other: emergent networks lack some costly distant connections. It

is only when the decay parameter (that tunes the externalities) takes intermediary values that this

difference is reduced since the private returns of distant connections are then the highest. Third,

efficient networks are globally more clustered than emergent networks: the social returns to triangu-

lar connections are again higher than their private returns. Last, emergent networks do not exhibit

enough asymmetries between agents (the distribution of links among agents is too balanced). This

should be contrasted with the efficient networks where connections are preferentially attributed to

a few agents who thus gain central positions in the network. Emergent networks do not share this

structural property because no agent wants to bear the costs associated with such a central position,

even if increasing the connectivity of some (ex ante identical) agents enhances the quality of many

indirect social connections.

These results indicate that agents would socially benefit from the compensation of some of them

for internalizing networks externalities. This would increase the local density of the network and

ensure the establishment of more costly (geographically) long distance connections that are partic-

ularly important in reducing relational distance between agents. Agents would also be better off if

some agents (or only one of them, depending on the decay parameter) were selected and subsidized

to play central roles.
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Two types of mechanisms may be mobilized to try to overcome such inefficiencies. Global policies

could aim at selecting and subsidizing some agents to be at the center of stars. They could also aim at

subsidizing links and even make this depend on the spatial length of the connection26. Nevertheless,

in some circumstances, the regulator may be legally constrained and may not have the right to

provide advantages to selected agents. More importantly, in the formation of many networks, the

regulator would face information asymmetries: it is not clear whether he may effectively observe the

network or even agents’ attributes. When regulation is not appropriate, agents may rely only on

decentralized bargaining mechanisms. Direct side payments may intervene between agents in the

formation of links. Agents may also subsidize the formation of connections between other agents.

Nevertheless, even then the decentralized bargaining does not guarantee that efficient networks will

form: it is necessary that the transfers can be made contingent on the networks that will form so as

to overcome the huge combinatorial problems agents face (Bloch and Jackson 2007). More, it is not

because efficient networks are pairwise stable given the transfers that such a network will emerge in

the long run. Such questions constitute an avenue for further research.

6 Appendix

Ratios c \ δ 0.1− 0.4 0.4− 0.7 0.7− 1 0.1− 1

c = 0.05 1.01 (0.03) 0.99 (0.00) 0.95 (0.08) 0.98 (0.06)

d(g) c = 0.1 1.18 (0.30) 0.97 (0.01) 0.92 (0.13) 1.02 (0.22)

d(grd) c = 0.15 1.28 (0.37) 0.94 (0.02) 0.88 (0.13) 1.02 (0.27)

c = 0.2 1.45 (0.37) 0.95 (0.06) 0.88 (0.12) 1.07 (0.32)

c = 0.3 1.49 (0.39) 0.91 (0.05) 0.95 (0.33) 1.06 (0.37)

c = 0.05 1.47 (0.29) 1.31 (0.00) 1.51 (0.43) 1.43 (0.32)

c(g) c = 0.1 2.40 (1.38) 1.56 (0.19) 1.62 (0.73) 1.87 (0.99)

c(grd) c = 0.15 2.69 (1.70) 2.09 (0.18) 1.66 (0.87) 2.12 (1.10)

c = 0.2 2.72 (2.27) 2.97 (0.36) 1.30 (1.20) 2.34 (1.58)

c = 0.3 2.03 (1.98) 2.88 (0.52) 1.32 (1.09) 2.00 (1.39)

c = 0.05 0.29 (0.22) 0.12 (0.00) 0.94 (0.77) 0.48 (0.61)

r(g) c = 0.1 0.71 (0.20) 0.76 (0.20) 1.45 (0.63) 0.99 (0.53)

r(grd) c = 0.15 0.62 (0.42) 1.35 (0.25) 1.90 (0.60) 1.32 (0.66)

c = 0.2 0.33 (0.33) 1.59 (0.48) 1.87 (0.63) 1.32 (0.81)

c = 0.3 0.32 (0.35) 1.42 (0.24) 1.62 (0.42) 1.25 (0.63)

c = 0.05 0.42 (0.24) 0.22 (0.02) 1.65 (2.38) 0.82 (1.60)

u(g) c = 0.1 1.16 (0.32) 1.01 (0.36) 2.55 (1.88) 1.60 (1.34)

u(grd) c = 0.15 0.98 (0.65) 1.90 (0.30) 3.40 (1.58) 2.13 (1.37)

c = 0.2 0.59 (0.52) 2.22 (0.64) 3.68 (1.42) 2.24 (1.54)

c = 0.3 0.49 (0.50) 2.35 (0.55) 3.01 (0.91) 2.20 (1.22)

Table 1: Average values (standard deviations in parentheses) of the various indicators computed on GA–

efficient networks relative to their control random networks drawn for various regions of δ and for different

values of c. The region for which δ < 0.1 is never taken into consideration because both efficient and emergent

networks are empty and thus most indexes are not computable.

26Network considerations may be appropriate for funding collaboratory research projects. For instance, the European

Commission that explicitly aims at fostering European research space may also consider such network variables.
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Ratios g \ δ 0.1− 0.3 0.3− 0.5 0.5− 0.7 0.7− 0.9 0.9− 1 0.1− 1

d(g) GA efficient 1.25 (0.34) 0.99 (0.02) 0.97 (0.01) 0.92 (0.04) 0.90 (0.23) 1.02 (0.22)

d(grd) Emergent 1.59 (0.31) 1.09 (0.07) 1.00 (0.01) 0.99 (0.02) 1.18 (0.21) 1.17 (0.29)

c(g) GA efficient 2.64 (1.60) 1.75 (0.21) 1.54 (0.18) 1.78 (0.48) 1.24 (1.06) 1.87 (0.99)

c(grd) Emergent 1.71 (1.98) 1.86 (0.31) 1.32 (0.11) 1.12 (0.44) 0.12 (0.21) 1.36 (1.11)

r(g) GA efficient 0.67 (0.16) 0.78 (0.23) 0.76 (0.19) 1.26 (0.50) 1.94 (0.68) 0.99 (0.53)

r(grd) Emergent 0.13 (0.18) 0.35 (0.09) 0.40 (0.06) 0.51 (0.12) 0.56 (0.14) 0.37 (0.19)

u(g) GA efficient 1.19 (0.32) 1.09 (0.35) 0.99 (0.35) 1.97 (1.41) 4.05 (2.11) 1.60 (1.34)

u(grd) Emergent 0.24 (0.33) 0.48 (0.11) 0.39 (0.10) 0.51 (0.13) 0.68 (0.21) 0.43 (0.23)

Table 2: Average values (standard deviations in parentheses) of the various indicators computed on GA–

efficient networks and emergent networks relative to their control random networks drawn for c = 0.1 and for

various regions of δ.
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