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Geometrical accumulations and
computably enumerable real numbers

(extended abstract)

Jérôme Durand-Lose⋆

LIFO, Université d’Orléans,
B.P. 6759, F-45067 ORLÉANS Cedex 2.

Abstract. Abstract geometrical computation involves drawing colored
line segments (traces of signals) according to rules: signals with similar
color are parallel and when they intersect, they are replaced according
to their colors. Time and space are continuous and accumulations can be
devised to unlimitedly accelerate a computation and provide, in a finite
duration, exact analog values as limits.
In the present paper, we show that starting with rational numbers for
coordinates and speeds, the time of any accumulation is a c.e. (compu-
tably enumerable) real number and moreover, there is a signal machine
and an initial configuration that accumulates at any c.e. time. Similarly,
we show that the spatial positions of accumulations are exactly the d-
c.e. (difference of computably enumerable) numbers. Moreover, there is
a signal machine that can accumulate at any c.e. time or d-c.e. position.

Key-words. Abstract geometrical computations; Computable analysis;
Geometrical accumulations; c.e. and d-c.e. real numbers; Signal machine.

1 Introduction

Starting from a few aligned points, lines are initiated. When they intersect, they
end and new line segments start. Each line is given a color and lines with the
same color should be parallel. The new line segments are colored according to
the colors of the removed ones.

What can kind of figure can one build with finitely many colors? Is this system
computing in some way?

Such a system computes. It does so in the understandings of both Turing
computability, the original Blum, Shub and Smale model [Blum et al., 1989,
Durand-Lose, 2007, 2008a] and Computable analysis [Weihrauch, 2000, Durand-
Lose, 2009b, 2010b]. The so-called Black-hole model of computation can be em-
bedded too [Etesi and Németi, 2002, Hogarth, 2004, Lloyd and Ng, 2004, Andréka
et al., 2009, Durand-Lose, 2006a, 2009a].

Given that the underlying space and time are Euclidean, thus continuous, can
there be any accumulation? What can be said about them?

⋆ http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose,
Jerome.Durand-Lose@univ-orleans.fr



Geometrical accumulation is a common phenomenon (as in Fig. 1, time is
always elapsing upward). With a shift and a rescaling, it could happen anywhere.
It is the key to embedding analog computing as well as the Black-hole model.

In the present paper, we show that if the system is based on rational numbers
then the temporal and spatial coordinates of any isolated accumulation belong
to some particular sets of real numbers. The times are exactly the computably
enumerable numbers (c.e. numbers for short): the limits of (converging) increas-
ing computable sequences of rational numbers. The spatial positions are exactly
the differences of two such numbers (d-c.e. numbers). Usual computable numbers
(limits of effectively converging computable sequences of rational) are a strict
subset of c.e. numbers which is a strict subset of d-c.e. numbers [Zheng, 2006].

The geometric system described above is a signal machine in the context
of abstract geometrical computations. It is inspired by a continuous time and
space counterpart of cellular automata [Durand-Lose, 2008b] and related to the
approaches of Jacopini and Sontacchi [1990], Takeuti [2005] and Hagiya [2005].
It is also an idealization of collision computing [Adamatzky, 2002, Adamatzky
and Durand-Lose, 2010].

A signal machine gathers the definition of meta-signals (colors, like zig and
right in Fig. 1(a)) and collision rules (like {zig, right} → {zag, right}). An instance
of a meta-signal is a dimensionless point called a signal. Each signal moves
uniformly, its speed only depends on the associated meta-signal. The traces
of signals on the space-time diagrams form line segments and as soon as they
correspond to the same meta-signal, they are parallel. When signals meet, they
are removed and replaced by new signals. The emitted signals only depend on
the nature of colliding ones.
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Fig. 1. Example of a space-time diagram and light cone.

One key feature of AGC is that space and time are continuous. This has
been used to do fractal parallelism [Duchier et al., 2010]. Moreover, Zeno effects
can be implemented to generate unbounded acceleration; in particular to allow
infinitely many discrete transitions during a finite duration. This has been used
to decide the halting problem and implementing the Black-hole model [Durand-
Lose, 2009a]. It has also been used to carry out exact analog computations
[Durand-Lose, 2008a, 2009b].



This is achieved with rational signal machines: speeds as well as initial posi-
tions are rational numbers. Since the positions of collisions are defined by linear
equations in rational numbers, the collisions all happen at rational positions.
This is important since rational numbers can be handled exactly in classical
discrete computability.

One early question in the field was whether, starting from a rational signal
machine, accumulation could lead to an irrational coordinate. An accumulation
at

√
2 was provided in Durand-Lose [2007]. The question was then to character-

ize all the possible accumulation points. Please note that forecasting accumula-
tion for a rational signal machine is as undecidable as the strict partiality of a
computable function (Σ0

2 -complete in the arithmetical hierarchy [Durand-Lose,
2006b]).

In the present article, we are interested in isolated accumulations: in the
space-time diagram, sufficiently close to it, there is no accumulation point and
nothing except in the casual past as in Fig. 1(a). The accumulation on Fig. 2(a)
is not isolated because of infinitely many left signals on the right. The ones on
Fig. 2(b) form a cantor set and the ones of Fig. 2(c) are on a curve (right upper
limit) and are almost all accumulations of signals away from any collision.

zig
right

left

zag

zig

right

left
left

(a) Non isolated single
accumulation

(b) Accumulating on a
Cantor set

(c) Accumulating on a
curve (upper right)

Fig. 2. Non-isolated accumulations.

The time of an accumulation is c.e. because the system can be simulated
exactly on a computer and the time is the above limit of a Zeno phenomenon.
For the spatial position, the difference is exhibited by slanting the space-time
diagram to exhibit an increasing sequence, the drifting correction provide the
negative c.e. term.

In Durand-Lose [2009b], we use a two level construction scheme where: the
inner level simulates a TM that output orders to the outer structure. The outer
structure undergoes a shrinking process—generating the accumulation—driven
by the received orders. We use specially designed inner and outer structures to
provide (rational) signal machines and initial configurations that accumulates at
any c.e. time (resp. d-c.e. spatial position).

This paper goes beyond Durand-Lose [2010a] which ends up having a major
flaw: the accumulation positions do not need to be computable.



Definitions are gathered in Sect. 2. Section 3 shows that the temporal (resp.
spatial) coordinate of isolated accumulations is always c.e. (resp. d-c.e.). Sec-
tion 4 presents the two level structure. Section 5 provides the control layer. Sec-
tions 6 and 7 present outer structures to accumulate respectively at a c.e. time
and at a d-c.e. spatial position. Section 8 concludes the paper.

2 Definitions

2.1 Abstract geometrical computation

A signal machine collects the definitions of available meta-signals, their speed
and the collision rules. For example, the machine to generate Fig. 1(a) is com-
posed of the following meta-signals (with speed): left ( 1

2
), zig (4), zag (−4), and

right (- 1
2
). Two collision rules are defined:

{left, zag} −→ {left, zig} and {zig, right} −→ {zag, right} .

It might happen that exactly three (or more) meta-signals meet. In such a case,
collisions rules involving three (or more) meta-signals are used. There can be any
number of meta-signals in the range of a collision rule, as long as they speeds
differ.

A configuration is a function from the real line (space) into the set of meta-
signals and collision rules plus two extra values: ⊘ (for nothing there) and Z

(for accumulation). If there is a signal of speed s at x, then, unless there is a
collision before, after a duration ∆t, its position is x + s.∆t. At a collision, all
incoming signals are immediately replaced by outgoing signals in the following
configurations according to collision rules. Moreover, any signal must be spatially
isolated —nothing else arbitrarily closed—, locations with ⊘ value must form
an open set and the accumulation points of non ⊘ locations must be Z. (This is
a spatial, static, accumulation like on Fig. 2(c).)

A space-time diagram is the collection of consecutive configurations which
form a two dimensional picture. It must also verify that any accumulation
point of collisions in the picture is Z. (This is a dynamical accumulation like
on Fig. 1(a).)

Considering the definition of light cone as on Fig. 1(b), an accumulation at
(x0, t0) is isolated if, sufficiently close to (x0, t0):
– there is nothing but ⊘ out of the casual past, and
– there are infinitely many signals and collisions but no accumulation in the
casual past.

It is a purely dynamical and local accumulation.
A signal machine is rational if all the speeds are rational (numbers) and only

rational positions are allowed for signals in the initial configuration. Since the
position of collisions are solutions of systems of rational linear equations, they
are rational. In any space-time diagram of a rational signal machine, as long as
there is no accumulation, the coordinates of all collisions are rational.

The dynamics is uniform in both space and time. Space and time are contin-
uous; there is no absolute scale. So that if the initial configuration is shifted or
scaled so is the whole space-time diagram.



2.2 c.e. and d-c.e. real numbers

A computable sequence is defined by a Turing machine that on input n output
the nth term of the sequence.

Definition 1 (c.e. and d-c.e. numbers). A real number is c.e. ( computably
enumerable) if there is an increasing computable sequence of rational numbers
that converges to it.

A real number is d-c.e. (difference of computably enumerable) if it is the
difference of two c.e. numbers.

The c.e. numbers are closed by rational addition and positive rational multi-
plication but they not closed under subtraction. On the other side d-c.e. numbers
form a closed field [Ambos-Spies et al., 2000] and are also characterized by:

Theorem 1 (Ambos-Spies et al. [2000]). A real number is d-c.e. iff there is
a computable sequence (xn) that weakly effectively converges to it in the sense
that the sum

∑

n∈N
|xn+1 − xn| converges.

3 Only (d-)c.e. coordinates

Let us consider any (rational) isolated accumulation at (x0, t0). The configura-
tions is “clipped” sufficiently closed to the accumulation so that there is nothing
out of the casual past. It is rational and finite.

From a (rational) signal machine and a (finite) configuration, it is easy to
build a Turing machine that treats the collisions and updates the configuration
forever (and indeed this has been programmed in java). Each time a collision
is treated, let it output the (rational) time. This sequence is increasing and
converges to the time of the accumulation.

Lemma 1. The time of any (rational) isolated accumulation is c.e.

A space-time diagram can be slanted by adding the same “drift” to all signals.
This is done by increasing all the speeds by the same amount. For example,
starting from Fig. 1(a), by adding 1, 2 and 4 to all the speeds, the diagrams of
Fig. 3 are generated.

With a sufficiently large integer drift, all speed become positive, so that the
configuration has to move to the right, or at least, the positions of its leftmost
signal is. Consider a modification of above Turing machine so that each time
it treats a collision, it outputs the spatial position of the leftmost signal. This
produces an increasing sequence that converges to the spatial position of the
drifted accumulation. This position, y0 is c.e.

While the times remain unchanged, the spatial positions of signals and colli-
sions (and hence accumulation) are moved by d.t where d is the drift and t is the
time. To correct the drift for the accumulation, d.t0 has to be removed where t0
is the time of the accumulation. Since t0 is c.e. and d is an integer, d.t0 is c.e.
So that x0 = y0 − d.t0 is d-c.e.

With a sufficiently large negative drift, a decreasing converging sequence is
generated. This generates the opposite of a c.e. (a co-c.e.) real number.
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Fig. 3. Examples of drifts by 1, 2 and 4.

Lemma 2. The spatial position of any (rational) isolated accumulation is d-c.e.
The coordinates of an isolated accumulation can be expressed as (y− d.t0, t0) or
(d.t0 − y′, t0) where y, y′ and t0 are c.e. and d is an integer.

4 Controlled shrinking structure

This section presents a general scheme based on a two level structure. The outer
one handles the shrinking of the whole structure according to the messages
received from the inner one which acts as a control.

The shrinking process is not detailed here (it is in Durand-Lose [2010b]).
It works by steps. Each step ensures that the structure and everything that is
embedded inside it is scaled down by a constant factor. Three such steps are
displayed in Fig. 4(c). This is repeated forever generating an accumulation.

4.1 Control/inner structure

The inner structure simulates a Turing machine that outputs orders to the outer
structure. Each order is formed by signals sent on the left. Outputting is blocking:
the control has to receive some acknowledgement signal to resume and send the
next order.

The computation is embedded inside a shrinking structure to ensure a bounded
delay between outputs. The shirking process is also blocked after the output and
resume on relaying the acknowledgement. This is done to ensure that this struc-
ture does not generate an accumulation.

Simulating a Turing machine with a signal machine is only exemplified by
figures 4(a) and 4(b) where 11 is output. The cells of the tape are encoded by
motionless signals (vertical lines) displayed in a geometrical sequence so that
it works in a bounded space. A more detailed construction can be found in
[Durand-Lose, 2010b].
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Fig. 4. Blocking inner structure including a Turing machine.

The output leaves on the left, unaffected by the inner shrinking. The latter
is stopped by the presence of wait. The output is collected and processed by the
outer structure.

4.2 Outer structure

The outer structure waits a fixed time before collecting and processing the next
output. So that the inner structure has a limited activation time for outputting.
Since it has also a shrinking structure, the Turing machine has an unlimited
number of iterations ahead of it—this is a form of unbounded acceleration to
ensure the output comes in due time. (Special case is taken so that the inner
structure have space as if it would never halt.)

When an order is issued, the inner structure is blocked with all its signal
parallel. Parallel signals are easy to move preserving their relative position as
illustrated on Fig. 4(c) where 0-speed signals amounting for the tape cells go from
one triangle to the next. Each time their distances are scaled by one half (this
is the shrinking scheme). This is more exemplified in the next sections where
special constructions are provided.

This structure provides the isolated accumulation but it moves or waits at
each step so that to make the accumulation happen at some position according
to the control.

5 Controls for d-c.e.

Let x be any d-c.e. number. There is a Turing machine that generates a sequence
xn such that this sequence converges to x and

∑

n∈N
|xn+1 − xn| converges. If x

is c.e., it is also requested that the sequence is increasing.



Let α be any positive rational number. Let us define the sequences:

y0 =

⌊

1

α
x0

⌋

yn+1 =

⌊

2n+1

α
(xn+1 − xn + en)

⌋

(1)

e0 = x0 − α.y0 en+1 = xn+1 − xn + en − α

2n+1
yn+1 (2)

where ⌊u⌋ is the greatest integer less or equal to u (⌊u⌋ ≤ u < ⌊u⌋+1). It follows
that

|en| ≤
α

2n
. (3)

So that en converges to 0 and the sequence defined below, zn, converges to x

because, using (2),

zn =

n
∑

i=0

α

2i
yi = x0 − e0 +

n
∑

i=1

(−ei + xi − xi−1 + ei−1)

= xn − en .

Since xn is a computable sequence of rational numbers, so are yn and en.
Moreover yn is a sequence of integers. If x is a positive c.e., then yn should a
sequence of natural numbers.

In the following, the control output yn in unary (with 1 for negative values
and with 1 for positive values) then waits. This loop is repeated forever.

If x is c.e., then the computable sequence is increasing, so that only non-
negative values are output.

6 Accumulating at a c.e. time

On the nth iteration, the outer structure receives yn (an unary encoded natural
number). It waits yn time a delay and then shrinks the whole configuration by
one half and wakes up the inner control.

If yn is zero, the outer structure just shrinks as in Fig. 5(a). Figure 5(b)
illustrates a unit delay: the bottom signal that crosses the configuration left to
right encounters the unique 1 output. It collects it and goes forth and back to
the left to start again. If the delay is more important, like in Fig. 5(c), the other
1’s are stored (vertical black line) and each time one is collected and processed.

The inner structure does not produce any accumulation since it freezes each
time it output anything (including for the empty word) which it does infinitely
often.

Since the configuration is shrunk by one half each time, the unit delay se-
quence is geometrical with one half factor. The sum of delays is zn.

The outer shrinking process alone provides a term to the final accumulation
time. This term, g, is the sum of a geometrical sequence of factor one half, which
is rational. It is easy to scale down the initial configuration so that g is less than
t. Since c.e. are stable by rational addition, t− g is c.e. and the control should
output the sequence corresponding to it and α (as given by the scale of the outer
structure).

Figure 7(a) illustrates a longer run with a machine that always outputs 11.



(a) delay 0 (b) delay 1 (c) delay 2

Fig. 5. Shrinking step and delays.

7 Accumulating at a d-c.e. spatial position

The whole structure shifts left or right according to the inner control. Figure 6(c)
illustrates the case where nothing is output (it is similar to the Fig. 5(a)). For
each 1 output the whole configuration is shifted by its width on the left. This is
done as on Fig. 6(a): all signals are drifting on the left with identical speed (i.e.,
they are parallel). Two fast parallel signals ensure that the distance is the same;
they form a parallelogram.

For the right shift in Fig. 6(b), the parallelogram is incomplete, but the second
diagonal is here. As before if the movement is of more that one unit, all other
units are preserved and treated one after the other as depicted in Fig. 6(d).

A larger run is displayed in Fig. 7(b).

To accumulate on a given d-c.e. number, the right extremity of the structure
should be set at coordinate 0; then α can be chosen to be 1 by scaling.

The whole structure accumulates because the total time is: the outer struc-
ture time—which is finite—plus the time for the shifts. The unitary shifts,
whether on left or right, have the same duration. This duration is proportional
to the shift so we have to ensure that

∑

n
|yn| 2−n converges.

|yn+1| ≤
∣

∣

∣

∣

2n+1

α
(xn+1 − xn + en)

∣

∣

∣

∣

+ 1 (from (1))

α

2n+1
|yn+1| ≤ |xn+1 − xn|+ |en|+

α

2n+1

α

2n+1
|yn+1| ≤ |xn+1 − xn|+ 3

α

2n+1
(from (3))

∑

1≤n

α

2n+1
|yn+1| ≤

∑

1≤n

|xn+1 − xn|+ 3
∑

1≤n

α

2n+1

From Th. 1 the first sum converges.
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Fig. 6. Shrinking step and shifts.

8 Conclusion

By considering a universal Turing machine in the control and union of signal
machines (one for space and one for time), comes:

Theorem 2. There is a rational signal machine that can generate isolated ac-
cumulation at any c.e. time or d-c.e. spatial position depending on the initial
configuration.

Following the restriction on the coordinated expressed in Lem. 2, we conjec-
ture that there can be an isolated accumulation at any such coordinates, i.e.,
time and spatial position simultaneously.

When spatial dimension 2 and above is addressed, it seems that each spatial
coordinate can be traded independently and the same result holds with a similar
relation with time.
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